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Abstract

A cyclic colouring of a graph G embedded in a surface is a vertex
colouring of GG in which any two distinct vertices sharing a face receive
distinct colours. The cyclic chromatic number x.(G) of G is the small-
est number of colours in a cyclic colouring of G. Plummer and Toft
in 1987 conjectured that x.(G) < A* + 2 for any 3-connected plane
graph G with maximum face degree A*. It is known that the conjec-
ture holds true for A* < 4 and A* > 18. The validity of the conjecture
is proved in the paper for some special classes of planar graphs.
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1. INTRODUCTION

Graphs, which we are dealing with, are plane, 3-connected and simple. Con-
sider such a graph G = (V, E, F') and let us present notations used in this
article. The degree deg(x) of x € V U F' is the number of edges incident to
x. A vertex of degree k is a k-vertez, a face of degree k is a k-face. By V(x)
we denote the set of all vertices incident to z € F U F; similarly, F(y) is
the set of all faces incident to y € VUE. If e € E, F(e) = {f1, f2} and
deg(f1) < deg(f2), then the pair (deg(f1),deg(f2)) is called the type of e. A
cycle in G is facial if its vertex set is equal to V(f) for some f € F.

A vertex x1 is cyclically adjacent to a vertex xo # 1 if there is a face
f with z1,29 € V(f). The cyclic neighbourhood N.(x) of a vertex z is
the set of all vertices that are cyclically adjacent to x and the closed cyclic
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neighbourhood of z is N.(z) = N.(z) U {x}. (The usual neighbourhood of
x is denoted by N(z).) The cyclic degree of x is cd(x) = |Nc(x)|. A cyclic
colouring of G is a mapping ¢ : V' — C in which ¢(z1) # ¢(x2) whenever
x1 is cyclically adjacent to z2 (elements of C are colours of ). The cyclic
chromatic number x.(G) of the graph G is the minimum number of colours
in a cyclic colouring of G.

For p,qg € Zlet [p,q) = {2 €Z :p < z<gq}and [p,oo) ={2 € Z:
p <z}

Let G be an embedding of a 2-connected graph and let v be its vertex of
degree n. Consider a sequence (f1,..., fn) of faces incident to v in a cyclic
order around v (there are altogether 2n such sequences) and the sequence
D = (dy,...,d,) in which d; = deg(f;) for i € [1,n]. The sequence D is
called the type of the vertex v provided it is the lexicographical minimum
of the set of all such sequences corresponding to v.

It is easy to see that cd(v) = > | (d;—2). A contraction of an edge zy €
E(G) consists in a continuous identification of the vertices x and y forming
a new vertex x < y and the removal of the created loop together with all
possibly created multiedges; let G/xy be the result of such a contraction.
An edge zy of a 3-connected plane graph G is contractible if G/xy is again
3-connected.

If the graph G is 2-connected, any face f of G is incident to deg(f)
vertices. In such a case x.(G) is naturally lower bounded by A*(G), the
maximum face degree of G.

By a classical result of Whitney [9] all plane embeddings of a 3-connected
planar graph are essentially the same. This means that x.(G1) = xc(G2) if
(1, G4 are plane embeddings of a fixed 3-connected planar graph G thus,
we can speak simply about the cyclic chromatic number of G. Plummer
and Toft in [8] conjectured that if G is a 3-connected plane graph, then
Xc(G) < A*(G) + 2. They showed a weaker inequality x.(G) < A*(G) + 9.
Let PTC(d) denote the conjecture by Plummer and Toft restricted to graphs
with A*(G) = d. By the Four Colour Theorem, for a triangulation G' we
have x.(G) <4 = A*(G) + 1. PTC(4) is known to be true by the work of
Borodin [2]. Horndk and Jendrol’ [5] proved PTC(d) for any d > 24. The
bound was improved to 22 by Morita [7], but to the best of our knowledge,
the proof was never published. Horndk and Zlamalova [6] proved PTC(d)
for any d > 18. Enomoto et al. [4] obtained for A*(G) > 60 even a stronger
result, namely that x.(G) < A*(G) + 1. The example of the (graph of) d-
sided prism with maximum face degree d and cyclic chromatic number d + 1
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shows that the bound is best possible. The best known general result (with
no restriction on A*(G)) is the inequality x.(G) < A*(G) + 5 of Enomoto
and Horndk [3].

Conjecture by Plummer and Toft is still open. This means that we do
not know any G with x.(G) — A*(G) > 3. On the other hand, all G’s with
Xc(G) — A*(G) = 2 we are aware of satisfy A*(G) = 4. Therefore, the
conjecture could even be strengthened: If G is a 3-connected plane graph G
with A*(G) # 4, then x.(G) < A*(G) + 1.

In this paper we show that PTC(d) is true for 3-connected plane graphs
of minimum degree 5 or of minimum degree 4 and maximum face degree at
least 6.

2. AUXILIARY RESULTS

In the proof of the result of this paper we shall need a special information
on the structure of 3-connected plane graphs contained in Lemma 1 that
follows by results of Ando et al. [1].

Lemma 1. If a vertex of degree at least four of a 3-connected plane graph
G with |[V(G)| > 5 is not incident to a contractible edge, then it is adjacent
to three 3-vertices. [

Let d € [5,00). A 3-connected plane graph G is said to be d-minimal if
A*(G) < d and x.(G) > d+ 2, but A*(H) < d implies x.(H) < d+ 2
for any 3-connected plane graph H such that the pair (|V(H)|,|E(H)|) is
lexicographically smaller then the pair (|V(G)|, |E(G)|).

The next lemma shows that a d-minimal graph cannot contain some
configurations.

Lemma 2. Let d € [5,00) and let G be a d-minimal graph. Then G does
not contain any of the following configurations:

1. a vertex = with deg(z) > 4 and cd(z) < d+ 1 that is incident to a
contractible edge;

2. an edge of type (3,da) with ds € [3,4];
3. the configuration C; of Figure i, i € [1,2], where d = 6 and the configura-
tion C3 of Figure 3, where d =7 and where encircled numbers represent

degrees of corresponding vertices and vertices without degree specification
are of an arbitrary degree.
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Figure 1. cd(z1) <10 Figure 2. cd(z1) <9, cd(z4) <9 Figure 3. cd(z1) <10

Proof. 1. The statement has already been proved in [5] (Lemma 3.1(e)).

2. The statement has already been proved in [6] (Lemma 3.6).

3. For the rest of the proof suppose that G contains a configuration C;,

€ [1,3], described in Lemma 2.3. Then 4-vertex z( of the configuration
Cy, 1 € [1,3], is incident to a contractible edge (because of Lemma 1). The
graph G’ obtained by contracting of this edge is a 3-connected plane graph
satisfying A*(G') < A*(G) < d and |V(G')| = |V(G)| — 1, hence there
is a cyclic colouring ¢ : V(G,) — (. This colouring will be used to find
a cyclic colouring ¢ : V(G) — C in order to obtain a contradiction with
Xc(G) > d + 2. If not stated explicitly otherwise, we put ¥ (u) = p(u) for
any u € V(G) — {zo}.

i € {1,3}: First note that cd(zg) = d + 2. If there is a colour ¢ €
C — o(N(x0)), then we put ¥(zg) = ¢, else, by assumptions, there is a
colour ¢* such that ¢* ¢ (N (z1) U N(z2) — N(z0)). Therefore we can put
Y(z1) = ¢ (Y(z2) = ¢*) and P(zo) = p(z1) (Y (z0) = P(22)).

i = 2: If there is a colour ¢ € C'— (N (xg)), then we put ¢(xg) = ¢, else
there is exactly one j € C such that |{p(u) =j : u € N(zg)}| = 2. Without
loss of generality we can suppose that j # p(z2).

If p(z1) # 7, then C — (N (x1)) # 0, so we can put 1 (z¢) = ¢(z1) and
colour properly x1.

Now let us suppose that ¢(x1) = j. If
and we can recolour z3 and put ¢(xg) =

If o(x3) = j, then we put ¥(za) = ¢
o(z4) and ¥(x1) = ¢, where ¢ € C — (N

¢(w3) # j, then C'—p(N(x3)) # 0
p(x )

(z4) = J, Y(xo) = p(x2), Y(x3) =
(z1))- u
The result of this paper will be proved by contradiction, using the Discharg-
ing Method. For any vertex v of 3-connected graph G = (V, E, F') let
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deg(v) 1
cov)=1— —~-+ Z
2GR desld)

be the initial charge of vertex v. Then, using Fuler’s formula and the hand-
shaking lemma, is easy to see that > _ co(v) = 2.

In this section we shall establish (Lemma 2) that the structure of a d-
minimal graph G = (V, E, F) is restricted. In the next section we use the
Discharging Method to distribute the initial charges of vertices of G' such
that every vertex v € V(@) will have a nonpositive new charge c1(v), but the
sum of all charges will be the same. Then we will show that the restriction
of structure of GG is so strong that the existence of GG is incompatible with

Soev ci(v) =2

If a vertex v is of type (dy,...,d,), then
co(v) =~(d d)—l—ﬁ—kzn:i
0 =7vd1,-..,0p) = B i:1di.

Clearly, if 7 is a permutation of the set [1,n], then y(d),...,dzm)) =
~v(dy,...,d,). Let the weight of a sequence D = (dy,...,d,) € Z" be de-
fined by wt(D) = >, d;. For n € [2,00), ¢ € [0,n — 2], (dy,...,dp—1) €
[1,00)" ! and w € Y277 di + 1,00) let Sy(di,...,d,_1;w) be the set of

all sequences D = (dy, ... 7dq7d:1+17 . ,d;l) € 7" satisfying d; > d; for any

i € [qg+ 1,n—1] and wt(D) > w. The following lemma has been proved as
Lemma 4 in [6].

Lemma 3. The mazimum of y(dy,... ,dq,d;H, . ,d;z) over all sequences
(dy,..., dq,d;_H, cdy) € Sy(dys. .. dy_1;w) is equal to Y(dy, ..., dn 1,
w— E?:_f d;). "

Claim 1. 1. If ¢g(v) > 0 for a vertex v of a 3-connected graph G = (V, E, F)
with A*(G) > 5, then deg(v) < 4.

2. If ¢o(v) > 0 for a 4-vertex v of a 3-connected graph G = (V, E, F),
then the type of v is from the set {(3,5,3,5),(3,5,3,6),(3,5,3,7)}.

Proof. 1. Clearly, for vertices of degree at least 6 it holds

_, deg(v) 1 ~ deg(v)
co(v) =1 —3 +f€§p:(v) dez(f) <1 5 T Z
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deg(v) | deg(v) _ .  deg(v)
Ty Ty Tl

By Lemmas 2.2 and 3, for vertices of degree 5 it holds cq(v) < v(3,5,3,5,5)
<0.

2. The statement can be derived from Lemmas 2.2 and 3 and the fol-
lowing facts:
If a 4-vertex v is not adjacent to a 3-face, then co(v) < v(4,4,4,4) <O0.
If a 4-vertex v is adjacent to exactly one 3-face, then co(v) < v(3,5,4,5) < 0.
If a 4-vertex v is adjacent to exactly two 3-faces, but no 5-face, then cg(v) <

=1

<0.

~(3,6,3,6) < 0.
If a 4-vertex v is adjacent to exactly two 3-faces, 5-face and face of degree
at least 8, then ¢o(v) < ~(3,5,3,8) <0. |

A vertex v € V is positive if ¢o(v) > 0, otherwise it is nonpositive. For a
vertex v € V' let n(v) denote the number of all neighbours of v of positive
initial charge.

3. DISCHARGING

Theorem 4. For every 3-connected plane graph G with 6(G) = 4 and
A*(G) > 6 or with 6(G) > 5 it holds x.(G) < A*(G) + 2.

Proof. Let G be a A*-minimal graph.

Case A. If §(G) > 5, then by the definition of the initial charge and
Claim 1.1 we have ¢g(v) < 0 for any v € V(G), contradicting Euler’s formula.
If 5(G) = 4 and A*(G) > 9, then, by Lemmas 1 and 2.1, G does not contain
positive 4-vertices. Thus, by the definition of initial charge and Claim 1.1,
we have ¢y(v) <0 for every v € V(G), contradicting Euler’s formula.

Case B. Let §(G) = 4 and A*(G) € [6,8]. Let us state the only redis-
tribution rule R: A vertex v with ¢o(v) < 0 sends to its neighbour w with

co(w) > 0 the amount %

Now our aim is to show that ¢;(v) < 0 for any v € V(G) (where ¢1(v)
is the charge of v after using R).

(1) If co(v) <0, then obviously co(v) < ¢1(v) < 0.

(2) If co(v) > 0, then v is either of type (3,5,3,6) with co(v) = 35 or

3,
of type (3,5,3,7) with co(v) = 5= for the case A*(G) € {7,8} (because of
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Lemmas 1 and 2.2 G does not contain vertices of type (3,5,3,5)) and v is
either of type (3,5, 3,5) with co(v) = % or of type (3,5, 3,6) with cy(v) = 3—10
for the case A*(G) = 6.

(21) If v is of type (3,5,3,5), then:

(211) If there exist two distinct neighbours t1,%2 of vertex v such that
deg(t1),deg(t2) > 5, then ¢1(v) < £ +2-1-+(3,5,3,5,5) <0.

(212) If at most one neighbour of vertex v is of degree at least 5, then,
by absence of Cy in G, ¢1(v) < £ +4-7(3,5,4,5) = 0.

(22) If v is either of type (3,5, 3,6) or of type (3,5,3,7), then let ¢5,t3 be
the neighbours of v incident with 5-face, let ¢1,t4 be the other two neighbours
of v, where t; is a common neighbour of vertices v and 9 and ¢4 is a common
neighbour of vertices v and tg3.

(221) If there exists i € [1,4] such that deg(t;) > 5, then co(t;) +
son(ti) < 1—ldeg( ti)+ggn(ti) < 1—ldeg( £) 4+ deg(t) = 1-L deg(t,) <
0, and so ff((tl)) < —35. Therefore ¢ (v) < 30 310 =0.

(222) If deg(t ) = 4 for any i € [1,4], then let g; be another face
incident with the edge ¢1t2 (and not incident with vertex v); similarly let
g2 be another face incident with the edge t3t4 (and not incident with vertex
v). By Lemma 2.2 we have deg(g;) > 5, i € {1,2}. Finally, let f; be the
fourth face incident with the vertex t; (thus f; is not incident with v and
fi ¢ {g1,92}).

(2221) If there exists ¢ € [1,4] such that deg(f;) > 5, then co(t;) <
v(3,5,5,5) = —1—5 and n(t;) < 2. Therefore ¢;(v) < co(v) + % (——) <0.

(2222) If there exists i € {1,4} such that deg(f,) =4, thenlet j € {1,2}
be such that face g; is neighbour of face f;.

(22221) If deg(g]) > 6, then co(t;) <7(3,6,4,6) = —ﬁ and n(t;) < 2.
Thuscl()gco()—i—2 (—1 )SO

(22222) If deg(g;) = 5 then co(t;) < 7(3,5,4,6) = —55. Slmulta—
neously n(t;) = 1, else either G contains a vertex of type (3,5,3,5) (for

A*(G) € {7,8}) or G contains a configuration Cy (if A*(G) = ) Then
c1(v) < c¢p(v) — 2—10 <0.

(223) Let now deg(f1) = deg(f4) = 3.

(2231) If A*(G) € {7, 8}, then:

(22311) If there exists i € {2,3} such that deg(f;) = 3, then, by Cs, v
is of type (3,5,3,7) and g; adjacent to f;, j € {1,2}, is of degree at least
6, because G does not contain a vertex of type (3,5,3,5). Then a vertex
tk, k € {1,4}, which is a common neighbour of vertices v and t;, has the
initial charge co(tx) < 7(3,6,3,7) = —45. Due to R, the vertex t) sends at
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most —ﬁ to the vertex v. If deg(f5—;) = 3, then also the vertex t5_j sends

at most —ﬁ to the vertex v, else t5_; sends at most 1 - (—6—10) to v. Thus

c1(v) < max{co(v) — 2 - T}g,co(v) - ﬁ — ﬁ} = co(v) — ﬁ <0.

(22312) Let now deg(f2) = deg(fs) = 4. Then co(t2),co(ts)
7(3,5,4,5) = —a5. Now if v is of type (3,5,3,7), then ¢;(v) < co(v) —
2 - % . % < 0, else, by C3, d = 7, deg(g1),deg(g2) > 6 and so ¢1(v) <
co(v) +27v(3,5,4,6) <0.

(2232) If A*(G) = 6, then due to absence of configuration Cs in G,
there exists ¢ € {2,3} such that vertex ¢; is of type (3,5,4,6). Therefore
n(t;) =1 and ¢1(v) < ¢o(v) — 55 < 0. ]
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