A NOTE ON CYCLIC CHROMATIC NUMBER

JANA ZLÁMALOVÁ

Institute of Mathematics, Faculty of Science P.J. Šafárik University Jesenná 5, 040 01 Košice, Slovakia **e-mail:** zlamalovaj@gmail.com

Abstract

A cyclic colouring of a graph G embedded in a surface is a vertex colouring of G in which any two distinct vertices sharing a face receive distinct colours. The cyclic chromatic number $\chi_c(G)$ of G is the smallest number of colours in a cyclic colouring of G. Plummer and Toft in 1987 conjectured that $\chi_c(G) \leq \Delta^* + 2$ for any 3-connected plane graph G with maximum face degree Δ^* . It is known that the conjecture holds true for $\Delta^* \leq 4$ and $\Delta^* \geq 18$. The validity of the conjecture is proved in the paper for some special classes of planar graphs.

Keywords: plane graph, cyclic colouring, cyclic chromatic number. 2010 Mathematics Subject Classification: 05C15.

1. INTRODUCTION

Graphs, which we are dealing with, are plane, 3-connected and simple. Consider such a graph G = (V, E, F) and let us present notations used in this article. The *degree* deg(x) of $x \in V \cup F$ is the number of edges incident to x. A vertex of degree k is a k-vertex, a face of degree k is a k-face. By V(x) we denote the set of all vertices incident to $x \in E \cup F$; similarly, F(y) is the set of all faces incident to $y \in V \cup E$. If $e \in E$, $F(e) = \{f_1, f_2\}$ and $\deg(f_1) \leq \deg(f_2)$, then the pair $(\deg(f_1), \deg(f_2))$ is called the *type* of e. A cycle in G is facial if its vertex set is equal to V(f) for some $f \in F$.

A vertex x_1 is cyclically adjacent to a vertex $x_2 \neq x_1$ if there is a face f with $x_1, x_2 \in V(f)$. The cyclic neighbourhood $N_c(x)$ of a vertex x is the set of all vertices that are cyclically adjacent to x and the closed cyclic

neighbourhood of x is $\bar{N}_{c}(x) = N_{c}(x) \cup \{x\}$. (The usual neighbourhood of x is denoted by N(x).) The cyclic degree of x is $cd(x) = |N_{c}(x)|$. A cyclic colouring of G is a mapping $\varphi : V \to C$ in which $\varphi(x_{1}) \neq \varphi(x_{2})$ whenever x_{1} is cyclically adjacent to x_{2} (elements of C are colours of φ). The cyclic chromatic number $\chi_{c}(G)$ of the graph G is the minimum number of colours in a cyclic colouring of G.

For $p,q \in \mathbb{Z}$ let $[p,q] = \{z \in \mathbb{Z} : p \le z \le q\}$ and $[p,\infty) = \{z \in \mathbb{Z} : p \le z\}.$

Let G be an embedding of a 2-connected graph and let v be its vertex of degree n. Consider a sequence (f_1, \ldots, f_n) of faces incident to v in a cyclic order around v (there are altogether 2n such sequences) and the sequence $D = (d_1, \ldots, d_n)$ in which $d_i = \deg(f_i)$ for $i \in [1, n]$. The sequence D is called the *type* of the vertex v provided it is the lexicographical minimum of the set of all such sequences corresponding to v.

It is easy to see that $\operatorname{cd}(v) = \sum_{i=1}^{n} (d_i - 2)$. A contraction of an edge $xy \in E(G)$ consists in a continuous identification of the vertices x and y forming a new vertex $x \leftrightarrow y$ and the removal of the created loop together with all possibly created multiedges; let G/xy be the result of such a contraction. An edge xy of a 3-connected plane graph G is contractible if G/xy is again 3-connected.

If the graph G is 2-connected, any face f of G is incident to $\deg(f)$ vertices. In such a case $\chi_{c}(G)$ is naturally lower bounded by $\Delta^{*}(G)$, the maximum face degree of G.

By a classical result of Whitney [9] all plane embeddings of a 3-connected planar graph are essentially the same. This means that $\chi_c(G_1) = \chi_c(G_2)$ if G_1, G_2 are plane embeddings of a fixed 3-connected planar graph G; thus, we can speak simply about the cyclic chromatic number of G. Plummer and Toft in [8] conjectured that if G is a 3-connected plane graph, then $\chi_c(G) \leq \Delta^*(G) + 2$. They showed a weaker inequality $\chi_c(G) \leq \Delta^*(G) + 9$. Let $\operatorname{PTC}(d)$ denote the conjecture by Plummer and Toft restricted to graphs with $\Delta^*(G) = d$. By the Four Colour Theorem, for a triangulation G we have $\chi_c(G) \leq 4 = \Delta^*(G) + 1$. $\operatorname{PTC}(4)$ is known to be true by the work of Borodin [2]. Horňák and Jendrol' [5] proved $\operatorname{PTC}(d)$ for any $d \geq 24$. The bound was improved to 22 by Morita [7], but to the best of our knowledge, the proof was never published. Horňák and Zlámalová [6] proved $\operatorname{PTC}(d)$ for any $d \geq 18$. Enomoto *et al.* [4] obtained for $\Delta^*(G) \geq 60$ even a stronger result, namely that $\chi_c(G) \leq \Delta^*(G) + 1$. The example of the (graph of) dsided prism with maximum face degree d and cyclic chromatic number d + 1

A NOTE ON CYCLIC CHROMATIC NUMBER

shows that the bound is best possible. The best known general result (with no restriction on $\Delta^*(G)$) is the inequality $\chi_c(G) \leq \Delta^*(G) + 5$ of Enomoto and Horňák [3].

Conjecture by Plummer and Toft is still open. This means that we do not know any G with $\chi_{c}(G) - \Delta^{*}(G) \geq 3$. On the other hand, all G's with $\chi_{c}(G) - \Delta^{*}(G) = 2$ we are aware of satisfy $\Delta^{*}(G) = 4$. Therefore, the conjecture could even be strengthened: If G is a 3-connected plane graph Gwith $\Delta^{*}(G) \neq 4$, then $\chi_{c}(G) \leq \Delta^{*}(G) + 1$.

In this paper we show that PTC(d) is true for 3-connected plane graphs of minimum degree 5 or of minimum degree 4 and maximum face degree at least 6.

2. AUXILIARY RESULTS

In the proof of the result of this paper we shall need a special information on the structure of 3-connected plane graphs contained in Lemma 1 that follows by results of Ando *et al.* [1].

Lemma 1. If a vertex of degree at least four of a 3-connected plane graph G with $|V(G)| \ge 5$ is not incident to a contractible edge, then it is adjacent to three 3-vertices.

Let $d \in [5,\infty)$. A 3-connected plane graph G is said to be *d*-minimal if $\Delta^*(G) \leq d$ and $\chi_c(G) > d+2$, but $\Delta^*(H) \leq d$ implies $\chi_c(H) \leq d+2$ for any 3-connected plane graph H such that the pair (|V(H)|, |E(H)|) is lexicographically smaller then the pair (|V(G)|, |E(G)|).

The next lemma shows that a *d*-minimal graph cannot contain some configurations.

Lemma 2. Let $d \in [5, \infty)$ and let G be a d-minimal graph. Then G does not contain any of the following configurations:

- 1. a vertex x with $\deg(x) \ge 4$ and $\operatorname{cd}(x) \le d+1$ that is incident to a contractible edge;
- 2. an edge of type $(3, d_2)$ with $d_2 \in [3, 4]$;
- 3. the configuration C_i of Figure $i, i \in [1, 2]$, where d = 6 and the configuration C_3 of Figure 3, where d = 7 and where encircled numbers represent degrees of corresponding vertices and vertices without degree specification are of an arbitrary degree.

Figure 1. $\operatorname{cd}(x_1) \leq 10$ Figure 2. $\operatorname{cd}(x_1) \leq 9$, $\operatorname{cd}(x_4) \leq 9$ Figure 3. $\operatorname{cd}(x_1) \leq 10$

Proof. 1. The statement has already been proved in [5] (Lemma 3.1(e)).

2. The statement has already been proved in [6] (Lemma 3.6).

3. For the rest of the proof suppose that G contains a configuration C_i , $i \in [1,3]$, described in Lemma 2.3. Then 4-vertex x_0 of the configuration C_i , $i \in [1,3]$, is incident to a contractible edge (because of Lemma 1). The graph G' obtained by contracting of this edge is a 3-connected plane graph satisfying $\Delta^*(G') \leq \Delta^*(G) \leq d$ and |V(G')| = |V(G)| - 1, hence there is a cyclic colouring $\varphi : V(G') \to C$. This colouring will be used to find a cyclic colouring $\psi : V(G) \to C$ in order to obtain a contradiction with $\chi_c(G) > d + 2$. If not stated explicitly otherwise, we put $\psi(u) = \varphi(u)$ for any $u \in V(G) - \{x_0\}$.

 $i \in \{1,3\}$: First note that $\operatorname{cd}(x_0) = d + 2$. If there is a colour $c \in C - \varphi(N(x_0))$, then we put $\psi(x_0) = c$, else, by assumptions, there is a colour c^* such that $c^* \notin \varphi(\bar{N}(x_1) \cup \bar{N}(x_2) - N(x_0))$. Therefore we can put $\psi(x_1) = c^* \ (\psi(x_2) = c^*)$ and $\psi(x_0) = \varphi(x_1) \ (\psi(x_0) = \varphi(x_2))$.

i = 2: If there is a colour $c \in C - \varphi(N(x_0))$, then we put $\psi(x_0) = c$, else there is exactly one $j \in C$ such that $|\{\varphi(u) = j : u \in N(x_0)\}| = 2$. Without loss of generality we can suppose that $j \neq \varphi(x_2)$.

If $\varphi(x_1) \neq j$, then $C - \varphi(\bar{N}(x_1)) \neq \emptyset$, so we can put $\psi(x_0) = \varphi(x_1)$ and colour properly x_1 .

Now let us suppose that $\varphi(x_1) = j$. If $\varphi(x_3) \neq j$, then $C - \varphi(\bar{N}(x_3)) \neq \emptyset$ and we can recolour x_3 and put $\psi(x_0) = \varphi(x_3)$.

If $\varphi(x_3) = j$, then we put $\psi(x_2) = \psi(x_4) = j$, $\psi(x_0) = \varphi(x_2)$, $\psi(x_3) = \varphi(x_4)$ and $\psi(x_1) = c$, where $c \in C - \varphi(\bar{N}(x_1))$.

The result of this paper will be proved by contradiction, using the Discharging Method. For any vertex v of 3-connected graph G = (V, E, F) let

A NOTE ON CYCLIC CHROMATIC NUMBER

$$c_0(v) = 1 - \frac{\deg(v)}{2} + \sum_{f \in F(v)} \frac{1}{\deg(f)}$$

be the *initial charge* of vertex v. Then, using Euler's formula and the handshaking lemma, is easy to see that $\sum_{v \in V} c_0(v) = 2$.

In this section we shall establish (Lemma 2) that the structure of a *d*minimal graph G = (V, E, F) is restricted. In the next section we use the Discharging Method to distribute the initial charges of vertices of G such that every vertex $v \in V(G)$ will have a nonpositive new charge $c_1(v)$, but the sum of all charges will be the same. Then we will show that the restriction of structure of G is so strong that the existence of G is incompatible with $\sum_{v \in V} c_1(v) = 2$.

If a vertex v is of type (d_1, \ldots, d_n) , then

$$c_0(v) = \gamma(d_1, \dots, d_n) = 1 - \frac{n}{2} + \sum_{i=1}^n \frac{1}{d_i}$$

Clearly, if π is a permutation of the set [1,n], then $\gamma(d_{\pi(1)},\ldots,d_{\pi(n)}) = \gamma(d_1,\ldots,d_n)$. Let the *weight* of a sequence $D = (d_1,\ldots,d_n) \in \mathbb{Z}^n$ be defined by wt $(D) = \sum_{i=1}^n d_i$. For $n \in [2,\infty)$, $q \in [0, n-2]$, $(d_1,\ldots,d_{n-1}) \in [1,\infty)^{n-1}$ and $w \in [\sum_{i=1}^{n-1} d_i + 1,\infty)$ let $S_q(d_1,\ldots,d_{n-1};w)$ be the set of all sequences $D = (d_1,\ldots,d_q,d'_{q+1},\ldots,d'_n) \in \mathbb{Z}^n$ satisfying $d'_i \geq d_i$ for any $i \in [q+1,n-1]$ and wt $(D) \geq w$. The following lemma has been proved as Lemma 4 in [6].

Lemma 3. The maximum of $\gamma(d_1, \ldots, d_q, d'_{q+1}, \ldots, d'_n)$ over all sequences $(d_1, \ldots, d_q, d'_{q+1}, \ldots, d'_n) \in S_q(d_1, \ldots, d_{n-1}; w)$ is equal to $\gamma(d_1, \ldots, d_{n-1}, w - \sum_{i=1}^{n-1} d_i)$.

Claim 1. 1. If $c_0(v) > 0$ for a vertex v of a 3-connected graph G = (V, E, F) with $\Delta^*(G) \ge 5$, then $\deg(v) \le 4$.

2. If $c_0(v) > 0$ for a 4-vertex v of a 3-connected graph G = (V, E, F), then the type of v is from the set $\{(3, 5, 3, 5), (3, 5, 3, 6), (3, 5, 3, 7)\}$.

Proof. 1. Clearly, for vertices of degree at least 6 it holds

$$c_0(v) = 1 - \frac{\deg(v)}{2} + \sum_{f \in F(v)} \frac{1}{\deg(f)} \le 1 - \frac{\deg(v)}{2} + \sum_{f \in F(v)} \frac{1}{3}$$

$$= 1 - \frac{\deg(v)}{2} + \frac{\deg(v)}{3} = 1 - \frac{\deg(v)}{6} \le 0.$$

By Lemmas 2.2 and 3, for vertices of degree 5 it holds $c_0(v) \leq \gamma(3, 5, 3, 5, 5) \leq 0$.

2. The statement can be derived from Lemmas 2.2 and 3 and the following facts:

If a 4-vertex v is not adjacent to a 3-face, then $c_0(v) \leq \gamma(4, 4, 4, 4) \leq 0$. If a 4-vertex v is adjacent to exactly one 3-face, then $c_0(v) \leq \gamma(3, 5, 4, 5) \leq 0$. If a 4-vertex v is adjacent to exactly two 3-faces, but no 5-face, then $c_0(v) \leq \gamma(3, 6, 3, 6) \leq 0$.

If a 4-vertex v is adjacent to exactly two 3-faces, 5-face and face of degree at least 8, then $c_0(v) \leq \gamma(3, 5, 3, 8) \leq 0$.

A vertex $v \in V$ is *positive* if $c_0(v) > 0$, otherwise it is nonpositive. For a vertex $v \in V$ let n(v) denote the number of all neighbours of v of positive initial charge.

3. DISCHARGING

Theorem 4. For every 3-connected plane graph G with $\delta(G) = 4$ and $\Delta^*(G) \ge 6$ or with $\delta(G) \ge 5$ it holds $\chi_c(G) \le \Delta^*(G) + 2$.

Proof. Let G be a Δ^* -minimal graph.

Case A. If $\delta(G) \geq 5$, then by the definition of the initial charge and Claim 1.1 we have $c_0(v) \leq 0$ for any $v \in V(G)$, contradicting Euler's formula. If $\delta(G) = 4$ and $\Delta^*(G) \geq 9$, then, by Lemmas 1 and 2.1, G does not contain positive 4-vertices. Thus, by the definition of initial charge and Claim 1.1, we have $c_0(v) \leq 0$ for every $v \in V(G)$, contradicting Euler's formula.

Case B. Let $\delta(G) = 4$ and $\Delta^*(G) \in [6,8]$. Let us state the only redistribution rule **R**: A vertex v with $c_0(v) < 0$ sends to its neighbour w with $c_0(w) > 0$ the amount $\frac{c_0(v)}{n(v)}$.

Now our aim is to show that $c_1(v) \leq 0$ for any $v \in V(G)$ (where $c_1(v)$ is the charge of v after using R).

(1) If $c_0(v) \leq 0$, then obviously $c_0(v) \leq c_1(v) \leq 0$.

(2) If $c_0(v) > 0$, then v is either of type (3, 5, 3, 6) with $c_0(v) = \frac{1}{30}$ or of type (3, 5, 3, 7) with $c_0(v) = \frac{1}{105}$ for the case $\Delta^*(G) \in \{7, 8\}$ (because of

120

Lemmas 1 and 2.2 G does not contain vertices of type (3, 5, 3, 5) and v is either of type (3, 5, 3, 5) with $c_0(v) = \frac{1}{15}$ or of type (3, 5, 3, 6) with $c_0(v) = \frac{1}{30}$ for the case $\Delta^*(G) = 6$.

(21) If v is of type (3, 5, 3, 5), then:

(211) If there exist two distinct neighbours t_1, t_2 of vertex v such that $\deg(t_1), \deg(t_2) \ge 5$, then $c_1(v) \le \frac{1}{15} + 2 \cdot \frac{1}{5} \cdot \gamma(3, 5, 3, 5, 5) \le 0$.

(212) If at most one neighbour of vertex v is of degree at least 5, then, by absence of C_1 in G, $c_1(v) \leq \frac{1}{15} + 4 \cdot \gamma(3, 5, 4, 5) = 0$.

(22) If v is either of type (3, 5, 3, 6) or of type (3, 5, 3, 7), then let t_2, t_3 be the neighbours of v incident with 5-face, let t_1, t_4 be the other two neighbours of v, where t_1 is a common neighbour of vertices v and t_2 and t_4 is a common neighbour of vertices v and t_3 .

(221) If there exists $i \in [1,4]$ such that $\deg(t_i) \ge 5$, then $c_0(t_i) + \frac{1}{30}n(t_i) \le 1 - \frac{7}{30}\deg(t_i) + \frac{1}{30}n(t_i) \le 1 - \frac{7}{30}\deg(t_i) + \frac{1}{30}\deg(t_i) = 1 - \frac{1}{5}\deg(t_i) \le 0$, and so $\frac{c_0(t_i)}{n(t_i)} \le -\frac{1}{30}$. Therefore $c_1(v) \le \frac{1}{30} - \frac{1}{30} = 0$.

(222) If deg $(t_i) = 4$ for any $i \in [1,4]$, then let g_1 be another face incident with the edge t_1t_2 (and not incident with vertex v); similarly let g_2 be another face incident with the edge t_3t_4 (and not incident with vertex v). By Lemma 2.2 we have deg $(g_i) \ge 5$, $i \in \{1,2\}$. Finally, let f_i be the fourth face incident with the vertex t_i (thus f_i is not incident with v and $f_i \notin \{g_1, g_2\}$).

(2221) If there exists $i \in [1,4]$ such that $\deg(f_i) \ge 5$, then $c_0(t_i) \le \gamma(3,5,5,5) = -\frac{1}{15}$ and $n(t_i) \le 2$. Therefore $c_1(v) \le c_0(v) + \frac{1}{2} \cdot (-\frac{1}{15}) \le 0$.

(2222) If there exists $i \in \{1, 4\}$ such that $\deg(f_i) = 4$, then let $j \in \{1, 2\}$ be such that face g_j is neighbour of face f_i .

(22221) If deg $(g_j) \ge 6$, then $c_0(t_i) \le \gamma(3, 6, 4, 6) = -\frac{1}{12}$ and $n(t_i) \le 2$. Thus $c_1(v) \le c_0(v) + \frac{1}{2} \cdot (-\frac{1}{12}) \le 0$.

(22222) If deg $(g_j) = \overline{5}$, then $c_0(t_i) \leq \gamma(3, 5, 4, 6) = -\frac{1}{20}$. Simultaneously $n(t_i) = 1$, else either G contains a vertex of type (3, 5, 3, 5) (for $\Delta^*(G) \in \{7, 8\}$) or G contains a configuration C_1 (if $\Delta^*(G) = 6$). Then $c_1(v) \leq c_0(v) - \frac{1}{20} \leq 0$.

(223) Let now $\deg(f_1) = \deg(f_4) = 3$.

(2231) If $\Delta^*(G) \in \{7, 8\}$, then:

(22311) If there exists $i \in \{2, 3\}$ such that deg $(f_i) = 3$, then, by C_3 , v is of type (3, 5, 3, 7) and g_j adjacent to f_i , $j \in \{1, 2\}$, is of degree at least 6, because G does not contain a vertex of type (3, 5, 3, 5). Then a vertex t_k , $k \in \{1, 4\}$, which is a common neighbour of vertices v and t_i , has the initial charge $c_0(t_k) \leq \gamma(3, 6, 3, 7) = -\frac{1}{42}$. Due to R, the vertex t_k sends at

most $-\frac{1}{168}$ to the vertex v. If $\deg(f_{5-i}) = 3$, then also the vertex t_{5-k} sends at most $-\frac{1}{168}$ to the vertex v, else t_{5-i} sends at most $\frac{1}{2} \cdot (-\frac{1}{60})$ to v. Thus $c_1(v) \leq \max\{c_0(v) - 2 \cdot \frac{1}{168}, c_0(v) - \frac{1}{168} - \frac{1}{120}\} = c_0(v) - \frac{1}{84} \leq 0$. (22312) Let now $\deg(f_2) = \deg(f_3) = 4$. Then $c_0(t_2), c_0(t_3) \leq$ $\gamma(3, 5, 4, 5) = -\frac{1}{60}$. Now if v is of type (3, 5, 3, 7), then $c_1(v) \leq c_0(v) 2 \cdot \frac{1}{2} \cdot \frac{1}{60} \leq 0$, else, by $C_3, d = 7$, $\deg(g_1), \deg(g_2) \geq 6$ and so $c_1(v) \leq$ $c_2(v) + 2\gamma(3, 5, 4, 6) \leq 0$. $c_0(v) + 2\gamma(3, 5, 4, 6) \le 0.$

(2232) If $\Delta^*(G) = 6$, then due to absence of configuration C_2 in G, there exists $i \in \{2,3\}$ such that vertex t_i is of type (3,5,4,6). Therefore $n(t_i) = 1$ and $c_1(v) \le c_0(v) - \frac{1}{20} \le 0$.

References

- [1] K. Ando, H. Enomoto and A. Saito, Contractible edges in 3-connected graphs, J. Combin. Theory (B) 42 (1987) 87–93.
- [2] O.V. Borodin, Solution of Ringel's problem on vertex-face coloring of plane graphs and coloring of 1-planar graphs (Russian), Met. Diskr. Anal. 41 (1984) 12 - 26.
- [3] H. Enomoto and M. Horňák, A general upper bound for the cyclic chromatic number of 3-connected plane graphs, J. Graph Theory 62 (2009) 1–25.
- [4] H. Enomoto, M. Horňák and S. Jendrol', Cyclic chromatic number of 3connected plane graphs, SIAM J. Discrete Math. 14 (2001) 121–137.
- [5] M. Horňák and S. Jendrol, On a conjecture by Plummer and Toft, J. Graph Theory **30** (1999) 177–189.
- [6] M. Horňák and J. Zlámalová, Another step towards proving a conjecture by *Plummer and Toft*, Discrete Math. **310** (2010) 442–452.
- [7] A. Morita, Cyclic chromatic number of 3-connected plane graphs (Japanese, M.S. Thesis), Keio University, Yokohama 1998.
- [8] M.D. Plummer and B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory **11** (1987) 507–515.
- [9] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. **54** (1932) 150–168.

Received 4 June 2008 Revised 16 April 2009 Accepted 16 April 2009