
Discussiones Mathematicae 105
Graph Theory 30 (2010 ) 105–114

ON CHARACTERIZATION OF UNIQUELY 3-LIST

COLORABLE COMPLETE MULTIPARTITE GRAPHS∗

Yancai Zhao1,2 and Erfang Shan1

1Department of Mathematics

Shanghai University

Shanghai 200444, P.R. China

2Department of Science

Bengbu University

Anhui 233030, P.R. China

e-mail: zhaoyc69@126.com

Abstract

For each vertex v of a graph G, if there exists a list of k colors, L(v),
such that there is a unique proper coloring for G from this collection
of lists, then G is called a uniquely k-list colorable graph. Ghebleh and
Mahmoodian characterized uniquely 3-list colorable complete multi-
partite graphs except for nine graphs: K2,2,r r ∈ {4, 5, 6, 7, 8}, K2,3,4,
K1∗4,4, K1∗4,5, K1∗5,4. Also, they conjectured that the nine graphs are
not U3LC graphs. After that, except for K2,2,r r ∈ {4, 5, 6, 7, 8}, the
others have been proved not to be U3LC graphs. In this paper we first
prove that K2,2,8 is not U3LC graph, and thus as a direct corollary,
K2,2,r (r = 4, 5, 6, 7, 8) are not U3LC graphs, and then the uniquely
3-list colorable complete multipartite graphs are characterized com-
pletely.

Keywords: list coloring, complete multipartite graph, uniquely 3-list
colorable graph.

2010 Mathematics Subject Classification: 05C15.

∗Research was partially supported by the National Nature Science Foundation of China
(No. 60773078) and Key Disciplines of Shanghai Municipality (S30104).



106 Y. Zhao and E. Shan

1. Introduction

We consider simple graphs which are finite, undirected, with no loops or
multiple edges. For the necessary definitions and notations we refer the
reader to standard texts, such as [2].

By a k-list assignment L to a graph G we mean a map which assigns
to each vertex v of G a set L(v) of size k. A list coloring for G from L, or
an L-coloring for short, is a proper coloring c, in which for each vertex v,
c(v) is chosen from L(v). The idea of list coloring is due independently to
Vizing [11] and to Erdös, Rubin, and Taylor [4]. For a recent survey on list
coloring we refer the interested reader to Alon [1].

For each vertex v in G, if there exists a list of k colors L(v), such
that there exists a uniquely L-coloring for G, then G is called a uniquely

k-list colorable graph or a UkLC graph for short. The idea of uniquely
colorable graph was introduced independently by Dinitz and Martin [3] and
by Mahmoodian and Mahdian [8].

If a graph G is not uniquely k-list colorable, we also say that G has
property M(k). So G has the property M(k) if and only if for any collection
of lists assigned to its vertices, each of size k, either there is no list coloring
for G or there exist at least two list colorings. The least integer k such that
G has the property M(k) is called the m-number of G, denoted by m(G).
This conception was originally introduced by Mahmoodian and Mahdian
in [9].

Mahdian and Mahmoodian characterized uniquely 2-list colorable graphs
as follows:

Theorem 1.1 ([8]). A connected graph G has the property M(2) if and

only if every block of G is either a cycle, a complete graph, or a complete

bipartite graph.

Ghebleh and Mahmoodian studied uniquely 3-list colorability about com-
plete multipartite graphs, and they gave the following results:

Theorem 1.2 ([6]). Graphs K3,3,3, K2,4,4, K2,3,5, K2,2,9, K1,2,2,2, K1,1,2,3,
K1,1,1,2,2, K1∗4,6, K1∗5,5, K1∗6,4 are uniquely 3-list colorable graphs.

Here, Ks∗r,t denote a complete (r + 1)-partite graph in which each part of
the r parties is of size s, one party is of size t.
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Theorem 1.3 ([6]). Let G be a complete multipartite graph that is not

K2,2,r, r ∈ {4, 5, 6, 7, 8}, K2,3,4,K1∗4,4,K1∗4,5,K1∗5,4, then G is U3LC if and

only if it has one of the ten graphs in Theorem 1.2 as an induced subgraph.

It can be seen from Theorem 1.2 and Theorem 1.3 that, if we can determine
whether the nine graphs exempted in Theorem 1.3 are U3LC or not, we
can simplify Theorem 1.3. About the nine graphs, Ref. [6] gave an open
problem.

Problem 1 ([6]). Verify the property M(3) for the graphs K2,2,r, r ∈
{4, 5, 6, 7, 8}, K2,3,4,K1∗4,4,K1∗4,5, and K1∗5,4.

Recently, except for K2,2,r, r ∈ {4, 5, 6, 7, 8}, the other graphs in the
above problem have been proved to have the property M(3). They are
shown below:

Theorem 1.4 ([10]). The graph K1∗5,4 has property M(3).

Theorem 1.5 ([7]). Graphs K1∗4,5 and K1∗4,4 have property M(3).

Theorem 1.6 ([12]). The graph K2,3,4 has property M(3).

In the next section of this paper, we will prove that K2,2,8 has the property
M(3). As its a direct corollary, we show that K2,2,r, r ∈ {4, 5, 6, 7} have
the property M(3), and thus based on the results we prove together with
previous results, we completely characterize the U3LC complete multipartite
graphs.

2. K2,2,r, r ∈ {4, 5, 6, 7, 8} Have Property M(3)

First we give three results as lemmas.

Lemma 2.1 ([5]). If G is a U3LC complete tripartite graph, then in its

uniquely 3-list coloring, at least two colors are used to color all vertices in

each part of G.

Lemma 2.2 ([9]). If L is a k-list assignment to the vertices in a graph G,

and G has a unique L-coloring, then |
⋃

v L(v)| ≥ k + 1 and all these colors

are used in the unique L-coloring of G.
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Lemma 2.3 ([6]). If G is a complete multipartite graph which has an in-

duced UkLC subgraph, then G is UkLC.

In the graph K2,2,8, we denote its three parts by X1 = {v1, v2}, X2 =
{v3, v4}, X3 = {v5, v6, . . . , v12}, and denote 3-list assigned to the vertex vi of
K2,2,8 by L(vi) = {ci1, ci2, ci3}, 1 ≤ i ≤ 12. Now, we suppose that K2,2,8 has
a unique L-coloring c such that c(vi) = ci1, i ∈ {1, 2, . . . , 12}. For conve-
nience, let S = {c51, c61, . . . , c12,1}. To obtain our main result, we give more
lemmas as follows.

Lemma 2.4. Colors c11, c21, c31, c41 are different from each other.

Proof. The result follows from Lemma 2.1.

Lemma 2.5. If vi 6= vj are in the same part of K2,2,8, then ci1 /∈ {cj2, cj3}.

Proof. Otherwise, if ci1 = cjk, k ∈ {2, 3}, then by letting c′(vj) = cjk = ci1

and letting c′(vi) = c(vi) for i 6= j, we obtain another L-coloring c′ of K2,2,8,
which contradicts the fact that K2,2,8 is U3LC.

Lemma 2.6. If vi, vj ∈ {v1, v2, v3, v4} are in two different parts of K2,2,8

such that ci1 ∈ {cj2, cj3}, then cj1 /∈ {ci2, ci3}.

Proof. Otherwise, by letting c′(vi) = cj1, c
′(vj) = ci1 and c′(vk) = c(vk)

for k 6= i, j, we obtain another L-coloring c′ of K2,2,8, a contradiction.

Lemma 2.7. There exists an i ∈ {1, 2, 3, 4} such that {ci2, ci3} ⊆ S.

Proof. Otherwise, for each i ∈ {1, 2, 3, 4}, |{ci1 , ci2, ci3} \ S| ≥ 2. Let
L′(vi) = {ci1, ci2, ci3} \ S for each i ∈ {1, 2, 3, 4}. Note that the subgraph of
K2,2,8 induced by v1, v2, v3 and v4 is K2,2. Then by Theorem 1.1, K2,2 has the
property M(2). So, there is another L-coloring c′ of K2,2 with c′(vi) ∈ L′(vi),
i ∈ {1, 2, 3, 4}, which can be easily extended to another proper coloring of
K2,2,8 by letting c′(vi) = c(vi) for i ∈ {5, 6, . . . , 12}, a contradiction.

Lemma 2.8. {ci2, ci3} ⊆ {c11, c21, c31, c41} for every i ∈ {5, 6, . . . , 12}.

Proof. By Lemma 2.5, if vi 6= vj are in the same part of K2,2,8, then ci1 /∈
{cj2, cj3}. Also obviously ci1 /∈ {ci2, ci3}. So ci2, ci3 /∈ S for i ∈ {5, 6, . . . , 12}.
Again by Lemma 2.2, {ci2, ci3} ⊆ {c11, c21, c31, c41}.
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Lemma 2.9. If X1 and X2 are unconsidered, then any three colors in

{c11, c21, c31, c41} can be used to L-color X3.

Proof. For convenience, we can suppose ci1 = i, i ∈ {1, 2, 3, 4} by Lemma
2.4. Now without loss of generality, suppose to the contrary that three colors
{1, 2, 3} cannot be used to L-color X3 without considering X1 and X2, then
{ci2, ci3} ∩ {1, 2, 3} = ∅ for some i ∈ {5, 6, . . . , 12} and thus |{ci2, ci3} ∩
{1, 2, 3, 4}| ≤ 1, contradicting the conclusion of Lemma 2.8.

Lemma 2.10. Take any three colors from {1, 2, 3, 4}, for example {2, 3, 4}.
If any two colors in {2, 3, 4} can not be used to L-color seven vertices of X3

with X1 and X2 unconsidered, then there must exist two colors {1, 2}, or

{1, 3}, or {1, 4} which can be used to L-color X3 with X1 and X2 unconsid-

ered.

Proof. If any two colors in {2, 3, 4} can not be used to L-color seven vertices
of X3 with X1 and X2 unconsidered, then, noting Lemma 2.8, since {3, 4}
can not be used to L-color seven vertices of X3 with X1 and X2 unconsidered,
there must be at least two i ∈ {5, 6, . . . , 12} such that {ci2, ci3} = {1, 2};
since {2, 4} can not be used to L-color seven vertices of X3 with X1 and
X2 unconsidered, there must be at least two i ∈ {5, 6, . . . , 12} such that
{ci2, ci3} = {1, 3}; since {2, 3} can not be used to L-color seven vertices of X3

with X1 and X2 unconsidered, there must be at least two i ∈ {5, 6, . . . , 12}
such that {ci2, ci3} = {1, 4}. Without loss of generality, suppose the six
sets above are {ci2, ci3}, i ∈ {7, 8, . . . , 12}. Then we check the remaining
two sets {c52, c53}, {c62, c63}. If {c52, c53} ∩ {c62, c63} 6= ∅, suppose s ∈
{c52, c53} ∩ {c62, c63}. Then 1, s can color X3. If {c52, c53} ∩ {c62, c63} = ∅,
then {c52, c53} ∪ {c62, c63} = {1, 2, 3, 4} by Lemma 2.8. Without loss of
generality, assume {c52, c53} = {1, 2} and {c62, c63} = {3, 4}. Then 1, 3, or
1,4 can be used to color X3.

Theorem 2.1. K2,2,r, r ∈ {4, 5, 6, 7, 8} have property M(3).

Proof. First we prove K2,2,8 has property M(3) by contradiction. Assume
to the contrary that c is a unique 3-list coloring of K2,2,8 and L(vi) =
{ci1, ci2, ci3}, c(vi) = ci1, i ∈ {1, 2, . . . , 12}. By Lemma 2.3, suppose ci1 = i,
i ∈ {1, 2, 3, 4}. By Lemma 2.7, there exists an i ∈ {1, 2, 3, 4} such that
{ci2, ci3} ⊆ S = {c51, c61, . . . , c12,1}. Without loss of generality, suppose
such an i = 1 and c12 = 5, c13 = 6, that is, L(v1) = {1, 5, 6}. To proceed the
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proof, we distinguish the following three cases. In each case, we will obtain
another L-coloring c′ of K2,2,8.

Case 1. |{c22, c23}∩S| = 2, for example, c22 = a, c23 = b, a 6= b, a, b ∈ S.
If {c32, c33, c42, c43} ∩ S 6= ∅, for example, c32 = d ∈ S, we can let c′(v3) =
d, c′(v1) = m,m ∈ {5, 6} \ d, c′(v2) = n, n ∈ {a, b} \ d, c′(v4) = 4. By Lemma
2.9, we can let c′(vi) = li, where, li ∈ {1, 2, 3} ∩ L(vi), i ∈ {5, 6, . . . , 12}.
Then we obtain another L-coloring c′ of K2,2,8 (which is exhibited below),
a contradiction. Thus assume {c32, c33, c42, c43} ∩ S = ∅. Then, by Lemmas
2.4–2.5, it must be that L(v3) = {3, 1, 2}, L(v4) = {4, 1, 2}. Let c′(v1) =
5, c′(v2) = a, c′(v3) = 1, c′(v4) = 1, and by Lemma 2.9, we can let c′(vi) = li,
where, li ∈ {2, 3, 4} ∩ L(vi), i ∈ {5, 6, . . . , 12}. Then another L-coloring c′

of K2,2,8 occurs (which is exhibited below), a contradiction.

156 2ab 156 2ab

3d× 4×× 312 412

{c32, c33, c42, c43} ∩ S 6= ∅ {c32, c33, c42, c43} ∩ S = ∅

Case 2. |{c22, c23} ∩ S| = 1, for example, c22 = a ∈ S.
By Lemma 2.5, 1 /∈ {c22, c23}. So 3 ∈ {c22, c23} or 4 ∈ {c22, c23}, for example,
3 ∈ {c22, c23}. That is, L(v2) = {2, a, 3}. We consider two subcases.

Subcase 2.1. {c32, c33} ⊆ S or {c42, c43} ⊆ S, for example, {c32, c33} ⊆ S.
For convenience, write c32 = b, c33 = d, {b, d} ⊆ S. Then, by letting c′(v2) =
a, c′(v3) = n, where, n ∈ {b, d} \ a, c′(v1) = m,m ∈ {5, 6} \ n, c′(v4) = 4 and
letting c′(vi) = li, where, li ∈ {1, 2, 3} ∩ L(vi), i ∈ {5, 6, . . . , 12}, we obtain
a new L-coloring c′ of K2,2,8 (which is exhibited below), a contradiction.

156 2a3

3bd 4 ××

Subcase 2.2. {c32, c33} * S and {c42, c43} * S.
By Lemma 2.5, 4 /∈ {c32, c33}. By Lemma 2.6, 2 /∈ {c32, c33}. Noting Lemma
2.2, we have L(v3) = {3, 1, b}, b ∈ S.

If 1 ∈ {c42, c43}, then by letting c′(v3) = c′(v4) = 1, c′(v2) = a, c′(v1) =
5, c′(vi) = li, where, li ∈ {2, 3, 4}∩L(vi), i ∈ {5, 6, . . . , 12} we obtain another
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L-coloring c′ of K2,2,8 (which is exhibited below), a contradiction. So assume
1 /∈ {c42, c43}. Then noting that 3 /∈ L(v4) by Lemma 2.5, there must be
{c42, c43} = {2, d}, d ∈ S.

If b = d, then 5 6= b or 6 6= b, for example 5 6= b. By letting c′(v3) =
c′(v4) = b, c′(v1) = m,m ∈ {5, 6} \ b, c′(v2) = 2, c′(vi) = li, where, li ∈
{1, 3, 4} ∩ L(vi), i = 5, 6, . . . , 12 we obtain another L-coloring c′ of K2,2,8

(which is exhibited below), a contradiction. So suppose b 6= d. We discuss
color a in L(v2).

(1) If a ∈ {5, 6}, for example a = 5, then 5 6= b or 5 6= d, for example
5 6= b. Let c′(v1) = c′(v2) = 5, c′(v3) = b, c′(v4) = 4, c′(vi) = li, where, li ∈
{1, 2, 3} ∩ L(vi), i ∈ {5, 6, . . . , 12}, another L-coloring c′ of K2,2,8 occurring
(which is exhibited below), a contradiction.

(2) If a /∈ {5, 6}, then there exists at least one color in {5, 6, a} such
that it does not belong to {b, d}, for example 5 /∈ {b, d}. Then, by letting
c′(v1) = 5, c′(v2) = 2, c′(v3) = b, c′(v4) = d, c′(vi) = li, here, li ∈ {1, 3, 4} ∩
L(vi), i ∈ {5, 6, . . . , 12}, we obtain another L-coloring c′ of K2,2,8 (which is
exhibited below), a contradiction.

156 2a3 156 2a3

31b 41× 31b 42d

1 ∈ {c42, c43} 1 /∈ {c42, c43}, b = d

156 253 156 2a3

31b 42d 31b 42d

1 /∈ {c42, c43}, b 6= d (1) 1 /∈ {c42, c43}, b 6= d (2)

Case 3. {c22, c23} ∩ S = ∅.
By Lemma 2.5, 1 /∈ L(v2). So L(v2) = {2, 3, 4}. By Lemma 2.6, 2 /∈
L(v3), 2 /∈ L(v4). By Lemma 2.5, 3 /∈ L(v4), 4 /∈ L(v3). So there exist a ∈ S
and b ∈ S such that a ∈ L(v3), b ∈ L(v4), for example, c32 = a, c42 = b.

Subcase 3.1. If a, b ∈ S \ {5, 6}, then by letting c′(v1) = 5, c′(v2) = 2,
c′(v3) = a, c′(v4) = b, c′(vi) = li, where, li ∈ {1, 3, 4}∩L(vi), i ∈ {5, 6, . . . , 12}
we obtain another L-coloring c′ of K2,2,8 (which is exhibited below), a con-
tradiction.



112 Y. Zhao and E. Shan

Subcase 3.2. If a ∈ {5, 6} and b /∈ {5, 6}, or a /∈ {5, 6} and b ∈ {5, 6},
for example a = 5, b ∈ S \ {5, 6}, then by letting c′(v3) = 5, c′(v1) =
6, c′(v4) = b, c′(v2) = 2, c′(vi) = li, where, li ∈ {1, 3, 4} ∩ L(vi), i ∈
{5, 6, . . . , 12} we obtain another L-coloring c′ of K2,2,8 (which is exhibited
below), a contradiction.

Subcase 3.3. If a, b ∈ {5, 6} and a = b, for example, a = b = 5, then
by letting c′(v3) = c′(v4) = 5, c′(v1) = 6, c′(v2) = 2, c′(vi) = li, where,
li ∈ {1, 3, 4} ∩ L(vi), i ∈ {5, 6, . . . , 12} we obtain another L-coloring c′ of
K2,2,8 (which is exhibited below), a contradiction.

156 234 156 234 156 234

3a× 4b× 35× 4b× 35× 45×

Subcase 3.1 Subcase 3.2 Subcase 3.3

Subcase 3.4. If a, b ∈ {5, 6} and a 6= b, for example, a = 5, b = 6,
then we assert that {c33, c43} ∩ S = ∅ holds. Otherwise, without loss of
generality, suppose c33 = d ∈ S. Noting d 6= 5, we can let c′(v4) = 6,
c′(v3) = d, c′(v1) = 5, c′(v2) = 2, c′(vi) = li, where, li ∈ {1, 3, 4} ∩ L(vi),
i = 5, 6, . . . , 12, another L-coloring c′ of K2,2,8 appearing, a contradiction.
So L(v3) = {3, 5, 1}, L(v4) = {4, 6, 1}. Then, we consider the following two
cases.

(1) There exist two colors in {2, 3, 4} which can be used to color seven
vertices of X3 with X1 and X2 unconsidered. Without loss of generality, sup-
pose {3, 4} can be used to color vi, i = 5, 6, . . . , 11, then by letting c′(v12,1) =
c12,1, c

′(v3) = c′(v4) = 1, c′(v2) = 2, c′(v1) = m,m ∈ {5, 6} \ c12,1, c
′(vi) = li,

where, li ∈ {3, 4} ∩ L(vi), i ∈ {5, 6, . . . , 11} we obtain another L-coloring c′

of K2,2,8 (which is exhibited below), a contradiction.

(2) If any two colors in {2, 3, 4} can not be used to color seven vertices
of X3 with the other two parts unconsidered, then by Lemma 2.10, one set
of {1, 2}, {1, 3}, {1, 4} can be used to L-color X3 with the other two parts
unconsidered. Without loss of generality, suppose {1, 2} can be used to color
X3. Then by letting c′(v2) = 3, c′(v3) = 5, c′(v1) = 6, c′(v4) = 4, c′(vi) = li,
here li ∈ {1, 2} ∩L(vi), i ∈ {5, 6, . . . , 12}, we obtain another L-coloring c′ of
K2,2,8 (which is exhibited below), a contradiction.
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156 234 156 234

351 461 351 461

Subcase 3.4 (1) Subcase 3.4 (2)

Consequently, K2,2,8 has property M(3). Then, we can easily prove K2,2,r,
r ∈ {4, 5, 6, 7} have property M(3). For otherwise, assume K2,2,r is U3LC
for some r ∈ {4, 5, 6, 7}. Since K2,2,r, r ∈ {4, 5, 6, 7} is an induced subgraph
of K2,2,8, by Lemma 2.3, K2,2,8 is U3LC, a contradiction. So, K2,2,r, r ∈
{4, 5, 6, 7} have property M(3). This completes the proof of Theorem 2.1.

Corollary 2.1. m(K2,2,r) = 3, r ∈ {4, 5, 6, 7, 8}.

Proof. It follows from Theorem 1.1 and Theorem 2.1.

Now all the graphs in Problem 1 are proved to have the property M(3).
Therefore, we can completely characterize the U3LC complete multipartite
graphs as follows.

Theorem 2.2. A complete multipartite graph is U3LC if and only if it has

one of the ten graphs K3,3,3, K2,4,4, K2,3,5, K2,2,9, K1,2,2,2, K1,1,2,3, K1,1,1,2,2,
K1∗4,6, K1∗5,5, and K1∗6,4 as an induced subgraph.

Proof. It follows from Theorem 1.3, Theorem 1.4, Theorem 1.5, Theorem
1.6 and Theorem 2.1.

Acknowledgements

Comments of the anonymous referee have been very helpful to us when
revising the paper.

References

[1] N. Alon, Restricted colorings of graphs, in: K. Walker, editor, Surveys in
Combinatorics, Number 187 in London Math. Soc. LNS, pp. 1–33, 1993.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American
Elsevier Publishing Co., INC., New York, 1976).

[3] J.H. Dinitz and W.J. Martin, The stipulation polynomial of a uniquely list

colorable graph, Austral. J. Combin. 11 (1995) 105–115.



114 Y. Zhao and E. Shan

[4] P. Erdös, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proceedings
of West Coast Conference on Combinatorics, Graph Theory and Computing,
number 26 in Congr. Number., pp. 125–157, Arcata, CA, September 1979.

[5] Y.G. Ganjali, M. Ghebleh, H. Hajiabohassan, M. Mirzadeh and B.S. Sadjad,
Uniquely 2-list colorable graphs, Discrete Appl. Math. 119 (2002) 217–225.

[6] M. Ghebleh and E.S. Mahmoodian, On uniquely list colorable graphs, Ars
Combin. 59 (2001) 307–318.

[7] W.J. He, Y.N. Wang, Y.F. Shen and X. Ma, On property M(3) of some com-

plete multipartite graphs, Australasian Journal of Combinatorics, to appear.

[8] M. Mahdian and E.S. Mahmoodian, A characterization of uniquely 2-list col-

orable graphs, Ars Combin. 51 (1999) 295–305.

[9] E.S. Mahmoodian and M. Mahdian, On the uniquely list colorable graphs,
in: Proceedings of the 28th Annual Iranian Mathematics Conference, Part 1,
number 377 in Tabriz Univ. Ser., Tabriz, 1997.

[10] Y.F. Shen and Y.N. Wang, On uniquely list colorable complete multipartite

graphs, Ars Combin. 88 (2008) 367–377.

[11] V.G. Vizing, Coloring the vertices of a graph in prescribed colors, (in Russian)
Discret. Anal. 29 (1976) 3–10.

[12] Y.Q. Zhao, W.J. He, Y.F. Shen and Y.N. Wang, Note on characterization

of uniquely 3-list colorable complete multipartite graphs, in: Discrete Geome-
try, Combinatorics and Graph Theory, LNCS 4381 (Springer, Berlin, 2007)
278–287.

Received 26 February 2009
Revised 2 April 2009

Accepted 14 April 2009

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

