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Abstract

A cyclic colouring of a graph G embedded in a surface is a vertex
colouring of G in which any two distinct vertices sharing a face receive
distinct colours. The cyclic chromatic number χc(G) of G is the small-
est number of colours in a cyclic colouring of G. Plummer and Toft
in 1987 conjectured that χc(G) ≤ ∆∗ + 2 for any 3-connected plane
graph G with maximum face degree ∆∗. It is known that the conjec-
ture holds true for ∆∗ ≤ 4 and ∆∗ ≥ 18. The validity of the conjecture
is proved in the paper for some special classes of planar graphs.
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1. Introduction

Graphs, which we are dealing with, are plane, 3-connected and simple. Con-
sider such a graph G = (V,E, F ) and let us present notations used in this
article. The degree deg(x) of x ∈ V ∪ F is the number of edges incident to
x. A vertex of degree k is a k-vertex, a face of degree k is a k-face. By V (x)
we denote the set of all vertices incident to x ∈ E ∪ F ; similarly, F (y) is
the set of all faces incident to y ∈ V ∪ E. If e ∈ E, F (e) = {f1, f2} and
deg(f1) ≤ deg(f2), then the pair (deg(f1),deg(f2)) is called the type of e. A
cycle in G is facial if its vertex set is equal to V (f) for some f ∈ F .

A vertex x1 is cyclically adjacent to a vertex x2 6= x1 if there is a face
f with x1, x2 ∈ V (f). The cyclic neighbourhood Nc(x) of a vertex x is
the set of all vertices that are cyclically adjacent to x and the closed cyclic
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neighbourhood of x is N̄c(x) = Nc(x) ∪ {x}. (The usual neighbourhood of
x is denoted by N(x).) The cyclic degree of x is cd(x) = |Nc(x)|. A cyclic

colouring of G is a mapping ϕ : V → C in which ϕ(x1) 6= ϕ(x2) whenever
x1 is cyclically adjacent to x2 (elements of C are colours of ϕ). The cyclic
chromatic number χc(G) of the graph G is the minimum number of colours
in a cyclic colouring of G.

For p, q ∈ Z let [p, q] = {z ∈ Z : p ≤ z ≤ q} and [p,∞) = {z ∈ Z :
p ≤ z}.

Let G be an embedding of a 2-connected graph and let v be its vertex of
degree n. Consider a sequence (f1, . . . , fn) of faces incident to v in a cyclic
order around v (there are altogether 2n such sequences) and the sequence
D = (d1, . . . , dn) in which di = deg(fi) for i ∈ [1, n]. The sequence D is
called the type of the vertex v provided it is the lexicographical minimum
of the set of all such sequences corresponding to v.

It is easy to see that cd(v) =
∑n

i=1(di−2). A contraction of an edge xy ∈
E(G) consists in a continuous identification of the vertices x and y forming
a new vertex x ↔ y and the removal of the created loop together with all
possibly created multiedges; let G/xy be the result of such a contraction.
An edge xy of a 3-connected plane graph G is contractible if G/xy is again
3-connected.

If the graph G is 2-connected, any face f of G is incident to deg(f)
vertices. In such a case χc(G) is naturally lower bounded by ∆∗(G), the
maximum face degree of G.

By a classical result of Whitney [9] all plane embeddings of a 3-connected
planar graph are essentially the same. This means that χc(G1) = χc(G2) if
G1, G2 are plane embeddings of a fixed 3-connected planar graph G; thus,
we can speak simply about the cyclic chromatic number of G. Plummer
and Toft in [8] conjectured that if G is a 3-connected plane graph, then
χc(G) ≤ ∆∗(G) + 2. They showed a weaker inequality χc(G) ≤ ∆∗(G) + 9.
Let PTC(d) denote the conjecture by Plummer and Toft restricted to graphs
with ∆∗(G) = d. By the Four Colour Theorem, for a triangulation G we
have χc(G) ≤ 4 = ∆∗(G) + 1. PTC(4) is known to be true by the work of
Borodin [2]. Horňák and Jendrol’ [5] proved PTC(d) for any d ≥ 24. The
bound was improved to 22 by Morita [7], but to the best of our knowledge,
the proof was never published. Horňák and Zlámalová [6] proved PTC(d)
for any d ≥ 18. Enomoto et al. [4] obtained for ∆∗(G) ≥ 60 even a stronger
result, namely that χc(G) ≤ ∆∗(G) + 1. The example of the (graph of) d-
sided prism with maximum face degree d and cyclic chromatic number d+1
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shows that the bound is best possible. The best known general result (with
no restriction on ∆∗(G)) is the inequality χc(G) ≤ ∆∗(G) + 5 of Enomoto
and Horňák [3].

Conjecture by Plummer and Toft is still open. This means that we do
not know any G with χc(G) − ∆∗(G) ≥ 3. On the other hand, all G’s with
χc(G) − ∆∗(G) = 2 we are aware of satisfy ∆∗(G) = 4. Therefore, the
conjecture could even be strengthened: If G is a 3-connected plane graph G
with ∆∗(G) 6= 4, then χc(G) ≤ ∆∗(G) + 1.

In this paper we show that PTC(d) is true for 3-connected plane graphs
of minimum degree 5 or of minimum degree 4 and maximum face degree at
least 6.

2. Auxiliary Results

In the proof of the result of this paper we shall need a special information
on the structure of 3-connected plane graphs contained in Lemma 1 that
follows by results of Ando et al. [1].

Lemma 1. If a vertex of degree at least four of a 3-connected plane graph

G with |V (G)| ≥ 5 is not incident to a contractible edge, then it is adjacent

to three 3-vertices.

Let d ∈ [5,∞). A 3-connected plane graph G is said to be d-minimal if
∆∗(G) ≤ d and χc(G) > d + 2, but ∆∗(H) ≤ d implies χc(H) ≤ d + 2
for any 3-connected plane graph H such that the pair (|V (H)|, |E(H)|) is
lexicographically smaller then the pair (|V (G)|, |E(G)|).

The next lemma shows that a d-minimal graph cannot contain some
configurations.

Lemma 2. Let d ∈ [5,∞) and let G be a d-minimal graph. Then G does

not contain any of the following configurations:

1. a vertex x with deg(x) ≥ 4 and cd(x) ≤ d + 1 that is incident to a

contractible edge;

2. an edge of type (3, d2) with d2 ∈ [3, 4];

3. the configuration Ci of Figure i, i ∈ [1, 2], where d = 6 and the configura-

tion C3 of Figure 3, where d = 7 and where encircled numbers represent

degrees of corresponding vertices and vertices without degree specification

are of an arbitrary degree.
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Figure 1. cd(x1) ≤ 10 Figure 2. cd(x1) ≤ 9, cd(x4) ≤ 9 Figure 3. cd(x1) ≤ 10

Proof. 1. The statement has already been proved in [5] (Lemma 3.1(e)).

2. The statement has already been proved in [6] (Lemma 3.6).

3. For the rest of the proof suppose that G contains a configuration Ci,
i ∈ [1, 3], described in Lemma 2.3. Then 4-vertex x0 of the configuration
Ci, i ∈ [1, 3], is incident to a contractible edge (because of Lemma 1). The
graph G

′

obtained by contracting of this edge is a 3-connected plane graph
satisfying ∆∗(G

′

) ≤ ∆∗(G) ≤ d and |V (G
′

)| = |V (G)| − 1, hence there
is a cyclic colouring ϕ : V (G

′

) → C. This colouring will be used to find
a cyclic colouring ψ : V (G) → C in order to obtain a contradiction with
χc(G) > d + 2. If not stated explicitly otherwise, we put ψ(u) = ϕ(u) for
any u ∈ V (G) − {x0}.

i ∈ {1, 3}: First note that cd(x0) = d + 2. If there is a colour c ∈
C − ϕ(N(x0)), then we put ψ(x0) = c, else, by assumptions, there is a
colour c∗ such that c∗ /∈ ϕ(N̄ (x1) ∪ N̄(x2) −N(x0)). Therefore we can put
ψ(x1) = c∗ (ψ(x2) = c∗) and ψ(x0) = ϕ(x1) (ψ(x0) = ϕ(x2)).

i = 2: If there is a colour c ∈ C−ϕ(N(x0)), then we put ψ(x0) = c, else
there is exactly one j ∈ C such that |{ϕ(u) = j : u ∈ N(x0)}| = 2. Without
loss of generality we can suppose that j 6= ϕ(x2).

If ϕ(x1) 6= j, then C −ϕ(N̄(x1)) 6= ∅, so we can put ψ(x0) = ϕ(x1) and
colour properly x1.

Now let us suppose that ϕ(x1) = j. If ϕ(x3) 6= j, then C−ϕ(N̄(x3)) 6= ∅
and we can recolour x3 and put ψ(x0) = ϕ(x3).

If ϕ(x3) = j, then we put ψ(x2) = ψ(x4) = j, ψ(x0) = ϕ(x2), ψ(x3) =
ϕ(x4) and ψ(x1) = c, where c ∈ C − ϕ(N̄(x1)).

The result of this paper will be proved by contradiction, using the Discharg-
ing Method. For any vertex v of 3-connected graph G = (V,E, F ) let
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c0(v) = 1 −
deg(v)

2
+

∑

f∈F (v)

1

deg(f)

be the initial charge of vertex v. Then, using Euler’s formula and the hand-
shaking lemma, is easy to see that

∑
v∈V c0(v) = 2.

In this section we shall establish (Lemma 2) that the structure of a d-
minimal graph G = (V,E, F ) is restricted. In the next section we use the
Discharging Method to distribute the initial charges of vertices of G such
that every vertex v ∈ V (G) will have a nonpositive new charge c1(v), but the
sum of all charges will be the same. Then we will show that the restriction
of structure of G is so strong that the existence of G is incompatible with∑

v∈V c1(v) = 2.
If a vertex v is of type (d1, . . . , dn), then

c0(v) = γ(d1, . . . , dn) = 1 −
n

2
+

n∑

i=1

1

di

.

Clearly, if π is a permutation of the set [1, n], then γ(dπ(1), . . . , dπ(n)) =
γ(d1, . . . , dn). Let the weight of a sequence D = (d1, . . . , dn) ∈ Z

n be de-
fined by wt(D) =

∑n
i=1 di. For n ∈ [2,∞), q ∈ [0, n − 2], (d1, . . . , dn−1) ∈

[1,∞)n−1 and w ∈ [
∑n−1

i=1 di + 1,∞) let Sq(d1, . . . , dn−1;w) be the set of
all sequences D = (d1, . . . , dq, d

′

q+1, . . . , d
′

n) ∈ Z
n satisfying d

′

i ≥ di for any
i ∈ [q + 1, n− 1] and wt(D) ≥ w. The following lemma has been proved as
Lemma 4 in [6].

Lemma 3. The maximum of γ(d1, . . . , dq, d
′

q+1, . . . , d
′

n) over all sequences

(d1, . . . , dq, d
′

q+1, . . . , d
′

n) ∈ Sq(d1, . . . , dn−1;w) is equal to γ(d1, . . . , dn−1,

w −
∑n−1

i=1 di).

Claim 1. 1. If c0(v) > 0 for a vertex v of a 3-connected graph G = (V,E, F )
with ∆∗(G) ≥ 5, then deg(v) ≤ 4.

2. If c0(v) > 0 for a 4-vertex v of a 3-connected graph G = (V,E, F ),
then the type of v is from the set {(3, 5, 3, 5), (3, 5, 3, 6), (3, 5, 3, 7)}.

Proof. 1. Clearly, for vertices of degree at least 6 it holds

c0(v) = 1 −
deg(v)

2
+

∑

f∈F (v)

1

deg(f)
≤ 1 −

deg(v)

2
+

∑

f∈F (v)

1

3
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= 1 −
deg(v)

2
+

deg(v)

3
= 1 −

deg(v)

6
≤ 0.

By Lemmas 2.2 and 3, for vertices of degree 5 it holds c0(v) ≤ γ(3, 5, 3, 5, 5)
≤ 0.

2. The statement can be derived from Lemmas 2.2 and 3 and the fol-
lowing facts:

If a 4-vertex v is not adjacent to a 3-face, then c0(v) ≤ γ(4, 4, 4, 4) ≤ 0.

If a 4-vertex v is adjacent to exactly one 3-face, then c0(v) ≤ γ(3, 5, 4, 5) ≤ 0.

If a 4-vertex v is adjacent to exactly two 3-faces, but no 5-face, then c0(v) ≤
γ(3, 6, 3, 6) ≤ 0.

If a 4-vertex v is adjacent to exactly two 3-faces, 5-face and face of degree
at least 8, then c0(v) ≤ γ(3, 5, 3, 8) ≤ 0.

A vertex v ∈ V is positive if c0(v) > 0, otherwise it is nonpositive. For a
vertex v ∈ V let n(v) denote the number of all neighbours of v of positive
initial charge.

3. Discharging

Theorem 4. For every 3-connected plane graph G with δ(G) = 4 and

∆∗(G) ≥ 6 or with δ(G) ≥ 5 it holds χc(G) ≤ ∆∗(G) + 2.

Proof. Let G be a ∆∗-minimal graph.

Case A. If δ(G) ≥ 5, then by the definition of the initial charge and
Claim 1.1 we have c0(v) ≤ 0 for any v ∈ V (G), contradicting Euler’s formula.
If δ(G) = 4 and ∆∗(G) ≥ 9, then, by Lemmas 1 and 2.1, G does not contain
positive 4-vertices. Thus, by the definition of initial charge and Claim 1.1,
we have c0(v) ≤ 0 for every v ∈ V (G), contradicting Euler’s formula.

Case B. Let δ(G) = 4 and ∆∗(G) ∈ [6, 8]. Let us state the only redis-
tribution rule R: A vertex v with c0(v) < 0 sends to its neighbour w with

c0(w) > 0 the amount c0(v)
n(v) .

Now our aim is to show that c1(v) ≤ 0 for any v ∈ V (G) (where c1(v)
is the charge of v after using R).

(1) If c0(v) ≤ 0, then obviously c0(v) ≤ c1(v) ≤ 0.

(2) If c0(v) > 0, then v is either of type (3, 5, 3, 6) with c0(v) = 1
30 or

of type (3, 5, 3, 7) with c0(v) = 1
105 for the case ∆∗(G) ∈ {7, 8} (because of
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Lemmas 1 and 2.2 G does not contain vertices of type (3, 5, 3, 5)) and v is
either of type (3, 5, 3, 5) with c0(v) = 1

15 or of type (3, 5, 3, 6) with c0(v) = 1
30

for the case ∆∗(G) = 6.

(21) If v is of type (3, 5, 3, 5), then:

(211) If there exist two distinct neighbours t1, t2 of vertex v such that
deg(t1),deg(t2) ≥ 5, then c1(v) ≤

1
15 + 2 · 1

5 · γ(3, 5, 3, 5, 5) ≤ 0.

(212) If at most one neighbour of vertex v is of degree at least 5, then,
by absence of C1 in G, c1(v) ≤

1
15 + 4 · γ(3, 5, 4, 5) = 0.

(22) If v is either of type (3, 5, 3, 6) or of type (3, 5, 3, 7), then let t2, t3 be
the neighbours of v incident with 5-face, let t1, t4 be the other two neighbours
of v, where t1 is a common neighbour of vertices v and t2 and t4 is a common
neighbour of vertices v and t3.

(221) If there exists i ∈ [1, 4] such that deg(ti) ≥ 5, then c0(ti) +
1
30n(ti) ≤ 1− 7

30 deg(ti)+
1
30n(ti) ≤ 1− 7

30 deg(ti)+
1
30 deg(ti) = 1− 1

5 deg(ti) ≤

0, and so c0(ti)
n(ti)

≤ − 1
30 . Therefore c1(v) ≤

1
30 − 1

30 = 0.

(222) If deg(ti) = 4 for any i ∈ [1, 4], then let g1 be another face
incident with the edge t1t2 (and not incident with vertex v); similarly let
g2 be another face incident with the edge t3t4 (and not incident with vertex
v). By Lemma 2.2 we have deg(gi) ≥ 5, i ∈ {1, 2}. Finally, let fi be the
fourth face incident with the vertex ti (thus fi is not incident with v and
fi /∈ {g1, g2}).

(2221) If there exists i ∈ [1, 4] such that deg(fi) ≥ 5, then c0(ti) ≤
γ(3, 5, 5, 5) = − 1

15 and n(ti) ≤ 2. Therefore c1(v) ≤ c0(v) + 1
2 · (− 1

15 ) ≤ 0.

(2222) If there exists i ∈ {1, 4} such that deg(fi) = 4, then let j ∈ {1, 2}
be such that face gj is neighbour of face fi.

(22221) If deg(gj) ≥ 6, then c0(ti) ≤ γ(3, 6, 4, 6) = − 1
12 and n(ti) ≤ 2.

Thus c1(v) ≤ c0(v) + 1
2 · (− 1

12) ≤ 0.

(22222) If deg(gj) = 5, then c0(ti) ≤ γ(3, 5, 4, 6) = − 1
20 . Simulta-

neously n(ti) = 1, else either G contains a vertex of type (3, 5, 3, 5) (for
∆∗(G) ∈ {7, 8}) or G contains a configuration C1 (if ∆∗(G) = 6). Then
c1(v) ≤ c0(v) −

1
20 ≤ 0.

(223) Let now deg(f1) = deg(f4) = 3.

(2231) If ∆∗(G) ∈ {7, 8}, then:

(22311) If there exists i ∈ {2, 3} such that deg(fi) = 3, then, by C3, v
is of type (3, 5, 3, 7) and gj adjacent to fi, j ∈ {1, 2}, is of degree at least
6, because G does not contain a vertex of type (3, 5, 3, 5). Then a vertex
tk, k ∈ {1, 4}, which is a common neighbour of vertices v and ti, has the
initial charge c0(tk) ≤ γ(3, 6, 3, 7) = − 1

42 . Due to R, the vertex tk sends at
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most − 1
168 to the vertex v. If deg(f5−i) = 3, then also the vertex t5−k sends

at most − 1
168 to the vertex v, else t5−i sends at most 1

2 · (− 1
60 ) to v. Thus

c1(v) ≤ max{c0(v) − 2 · 1
168 , c0(v) −

1
168 − 1

120} = c0(v) −
1
84 ≤ 0.

(22312) Let now deg(f2) = deg(f3) = 4. Then c0(t2), c0(t3) ≤
γ(3, 5, 4, 5) = − 1

60 . Now if v is of type (3, 5, 3, 7), then c1(v) ≤ c0(v) −
2 · 1

2 · 1
60 ≤ 0, else, by C3, d = 7, deg(g1),deg(g2) ≥ 6 and so c1(v) ≤

c0(v) + 2γ(3, 5, 4, 6) ≤ 0.
(2232) If ∆∗(G) = 6, then due to absence of configuration C2 in G,

there exists i ∈ {2, 3} such that vertex ti is of type (3, 5, 4, 6). Therefore
n(ti) = 1 and c1(v) ≤ c0(v) −

1
20 ≤ 0.
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