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Abstract

In this paper, we determine the graph with maximal signless Lapla-
cian spectral radius among all connected graphs with fixed order and
given number of cut vertices.
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1. Introduction

In this paper, we consider only undirected simple connected graphs. Let G =
(V,E) be a graph of order n with vertex set V = V (G) = {v1, v2, . . . , vn}
and edge set E = E(G) = {e1, e2, . . . , em}. The adjacency matrix of G is
A(G) = (aij), where aij = 1 if vi and vj are adjacent in G and aij = 0,
otherwise. Let D(G) be the degree diagonal matrix of G, i.e., D(G) =
diag{d(v1), d(v2), . . . , d(vn)}, where d(v) denotes the degree of the vertex v

in the graph G. The matrix L(G) = D(G)−A(G) is known as the Laplacian

matrix of G and is studied extensively in the literature; see, e.g. [1, 9, 14, 15].
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The matrix Q(G) = D(G) + A(G) is called the signless Laplacian matrix

or Q-matrix of G in [12], and appears very rarely in published papers (see
[3]). The paper [7] is one of the very few research papers concerning this
matrix. Let M = M(G) = [mij ] be the vertex-edge incidence matrix of the
graph G, i.e., mij = 1 if vi is incident to ej , and mij = 0, otherwise. Then
Q(G) = MMT , which implies Q(G) is symmetric and positive semidefinite
so that its eigenvalues can be arranged as

0 ≤ µ1(G) ≤ µ2(G) ≤ · · · ≤ µn(G).

As Q(G) is (entrywisely) nonnegative, by Perron-Frobenius Theorem, the
spectral radius of Q(G), denoted by µ(G), is exactly the largest eigenvalue
µn(G). Similarly, the spectral radius of A(G), denoted by ρ(G), is the largest
eigenvalue of A(G). If, in addition, G is connected, then µ(G) (respectively,
ρ(G)) is simple and has a (up to a factor) unique corresponding (entrywisely)
positive eigenvector, known as Perron vector of Q(G) (respectively, A(G)).
We call ρ(G), µ(G) the adjacency spectral radius and the signless Laplacian

spectral radius of G, respectively. In addition, M T M = 2Im + A(LG) and
hence µ(G) = 2 + ρ(LG), where LG denotes the line graph of G.

Recently, the signless Laplacian matrices of graphs are received much
attention. In [8, 16], the authors studied the signless Laplacian spectral
radii of bicyclic graphs and all graphs with fixed order, respectively. In [7],
Desai and Rao discussed the smallest eigenvalue of Q(G) as a parameter
reflecting the nonbipartiteness of the graph G. Some other results of the
signless Laplacian matrices can be found in [4, 11]. For a survey paper of
this direction, see [5]. One main goal of studying the eigenvalues of graphs
is to investigate the structures of graphs. The papers [6, 12] provide spectral
uncertainties with respect to the adjacency matrix and with respect to the
signless Laplacian of sets of all graphs on n vertices when n ≤ 11, which
implies the spectra of signless Laplacian matrices are more closely related
to the graph structures than those of adjacency matrices. An idea was
expressed in [6] that, among matrices associated with a graph, the signless
Laplacian matrix seems to be the most convenient for use in studying graph
properties. Maybe this is a strong basis for our work on signless Laplacian
matrices of graphs.

Recall a cut vertex in a connected graph is one whose deletion breaks
the graph into two or more connected components. Denote by Gn,k the set
of connected graphs on n vertices and with k cut vertices. In [2] Berman
and Zhang have characterized the graph with maximal adjacency spectral



The Signless Laplacian Spectral radius of ... 87

radius among all graphs in Gn,k. In this paper, we discuss this problem
with respect to signless spectral radius, and show that the maximal signless
spectral radius of graphs in Gn,k is attained uniquely at the graph Gn,k,
which is obtained by adding (n − k) paths of almost equal lengths (that is,
the absolute value of the difference of the lengths of any two paths is at
most 1) to the vertices of the complete graph Kn−k, respectively.

2. Results

Let x = (x1, x2, . . . , xn) ∈ R
n be a Perron vector of Q(G) of a graph G of

order n. Then x can be considered as a function defined on the vertex set
of G, that is, for any vertex vi, we map it to xi = x(vi). We often say xi is
a value of the vertex vi given by x. One can find that

(2.1) xT Q(G)x =
∑

uv∈E(G)

[x(u) + x(v)]2,

and

(2.2) [µ(G) − d(v)]x(v) =
∑

u∈N(v)

x(u), for each v ∈ V (G),

where N(v) = {w : vw ∈ E(G)}, the neighborhood of v in the graph G.

Denote by Pn and Kn a path and a complete graph of order n, respec-
tively. Denote by ∆(G) the maximal degree of all vertices of a graph G. A
graph is said trival if it consists of only one vertex.

Lemma 2.1 ([5, 18]). Let G be a graph with signless Laplacian spectral

radius µ(G). Then

∆(G) + 1 ≤ µ(G) ≤ max{d(u) + d(v) : uv ∈ E(G)};

and for a connected graph G, the left equality holds if and only if G is a

star, and the right equality holds if and only if G is regular or semi-regular

bipartite.

In following, we often say “adding a path to some vertex of a graph”, which
means identifying one pendant vertex of the path with a specified vertex of
the graph (disjoint to the path).
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Lemma 2.2 ([13]). (1) Let G be a simple graph containing a non-isolated

vertex u, and let Gk,l denote the graph obtained from G by adding two paths

Pk+1 and Pl+1 at u, respectively. Then for k ≥ l ≥ 1, ρ(Gk,l) > ρ(Gk+1,l−1).

(2) Let G be a simple graph containing two adjacent vertices u, v both

of degree greater than one, and let G1
k,l denote the graph obtained from G

by adding a path Pk+1 at u and a path Pl+1 at v. Then for k ≥ l ≥ 1,
ρ(G1

k,l) > ρ(G1
k+1,l−1).

Tan and Wang [17] proved that Lemma 2.2 also holds for the spectral radius
of the signless Laplacian matrix of a graph.

Lemma 2.3 [17]. Let G(k, l) and G1(k, l) be defined as in Lemma 2.2,
respectively. Then for k ≥ l ≥ 1, µ(Gk,l) > µ(Gk+1,l−1) and µ(G1

k,l) >

µ(G1
k+1,l−1).

The following result is a simple fact and its proof is ommited.

Lemma 2.4. Let G be a connected graph on n vertices with k (k ≥ 1) cut

vertices. Then k ≤ n−2, with equality if and only if G = Pn. If, in addition,

each cut vertex is contained in exactly two blocks, then G contains exactly

k + 1 block, and k = n − 3 if and only if G is obtained from a triangle by

adding one path (possibly being trivial) at each vertex of the triangle.

The notion G1vG2 will mean a graph consisting of two connected subgraphs
G1 and G2 sharing with exactly one common vertex v.

Proposition 2.5. (1) The signless Laplacian spectral radius of KmvK3 is
1+2m+

√
(2m−5)2+16

2 .

(2) Let G be a graph obtained from KmvK3 (m ≥ 3) by adding one path

(possibly being trival) at each vertex except v. Then there exists a graph H

with the same order as G, which is obtained from Km+1 by adding one path

of some length (possibly being trival) at each vertex, such that

µ(G) < µ(H).

Proof. (1) Let x be a Perron vector of the signless Laplacian matrix
Q(KmvK3) corresponding the spectral radius µ. By symmetry of the graph,
except v, all vertices of Km (and respectively K3) have the same value given
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by x, denoted by α (and respectively, β). Denote the value of v by γ. Then
by Equation (2.2),

[µ−(m−1)]α = (m−2)α+γ, [µ−(m+1)]γ = (m−1)α+2β, (µ−2)β = β+γ.

Solving the equations, we get the result.

(2) Consider the case of m = 3 first. Except v, let the vertices of one
K3 by w1, w2 and let the vertices of another K3 by u1, u2. Let x be a
Perron vector of the signless Laplacian matrix Q(G). We may assume that
x(w1) = max{x(wi), x(ui), i = 1, 2}. Now deleting the edge u1u2 and adding
edges u1w1, u1w2, we get a new graph denoted by H. By Equation (2.1),

xT Q(H)x − xT Q(G)x

= [x(u1) + x(w1)]
2 + [x(u1) + x(w2)]

2 − [x(u1) + x(u2)]
2 > 0,

which implies the desired result.

Now consider the case of m ≥ 4. Except the vertex v, let the vertices of
K3 be u1, u2 and those of Km be w1, w2, . . . , wm−1. By the first result just
proved, µ := µ(G) ≥ µ(KmvK3) ≥ 7. Let x be a Perron vector of Q(G).
Assume that x(u1) ≥ x(u2). We first prove x(v) > (µ− 5)x(u1). If the path
added to u1 is nontrival and is denoted by u0

1u
1
1 · · · up

1, where u0
1 = u1, p ≥ 1

and ui−1
1 is adjacent to ui

1 for each i = 1, 2, . . . , p, by Equation (2.2),

x
(

u
p−1
1

)

= (µ − 1)x
(

u
p
1

)

> x
(

u
p
1

)

,

and if p ≥ 2,

x
(

u
p−2
1

)

= (µ − 2)x
(

u
p−1
1

)

− x
(

u
p
1

)

= (µ − 3)x
(

u
p−1
1

)

+
[

x
(

u
p−1
1

)

− x
(

u
p
1

)]

> x
(

u
p−1
1

)

.

Repeating the discussion if necessary, we at last get x(u1) = x(u0
1) > x(u1

1),
and then x(v) = (µ−3)x(u1)−x(u1

1)−x(u2) > (µ−5)x(u1). If the path added
to v1 is trival, we also have x(v) = (µ − 2)x(u1) − x(u2) ≥ (µ − 3)x(u1) >

(µ − 5)x(u1). We next show

γ :=

m−1
∑

i=1

x(wi) > x(u1).
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By Equation (2.2) and the fact x(v) > (µ − 5)x(u1) and x(u1) ≥ x(u2),

γ = [µ − (m + 1)]x(v) − [x(u1) + x(u2)] > [(µ − m − 1)(µ − 5) − 2]x(u1).

If m = 4, then µ ≥ 7 and then γ > 2x(u1) > x(u1). If m ≥ 5, as µ ≥
∆(G) + 1 ≥ m + 2 by Lemma 2.1 and µ > 8 by the first result, we get
γ > x(u1).

Now deleting the edge u1u2 and adding the edges u1wi for i = 1, 2, . . . ,
m − 1, we get a new graph, denoted by H, which holds that

xT Q(H)x − xT Q(G)x

=

m−1
∑

i=1

[x(u1) + x(wi)]
2 − [x(u1) + x(u2)]

2

= (m − 2)x(u1)
2 − x(u2)

2 + 2x(u1)[γ − x(u2)] +

m−1
∑

i=1

x(wi)
2.

As γ > x(u1) ≥ x(u2) and (m − 2)x(u1)
2 − x(u2)

2 ≥ (m − 3)x(u1)
2 > 0,

xT Q(H)x > xT Q(G)x, which implies that µ(H) > µ(G).

We now get the main result of this paper.

Theorem 2.6. Among all the connected graphs with n vertices and k cut

vertices, the maximal signless Laplacian spectral radius of graph G is attained

uniquely at the graph Gn,k, namely, a graph obtained from the complete

graph Kn−k by adding (n − k) paths of almost equal lengths to its vertices

respectively.

Proof. We have to prove that if G ∈ Gn,k, then µ(G) ≤ µ(Gn,k), with
equality only when G = Gn,k. Noting that the signless Laplacian matrix
of a connected graph is nonnegative and irreducible, so if we add an edge e

to a connected graph G, µ(G + e) > µ(G). Thus we can assume that each
cut vertex of G connects exactly two blocks and that all of these blocks are
cliques.

If G has no cut vertices, i.e., k = 0, clearly µ(G) ≤ µ(Kn) with equality
if and only if G = Kn = Gn,0. Now assume that G has cut vertices. Then G

contains exactly k + 1 blocks B1, B2, . . . , Bk+1 with cardinalities arranged
as

a1 ≥ a2 ≥ · · · ≥ ak+1 ≥ 2,
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where ai denotes the cardinality of the block Bi for i = 1, 2, . . . , k+1. Noting
that each cut vertex is counted twice in the sum

∑k+1
i=1 ai, we have

(2.3)
k+1
∑

i=1

ai − k = n.

If k = n − 2, by Lemma 2.4, G is the path Pn = Gn,n−2. If k = n − 3, also
by Lemma 2.4, G is obtained from a triangle by adding one path (possibly
being trivial) at each vertex of the triangle. Hence the the result follows by
repeated using Lemma 2.3. Thus we may assume that 1 ≤ k ≤ n − 4. We
observe that (or by Equation (2.3))

a1 = n + k − (a2 + · · · + ak+1) ≤ n + k − 2k = n − k.

By Lemma 2.1,

µ(G) ≤ (a1 + a2 − 2) + (a1 + a3 − 2)

= (a1 + a2 + a3) + a1 − 4

= n + k − (a4 + · · · + ak+1) + a1 − 4

≤ n + k − 2(k − 2) + a1 − 4

= n − k + a1.

So, if a1 ≤ n− k− 2, then µ(G) ≤ 2(n− k− 1). Note that Q(Gn,k) contains
a proper subgraph Kn−k of Gn,k. Hence µ(Gn,k) > ρ(Kn−k) = 2(n− k− 1).
Therefore, if a1 ≤ n− k − 2, then µ(G) < µ(Gn,k). So it suffices to consider
only the case a1 = n − k or a1 = n − k − 1.

If a1 = n − k, then by Equation (2.3), a2 = a3 · · · = ak+1 = 2. So G is
obtained from a complete graph Kn−k by adding one path of some length
(possibly being trivial) at each vertex of the complete graph. Now the result
follows by repeatedly using Lemma 2.3.

If a1 = n − k − 1, then also by Equation (2.3), a2 = 3, and a3 = · · · =
ak+1 = 2. We have two cases: (i) B1 and B2 are joined by a nontrival
path, and (ii) B1 and B2 share a common cut vertex. Note that here B1 =
Kn−k−1, B2 = K3, both being complete. For the case (i), by Lemma 2.1,
µ(G) ≤ 2(a1 − 1 + 1) = 2(n − k − 1) < µ(Gn,k). For the case (ii), by
Proposition 2.5, µ(G) < µ(H), where H is one obtained from Kn−k by
adding one path of some length (possibly being trivial) at each vertex and
has the same order as G. Clearly H also has k cut vertices. The result
follows by repeated using Lemma 2.3 on the graph H.
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