A NOTE ON CYCLIC CHROMATIC NUMBER

Jana Zlámalová
Institute of Mathematics, Faculty of Science
P.J. Šafárik University
Jesenná 5, 04001 Košice, Slovakia
e-mail: zlamalovaj@gmail.com

Abstract

A cyclic colouring of a graph G embedded in a surface is a vertex colouring of G in which any two distinct vertices sharing a face receive distinct colours. The cyclic chromatic number $\chi_{c}(G)$ of G is the smallest number of colours in a cyclic colouring of G. Plummer and Toft in 1987 conjectured that $\chi_{\mathrm{c}}(G) \leq \Delta^{*}+2$ for any 3 -connected plane graph G with maximum face degree Δ^{*}. It is known that the conjecture holds true for $\Delta^{*} \leq 4$ and $\Delta^{*} \geq 18$. The validity of the conjecture is proved in the paper for some special classes of planar graphs.

Keywords: plane graph, cyclic colouring, cyclic chromatic number.
2010 Mathematics Subject Classification: 05C15.

1. Introduction

Graphs, which we are dealing with, are plane, 3-connected and simple. Consider such a graph $G=(V, E, F)$ and let us present notations used in this article. The degree $\operatorname{deg}(x)$ of $x \in V \cup F$ is the number of edges incident to x. A vertex of degree k is a k-vertex, a face of degree k is a k-face. By $V(x)$ we denote the set of all vertices incident to $x \in E \cup F$; similarly, $F(y)$ is the set of all faces incident to $y \in V \cup E$. If $e \in E, F(e)=\left\{f_{1}, f_{2}\right\}$ and $\operatorname{deg}\left(f_{1}\right) \leq \operatorname{deg}\left(f_{2}\right)$, then the pair $\left(\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{2}\right)\right)$ is called the type of e. A cycle in G is facial if its vertex set is equal to $V(f)$ for some $f \in F$.

A vertex x_{1} is cyclically adjacent to a vertex $x_{2} \neq x_{1}$ if there is a face f with $x_{1}, x_{2} \in V(f)$. The cyclic neighbourhood $N_{\mathrm{c}}(x)$ of a vertex x is the set of all vertices that are cyclically adjacent to x and the closed cyclic
neighbourhood of x is $\bar{N}_{\mathrm{c}}(x)=N_{\mathrm{c}}(x) \cup\{x\}$. (The usual neighbourhood of x is denoted by $N(x)$.) The cyclic degree of x is $\operatorname{cd}(x)=\left|N_{\mathrm{c}}(x)\right|$. A cyclic colouring of G is a mapping $\varphi: V \rightarrow C$ in which $\varphi\left(x_{1}\right) \neq \varphi\left(x_{2}\right)$ whenever x_{1} is cyclically adjacent to x_{2} (elements of C are colours of φ). The cyclic chromatic number $\chi_{\mathrm{c}}(G)$ of the graph G is the minimum number of colours in a cyclic colouring of G.

For $p, q \in \mathbb{Z}$ let $[p, q]=\{z \in \mathbb{Z}: p \leq z \leq q\}$ and $[p, \infty)=\{z \in \mathbb{Z}:$ $p \leq z\}$.

Let G be an embedding of a 2 -connected graph and let v be its vertex of degree n. Consider a sequence (f_{1}, \ldots, f_{n}) of faces incident to v in a cyclic order around v (there are altogether $2 n$ such sequences) and the sequence $D=\left(d_{1}, \ldots, d_{n}\right)$ in which $d_{i}=\operatorname{deg}\left(f_{i}\right)$ for $i \in[1, n]$. The sequence D is called the type of the vertex v provided it is the lexicographical minimum of the set of all such sequences corresponding to v.

It is easy to see that $\operatorname{cd}(v)=\sum_{i=1}^{n}\left(d_{i}-2\right)$. A contraction of an edge $x y \in$ $E(G)$ consists in a continuous identification of the vertices x and y forming a new vertex $x \leftrightarrow y$ and the removal of the created loop together with all possibly created multiedges; let $G / x y$ be the result of such a contraction. An edge $x y$ of a 3-connected plane graph G is contractible if $G / x y$ is again 3 -connected.

If the graph G is 2 -connected, any face f of G is incident to $\operatorname{deg}(f)$ vertices. In such a case $\chi_{\mathrm{c}}(G)$ is naturally lower bounded by $\Delta^{*}(G)$, the maximum face degree of G.

By a classical result of Whitney [9] all plane embeddings of a 3-connected planar graph are essentially the same. This means that $\chi_{\mathrm{c}}\left(G_{1}\right)=\chi_{\mathrm{c}}\left(G_{2}\right)$ if G_{1}, G_{2} are plane embeddings of a fixed 3 -connected planar graph G; thus, we can speak simply about the cyclic chromatic number of G. Plummer and Toft in [8] conjectured that if G is a 3 -connected plane graph, then $\chi_{\mathrm{c}}(G) \leq \Delta^{*}(G)+2$. They showed a weaker inequality $\chi_{\mathrm{c}}(G) \leq \Delta^{*}(G)+9$. Let PTC (d) denote the conjecture by Plummer and Toft restricted to graphs with $\Delta^{*}(G)=d$. By the Four Colour Theorem, for a triangulation G we have $\chi_{\mathrm{c}}(G) \leq 4=\Delta^{*}(G)+1$. PTC(4) is known to be true by the work of Borodin [2]. Horňák and Jendrol' [5] proved PTC(d) for any $d \geq 24$. The bound was improved to 22 by Morita [7], but to the best of our knowledge, the proof was never published. Hornák and Zlámalová [6] proved PTC(d) for any $d \geq 18$. Enomoto et al. [4] obtained for $\Delta^{*}(G) \geq 60$ even a stronger result, namely that $\chi_{\mathrm{c}}(G) \leq \Delta^{*}(G)+1$. The example of the (graph of) d sided prism with maximum face degree d and cyclic chromatic number $d+1$
shows that the bound is best possible. The best known general result (with no restriction on $\Delta^{*}(G)$) is the inequality $\chi_{\mathrm{c}}(G) \leq \Delta^{*}(G)+5$ of Enomoto and Horňák [3].

Conjecture by Plummer and Toft is still open. This means that we do not know any G with $\chi_{\mathrm{c}}(G)-\Delta^{*}(G) \geq 3$. On the other hand, all G 's with $\chi_{\mathrm{c}}(G)-\Delta^{*}(G)=2$ we are aware of satisfy $\Delta^{*}(G)=4$. Therefore, the conjecture could even be strengthened: If G is a 3-connected plane graph G with $\Delta^{*}(G) \neq 4$, then $\chi_{\mathrm{c}}(G) \leq \Delta^{*}(G)+1$.

In this paper we show that $\operatorname{PTC}(d)$ is true for 3 -connected plane graphs of minimum degree 5 or of minimum degree 4 and maximum face degree at least 6 .

2. Auxiliary Results

In the proof of the result of this paper we shall need a special information on the structure of 3 -connected plane graphs contained in Lemma 1 that follows by results of Ando et al. [1].

Lemma 1. If a vertex of degree at least four of a 3-connected plane graph G with $|V(G)| \geq 5$ is not incident to a contractible edge, then it is adjacent to three 3 -vertices.

Let $d \in[5, \infty)$. A 3 -connected plane graph G is said to be d-minimal if $\Delta^{*}(G) \leq d$ and $\chi_{\mathrm{c}}(G)>d+2$, but $\Delta^{*}(H) \leq d$ implies $\chi_{\mathrm{c}}(H) \leq d+2$ for any 3 -connected plane graph H such that the pair $(|V(H)|,|E(H)|)$ is lexicographically smaller then the pair $(|V(G)|,|E(G)|)$.

The next lemma shows that a d-minimal graph cannot contain some configurations.

Lemma 2. Let $d \in[5, \infty)$ and let G be a d-minimal graph. Then G does not contain any of the following configurations:

1. a vertex x with $\operatorname{deg}(x) \geq 4$ and $\operatorname{cd}(x) \leq d+1$ that is incident to a contractible edge;
2. an edge of type $\left(3, d_{2}\right)$ with $d_{2} \in[3,4]$;
3. the configuration \mathcal{C}_{i} of Figure $i, i \in[1,2]$, where $d=6$ and the configuration \mathcal{C}_{3} of Figure 3, where $d=7$ and where encircled numbers represent degrees of corresponding vertices and vertices without degree specification are of an arbitrary degree.

Figure 1. $\operatorname{cd}\left(x_{1}\right) \leq 10$

Figure 2. $\operatorname{cd}\left(x_{1}\right) \leq 9, \operatorname{cd}\left(x_{4}\right) \leq 9$

Figure 3. $\operatorname{cd}\left(x_{1}\right) \leq 10$

Proof. 1. The statement has already been proved in [5] (Lemma 3.1(e)).
2. The statement has already been proved in [6] (Lemma 3.6).
3. For the rest of the proof suppose that G contains a configuration C_{i}, $i \in[1,3]$, described in Lemma 2.3. Then 4 -vertex x_{0} of the configuration $C_{i}, i \in[1,3]$, is incident to a contractible edge (because of Lemma 1). The graph G^{\prime} obtained by contracting of this edge is a 3-connected plane graph satisfying $\Delta^{*}\left(G^{\prime}\right) \leq \Delta^{*}(G) \leq d$ and $\left|V\left(G^{\prime}\right)\right|=|V(G)|-1$, hence there is a cyclic colouring $\varphi: V\left(G^{\prime}\right) \rightarrow C$. This colouring will be used to find a cyclic colouring $\psi: V(G) \rightarrow C$ in order to obtain a contradiction with $\chi_{\mathrm{c}}(G)>d+2$. If not stated explicitly otherwise, we put $\psi(u)=\varphi(u)$ for any $u \in V(G)-\left\{x_{0}\right\}$.
$i \in\{1,3\}$: First note that $\operatorname{cd}\left(x_{0}\right)=d+2$. If there is a colour $c \in$ $C-\varphi\left(N\left(x_{0}\right)\right)$, then we put $\psi\left(x_{0}\right)=c$, else, by assumptions, there is a colour c^{*} such that $c^{*} \notin \varphi\left(\bar{N}\left(x_{1}\right) \cup \bar{N}\left(x_{2}\right)-N\left(x_{0}\right)\right)$. Therefore we can put $\psi\left(x_{1}\right)=c^{*}\left(\psi\left(x_{2}\right)=c^{*}\right)$ and $\psi\left(x_{0}\right)=\varphi\left(x_{1}\right)\left(\psi\left(x_{0}\right)=\varphi\left(x_{2}\right)\right)$.
$i=2$: If there is a colour $c \in C-\varphi\left(N\left(x_{0}\right)\right)$, then we put $\psi\left(x_{0}\right)=c$, else there is exactly one $j \in C$ such that $\left|\left\{\varphi(u)=j: u \in N\left(x_{0}\right)\right\}\right|=2$. Without loss of generality we can suppose that $j \neq \varphi\left(x_{2}\right)$.

If $\varphi\left(x_{1}\right) \neq j$, then $C-\varphi\left(\bar{N}\left(x_{1}\right)\right) \neq \emptyset$, so we can put $\psi\left(x_{0}\right)=\varphi\left(x_{1}\right)$ and colour properly x_{1}.

Now let us suppose that $\varphi\left(x_{1}\right)=j$. If $\varphi\left(x_{3}\right) \neq j$, then $C-\varphi\left(\bar{N}\left(x_{3}\right)\right) \neq \emptyset$ and we can recolour x_{3} and put $\psi\left(x_{0}\right)=\varphi\left(x_{3}\right)$.

If $\varphi\left(x_{3}\right)=j$, then we put $\psi\left(x_{2}\right)=\psi\left(x_{4}\right)=j, \psi\left(x_{0}\right)=\varphi\left(x_{2}\right), \psi\left(x_{3}\right)=$ $\varphi\left(x_{4}\right)$ and $\psi\left(x_{1}\right)=c$, where $c \in C-\varphi\left(\bar{N}\left(x_{1}\right)\right)$.

The result of this paper will be proved by contradiction, using the Discharging Method. For any vertex v of 3-connected graph $G=(V, E, F)$ let

$$
c_{0}(v)=1-\frac{\operatorname{deg}(v)}{2}+\sum_{f \in F(v)} \frac{1}{\operatorname{deg}(f)}
$$

be the initial charge of vertex v. Then, using Euler's formula and the handshaking lemma, is easy to see that $\sum_{v \in V} c_{0}(v)=2$.

In this section we shall establish (Lemma 2) that the structure of a d minimal graph $G=(V, E, F)$ is restricted. In the next section we use the Discharging Method to distribute the initial charges of vertices of G such that every vertex $v \in V(G)$ will have a nonpositive new charge $c_{1}(v)$, but the sum of all charges will be the same. Then we will show that the restriction of structure of G is so strong that the existence of G is incompatible with $\sum_{v \in V} c_{1}(v)=2$.

If a vertex v is of type $\left(d_{1}, \ldots, d_{n}\right)$, then

$$
c_{0}(v)=\gamma\left(d_{1}, \ldots, d_{n}\right)=1-\frac{n}{2}+\sum_{i=1}^{n} \frac{1}{d_{i}} .
$$

Clearly, if π is a permutation of the set $[1, n]$, then $\gamma\left(d_{\pi(1)}, \ldots, d_{\pi(n)}\right)=$ $\gamma\left(d_{1}, \ldots, d_{n}\right)$. Let the weight of a sequence $D=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$ be defined by $\operatorname{wt}(D)=\sum_{i=1}^{n} d_{i}$. For $n \in[2, \infty), q \in[0, n-2],\left(d_{1}, \ldots, d_{n-1}\right) \in$ $[1, \infty)^{n-1}$ and $w \in\left[\sum_{i=1}^{n-1} d_{i}+1, \infty\right)$ let $S_{q}\left(d_{1}, \ldots, d_{n-1} ; w\right)$ be the set of all sequences $D=\left(d_{1}, \ldots, d_{q}, d_{q+1}^{\prime}, \ldots, d_{n}^{\prime}\right) \in \mathbb{Z}^{n}$ satisfying $d_{i}^{\prime} \geq d_{i}$ for any $i \in[q+1, n-1]$ and $\operatorname{wt}(D) \geq w$. The following lemma has been proved as Lemma 4 in [6].

Lemma 3. The maximum of $\gamma\left(d_{1}, \ldots, d_{q}, d_{q+1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ over all sequences $\left(d_{1}, \ldots, d_{q}, d_{q+1}^{\prime}, \ldots, d_{n}^{\prime}\right) \in S_{q}\left(d_{1}, \ldots, d_{n-1} ; w\right)$ is equal to $\gamma\left(d_{1}, \ldots, d_{n-1}\right.$, $\left.w-\sum_{i=1}^{n-1} d_{i}\right)$.

Claim 1. 1. If $c_{0}(v)>0$ for a vertex v of a 3-connected graph $G=(V, E, F)$ with $\Delta^{*}(G) \geq 5$, then $\operatorname{deg}(v) \leq 4$.
2. If $c_{0}(v)>0$ for a 4 -vertex v of a 3 -connected graph $G=(V, E, F)$, then the type of v is from the set $\{(3,5,3,5),(3,5,3,6),(3,5,3,7)\}$.

Proof. 1. Clearly, for vertices of degree at least 6 it holds

$$
c_{0}(v)=1-\frac{\operatorname{deg}(v)}{2}+\sum_{f \in F(v)} \frac{1}{\operatorname{deg}(f)} \leq 1-\frac{\operatorname{deg}(v)}{2}+\sum_{f \in F(v)} \frac{1}{3}
$$

$$
=1-\frac{\operatorname{deg}(v)}{2}+\frac{\operatorname{deg}(v)}{3}=1-\frac{\operatorname{deg}(v)}{6} \leq 0
$$

By Lemmas 2.2 and 3, for vertices of degree 5 it holds $c_{0}(v) \leq \gamma(3,5,3,5,5)$ ≤ 0.
2. The statement can be derived from Lemmas 2.2 and 3 and the following facts:
If a 4-vertex v is not adjacent to a 3-face, then $c_{0}(v) \leq \gamma(4,4,4,4) \leq 0$.
If a 4-vertex v is adjacent to exactly one 3 -face, then $c_{0}(v) \leq \gamma(3,5,4,5) \leq 0$. If a 4 -vertex v is adjacent to exactly two 3 -faces, but no 5 -face, then $c_{0}(v) \leq$ $\gamma(3,6,3,6) \leq 0$.
If a 4 -vertex v is adjacent to exactly two 3 -faces, 5 -face and face of degree at least 8 , then $c_{0}(v) \leq \gamma(3,5,3,8) \leq 0$.
A vertex $v \in V$ is positive if $c_{0}(v)>0$, otherwise it is nonpositive. For a vertex $v \in V$ let $n(v)$ denote the number of all neighbours of v of positive initial charge.

3. Discharging

Theorem 4. For every 3-connected plane graph G with $\delta(G)=4$ and $\Delta^{*}(G) \geq 6$ or with $\delta(G) \geq 5$ it holds $\chi_{c}(G) \leq \Delta^{*}(G)+2$.

Proof. Let G be a Δ^{*}-minimal graph.
Case A. If $\delta(G) \geq 5$, then by the definition of the initial charge and Claim 1.1 we have $c_{0}(v) \leq 0$ for any $v \in V(G)$, contradicting Euler's formula. If $\delta(G)=4$ and $\Delta^{*}(G) \geq 9$, then, by Lemmas 1 and 2.1, G does not contain positive 4 -vertices. Thus, by the definition of initial charge and Claim 1.1, we have $c_{0}(v) \leq 0$ for every $v \in V(G)$, contradicting Euler's formula.

Case B. Let $\delta(G)=4$ and $\Delta^{*}(G) \in[6,8]$. Let us state the only redistribution rule R:A vertex v with $c_{0}(v)<0$ sends to its neighbour w with $c_{0}(w)>0$ the amount $\frac{c_{0}(v)}{n(v)}$.

Now our aim is to show that $c_{1}(v) \leq 0$ for any $v \in V(G)$ (where $c_{1}(v)$ is the charge of v after using R).
(1) If $c_{0}(v) \leq 0$, then obviously $c_{0}(v) \leq c_{1}(v) \leq 0$.
(2) If $c_{0}(v)>0$, then v is either of type $(3,5,3,6)$ with $c_{0}(v)=\frac{1}{30}$ or of type $(3,5,3,7)$ with $c_{0}(v)=\frac{1}{105}$ for the case $\Delta^{*}(G) \in\{7,8\}$ (because of

Lemmas 1 and $2.2 G$ does not contain vertices of type $(3,5,3,5))$ and v is either of type $(3,5,3,5)$ with $c_{0}(v)=\frac{1}{15}$ or of type $(3,5,3,6)$ with $c_{0}(v)=\frac{1}{30}$ for the case $\Delta^{*}(G)=6$.
(21) If v is of type $(3,5,3,5)$, then:
(211) If there exist two distinct neighbours t_{1}, t_{2} of vertex v such that $\operatorname{deg}\left(t_{1}\right), \operatorname{deg}\left(t_{2}\right) \geq 5$, then $c_{1}(v) \leq \frac{1}{15}+2 \cdot \frac{1}{5} \cdot \gamma(3,5,3,5,5) \leq 0$.
(212) If at most one neighbour of vertex v is of degree at least 5 , then, by absence of C_{1} in $G, c_{1}(v) \leq \frac{1}{15}+4 \cdot \gamma(3,5,4,5)=0$.
(22) If v is either of type $(3,5,3,6)$ or of type ($3,5,3,7$), then let t_{2}, t_{3} be the neighbours of v incident with 5 -face, let t_{1}, t_{4} be the other two neighbours of v, where t_{1} is a common neighbour of vertices v and t_{2} and t_{4} is a common neighbour of vertices v and t_{3}.
(221) If there exists $i \in[1,4]$ such that $\operatorname{deg}\left(t_{i}\right) \geq 5$, then $c_{0}\left(t_{i}\right)+$ $\frac{1}{30} n\left(t_{i}\right) \leq 1-\frac{7}{30} \operatorname{deg}\left(t_{i}\right)+\frac{1}{30} n\left(t_{i}\right) \leq 1-\frac{7}{30} \operatorname{deg}\left(t_{i}\right)+\frac{1}{30} \operatorname{deg}\left(t_{i}\right)=1-\frac{1}{5} \operatorname{deg}\left(t_{i}\right) \leq$ 0 , and so $\frac{c_{0}\left(t_{i}\right)}{n\left(t_{i}\right)} \leq-\frac{1}{30}$. Therefore $c_{1}(v) \leq \frac{1}{30}-\frac{1}{30}=0$.
(222) If $\operatorname{deg}\left(t_{i}\right)=4$ for any $i \in[1,4]$, then let g_{1} be another face incident with the edge $t_{1} t_{2}$ (and not incident with vertex v); similarly let g_{2} be another face incident with the edge $t_{3} t_{4}$ (and not incident with vertex $v)$. By Lemma 2.2 we have $\operatorname{deg}\left(g_{i}\right) \geq 5, i \in\{1,2\}$. Finally, let f_{i} be the fourth face incident with the vertex t_{i} (thus f_{i} is not incident with v and $\left.f_{i} \notin\left\{g_{1}, g_{2}\right\}\right)$.
(2221) If there exists $i \in[1,4]$ such that $\operatorname{deg}\left(f_{i}\right) \geq 5$, then $c_{0}\left(t_{i}\right) \leq$ $\gamma(3,5,5,5)=-\frac{1}{15}$ and $n\left(t_{i}\right) \leq 2$. Therefore $c_{1}(v) \leq c_{0}(v)+\frac{1}{2} \cdot\left(-\frac{1}{15}\right) \leq 0$.
(2222) If there exists $i \in\{1,4\}$ such that $\operatorname{deg}\left(f_{i}\right)=4$, then let $j \in\{1,2\}$ be such that face g_{j} is neighbour of face f_{i}.
(22221) If $\operatorname{deg}\left(g_{j}\right) \geq 6$, then $c_{0}\left(t_{i}\right) \leq \gamma(3,6,4,6)=-\frac{1}{12}$ and $n\left(t_{i}\right) \leq 2$. Thus $c_{1}(v) \leq c_{0}(v)+\frac{1}{2} \cdot\left(-\frac{1}{12}\right) \leq 0$.
(22222) If $\operatorname{deg}\left(g_{j}\right)=5$, then $c_{0}\left(t_{i}\right) \leq \gamma(3,5,4,6)=-\frac{1}{20}$. Simultaneously $n\left(t_{i}\right)=1$, else either G contains a vertex of type ($3,5,3,5$) (for $\Delta^{*}(G) \in\{7,8\}$) or G contains a configuration C_{1} (if $\Delta^{*}(G)=6$). Then $c_{1}(v) \leq c_{0}(v)-\frac{1}{20} \leq 0$.
(223) Let now $\operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{4}\right)=3$.
(2231) If $\Delta^{*}(G) \in\{7,8\}$, then:
(22311) If there exists $i \in\{2,3\}$ such that $\operatorname{deg}\left(f_{i}\right)=3$, then, by C_{3}, v is of type ($3,5,3,7$) and g_{j} adjacent to $f_{i}, j \in\{1,2\}$, is of degree at least 6 , because G does not contain a vertex of type ($3,5,3,5$). Then a vertex $t_{k}, k \in\{1,4\}$, which is a common neighbour of vertices v and t_{i}, has the initial charge $c_{0}\left(t_{k}\right) \leq \gamma(3,6,3,7)=-\frac{1}{42}$. Due to R, the vertex t_{k} sends at
most $-\frac{1}{168}$ to the vertex v. If $\operatorname{deg}\left(f_{5-i}\right)=3$, then also the vertex t_{5-k} sends at most $-\frac{1}{168}$ to the vertex v, else t_{5-i} sends at most $\frac{1}{2} \cdot\left(-\frac{1}{60}\right)$ to v. Thus $c_{1}(v) \leq \max \left\{c_{0}(v)-2 \cdot \frac{1}{168}, c_{0}(v)-\frac{1}{168}-\frac{1}{120}\right\}=c_{0}(v)-\frac{1}{84} \leq 0$.
(22312) Let now $\operatorname{deg}\left(f_{2}\right)=\operatorname{deg}\left(f_{3}\right)=4$. Then $c_{0}\left(t_{2}\right), c_{0}\left(t_{3}\right) \leq$ $\gamma(3,5,4,5)=-\frac{1}{60}$. Now if v is of type $(3,5,3,7)$, then $c_{1}(v) \leq c_{0}(v)-$ $2 \cdot \frac{1}{2} \cdot \frac{1}{60} \leq 0$, else, by $C_{3}, d=7, \operatorname{deg}\left(g_{1}\right), \operatorname{deg}\left(g_{2}\right) \geq 6$ and so $c_{1}(v) \leq$ $c_{0}(v)+2 \gamma(3,5,4,6) \leq 0$.
(2232) If $\Delta^{*}(G)=6$, then due to absence of configuration C_{2} in G, there exists $i \in\{2,3\}$ such that vertex t_{i} is of type $(3,5,4,6)$. Therefore $n\left(t_{i}\right)=1$ and $c_{1}(v) \leq c_{0}(v)-\frac{1}{20} \leq 0$.

References

[1] K. Ando, H. Enomoto and A. Saito, Contractible edges in 3-connected graphs, J. Combin. Theory (B) 42 (1987) 87-93.
[2] O.V. Borodin, Solution of Ringel's problem on vertex-face coloring of plane graphs and coloring of 1-planar graphs (Russian), Met. Diskr. Anal. 41 (1984) 12-26.
[3] H. Enomoto and M. Hornák, A general upper bound for the cyclic chromatic number of 3-connected plane graphs, J. Graph Theory 62 (2009) 1-25.
[4] H. Enomoto, M. Horñák and S. Jendrol', Cyclic chromatic number of 3connected plane graphs, SIAM J. Discrete Math. 14 (2001) 121-137.
[5] M. Horňák and S. Jendrol', On a conjecture by Plummer and Toft, J. Graph Theory 30 (1999) 177-189.
[6] M. Horñák and J. Zlámalová, Another step towards proving a conjecture by Plummer and Toft, Discrete Math. 310 (2010) 442-452.
[7] A. Morita, Cyclic chromatic number of 3 -connected plane graphs (Japanese, M.S. Thesis), Keio University, Yokohama 1998.
[8] M.D. Plummer and B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory 11 (1987) 507-515.
[9] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168.

