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Abstract
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1. Introduction

The geodetic number of a graph was introduced in [2, 5] and further stud-
ied in [1, 3]. The edge geodetic number of a graph was introduced and
studied in [7]. Although the edge geodetic number is greater than or equal
to the geodetic number for an arbitrary graph, the properties of the edge
geodetic sets and results regarding edge geodetic number are quite different
from that of geodetic concepts. These concepts have many applications in
location theory and convexity theory. There are interesting applications of
these concepts to the problem of designing the route for a shuttle and com-
munication network design. In the case of designing the route for a shuttle,
although all the vertices are covered by the shuttle when considering geode-
tic sets, some of the edges may be left out. This drawback is rectified in
the case of edge geodetic sets and hence considering edge geodetic sets is
more advantageous to the real life application of routing problem. In par-
ticular, the edge geodetic sets are more useful than geodetic sets in the case
of regulating and routing the goods vehicles to tranport the commodities to
important places.

The results in [1, 7] motivate us to investigate the behaviour of edge
geodetic sets in Cartesian product of two graphs. In section 2, we first obtain
a lower bound for the edge geodetic number of Cartesian product of two
graphs. Then we obtain a necessary and sufficient condition for an edge to
lie on a geodesic of G2H and use this to obtain an upper bound for the edge
geodetic number of G2H. We also improve the upper bound of g1(G2H)
when both G and H posses linear minimum edge geodetic sets. In section
3, we obtain the exact value of g1(G2H) for several classes of graphs. We
prove, in particular, that g1(Km2Kn) = mn−min{m,n} and g1(Pm2Kn) =
2n − 2 for m,n ≥ 2 and also that g1(T12T2) = max{g1(T1), g1(T2)} for any
two trees T1 and T2. We also prove that g1(G2H) = max{g1(G), g1(H)}
when both G and H posses the so called perfect minimum edge geodetic sets.
Further, we prove that g1(G2G) = g1(G) if G posseses an (edge, vertex)-
geodetic set of cardinality g1(G). The question of when g1(G2K2) = g1(G)
is also partially answered. From the results given in [1], we observe that the
edge geodetic number and the geodetic number have significant difference
in products of graphs.

By a graph G = (V (G), E(G)) we mean a finite undirected connected
graph without loops or multiple edges. The order and size of G are denoted
by n and m respectively. The distance d(u, v) between two vertices u and
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v in a connected graph G is the length of a shortest u − v path in G. An
u − v path of length d(u, v) is called an u − v geodesic. It is known that
this distance is a metric on the vertex set V (G). For a vertex v of G, the
eccentricity e(v) is the distance between v and a vertex farthest from v. The
minimum eccentricity among the vertices of G is the radius, rad G, and the
maximum eccentricity is its diameter, diam G of G. A geodetic set of G is a
set S ⊆ V (G) such that every vertex of G is contained in a geodesic joining
some pair of vertices in S. The geodetic number g(G) of G is the minimum
order of its geodetic sets. An edge geodetic set of G is a set S ⊆ V (G) such
that every edge of G is contained in a geodesic joining some pair of vertices
in S. The edge geodetic number g1(G) of G is the minimum order of its edge
geodetic sets. For the graph G given in Figure 1.1, S = {v1, v2, v4} is a
minimum edge geodetic set of G so that g1(G) = 3. Also S ′ = {v3, v5} is
a minimum geodetic set of G so that g(G) = 2. Thus the geodetic number
and the edge geodetic number of a graph are different.
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Figure 1.1. G

The Cartesian product of graphs G and H, denoted by G2H, has vertex set
V (G) × V (H), where two distinct vertices (x1, y1) and (x2, y2) are adjacent
if and only if either x1 = x2 and y1y2 ∈ E(H), or y1 = y2 and x1x2 ∈ E(G).
The mappings πG : (x, y) 7→ x and πH : (x, y) 7→ y from V (G2H) onto
G and H respectively are called projections. For a set S ⊆ V (G2H), we
define the G-projection on G as πG(S) = {x ∈ V (G) : (x, y) ∈ S for some
y ∈ V (H)}, and the H-projection πH(S) = {y ∈ V (H) : (x, y) ∈ S for
some x ∈ V (G)}. For any y ∈ V (H), the subgraph of G2H induced by
{(x, y) : x ∈ V (G)} is isomorphic to G. We denote it by Gy and call it the
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copy of G corresponding to y. Similarly, for any x in V (G) the subgraph of
G2H induced by {(x, y) : y ∈ V (H)} is isomorphic to H, and we denote
it by Hx and call it the copy of H corresponding to x. Given a path P in
a graph and two vertices x, y on P, we use P [x, y] to denote the portion of
P between x and y, inclusive of x and y. The geodetic number of Cartesian
product of graphs was studied in [1]. For basic graph theoretic terminology,
we refer to [4]. We also refer to [2] for results on distance in graphs and
to [6] for metric structures in Cartesian product of graphs. Throughout
the following G denotes a connected graph with at least two vertices. The
following theorems will be used in the sequel.

Theorem 1.1 [6]. Let G and H be connected graphs with (u, v) and (x, y)
arbitrary vertices of the Cartesian product G2H of G and H. Then
dG2H((u, v), (x, y)) = dG(u, x)+dH (v, y). Moreover, if P is a (u, v)− (x, y)
geodesic in G2H, then the G-projection πG(P ) is a u−x geodesic in G and
the H-projection πH(P ) is v − y geodesic in H.

Theorem 1.2 [7]. For the complete graph Kn, g1(Kn) = n.

Theorem 1.3 [7]. For any tree T, the edge geodetic number g1(T ) equals
the number of end vertices in T. In fact, the set of all end vertices of T is
the unique minimum edge geodetic set of T.

Theorem 1.4 [7]. Every edge geodetic set of a connected graph G is a
geodetic set of G.

2. Bounds for the Edge Geodetic Number

In this section we determine possible bounds for the edge geodetic number
of the Cartesian product of two connected graphs.

Lemma 2.1. Let S be an edge geodetic set of G2H. Then πG(S) and πH(S)
are edge geodetic sets of G and H respectively.

Proof. Let e = ux be an edge in G. Then ey = (u, y)(x, y) is an edge in
G2H for each vertex y in H. Since S is an edge geodetic set of G2H, ey

lies on some (g1, h1) − (g2, h2) geodesic P of G2H with (g1, h1) ∈ S and
(g2, h2) ∈ S. Let πG(P ) be the projection of P on G. Then, by Theorem 1.1,
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πG(P ) is a g1 − g2 geodesic in G with g1, g2 ∈ πG(S) and it is clear that
the edge e = ux lies on πG(P ). Hence πG(S) is an edge geodetic set of G.
Similarly, we can prove that πH(S) is an edge geodetic set of H.

Remark 2.2. The converse of Lemma 2.1 is not true. By Theorem 1.2, the
vertex sets V (G) = {x1, x2, x3} and V (H) = {y1, y2} are the edge geodetic
sets of the complete graphs G = K3 and H = K2 respectively. It is clear
that the edge (x1, y2)(x2, y2) does not lie on a geodesic joining any pair of
vertices in S, where S = {(x1, y1), (x2, y1), (x3, y2)}, and so S not an edge
geodetic set of G2H.

Theorem 2.3. Let G and H be connected graphs. Then max{g1(G), g1(H)}
≤ g1(G2H).

Proof. Let S be a minimum edge geodetic set of G2H. Then g1(G2H) =
|S|. Let πG(S) and πH(S) be the projections of S on G and H respectively.
By Lemma 2.1, πG(S) and πH(S) are edge geodetic sets of G and H respec-
tively and so g1(G) ≤ |πG(S)| and g1(H) ≤ |πH(S)|. Since |πG(S)| ≤ |S|
and |πH(S)| ≤ |S|, it follows that g1(G) ≤ |S| and g1(H) ≤ |S|. Therefore,
max{g1(G), g1(H)} ≤ g1(G2H).

Lemma 2.4 Let G and H be connected graphs with e = (x1, y)(x2, y) an
edge of G2H. Then e lies on a (g, h) − (g ′, h′) geodesic of G2H if and only
if the edge x1x2 lies on a g − g′ geodesic of G and the vertex y lies on a
h − h′ geodesic of H.

Proof. Suppose that the edge e = (x1, y)(x2, y) in G2H lies on some
(g, h)−(g′, h′) geodesic P of G2H. Let πG(P ) and πH(P ) be the projections
of P on G and H respectively. Then it follows from Theorem 1.1 that πG(P )
is a g − g′ geodesic in G containing the edge x1x2 and πH(P ) is a h − h′

geodesic in H containing the vertex y.
Conversely, suppose that the edge e1 = x1x2 of G lies on some g − g′

geodesic P of G and the vertex y of H lies on some h − h′ geodesic Q of
H. Let L1 be the copy of P in the copy Gh of G corresponding to h,L2

be the copy of Q in the copy Hx1
of H corresponding to x1, L3 be the

copy of P in the copy Gy of G corresponding to y and L4 be the copy
of Q in the copy Hg′ of H corresponding to g′. Let e = (x1, y)(x2, y).
Then e is an edge of G2H and it is clear that R : L1[(g, h), (x1 , h)] ∪
L2[(x1, h), (x1, y)]∪L3[(x1, y), (g′, y)]∪L4[(g

′, y), (g′, h′)] is a (g, h)− (g′, h′)
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path in G2H that contains the edge e. Also each of L1[(g, h), (x1 , h)],
L2[(x1, h), (x1, y)], L3[(x1, y), (g′, y)] and L4[(g

′, y), (g′, h′)] is a geodesic be-
tween the respective vertices. Now, it follows from Theorem 1.1 and the
fact that x1 lies on a g − g′ geodesic and y lies on a h− h′ geodesic that the
length of R,

l(R) = l(L1[(g, h), (x1 , h)]) + l(L2[(x1, h), (x1, y)]) + l(L3[(x1, y), (g′, y)])

+ l(L4[(g
′, y), (g′, h′)])

= dG(g, x1) + dH(h, y) + dG(x1, g
′) + dH(y, h′)

= dG(g, x1) + dG(x1, g
′) + dH(h, y) + dH(y, h′)

= dG(g, g′) + dH(h, h′)

= dG2H [(g, h), (g′ , h′)].

Thus, R is a (g, h)− (g′, h′) geodesic of G2H such that it contains the edge
e = (x1, y)(x2, y).

Theorem 2.5. Let G and H be connected graphs such that S ⊆ V (G) and
T ⊆ V (H). Then S and T are edge geodetic sets of G and H respectively if
and only if S × T is an edge geodetic set of G2H.

Proof. Suppose that S ×T is an edge geodetic set of G2H. Then S and T
are the projections of S×T on G and H respectively. Hence by Lemma 2.1, S
and T are edge geodetic sets of G and H respectively. Conversely, suppose
that S and T are edge geodetic sets of G and H respectively. Let e =
(x1, y1)(x2, y2) be any edge in G2H. Assume that e1 = x1x2 is an edge in
G. Then y1 = y2 = y (say). Since S is an edge geodetic set of G, there
exist g1, g2 ∈ S such that e1 lies on some g1 − g2 geodesic of G. Since T is
an edge geodetic set of H, by Theorem 1.4, T is also a geodetic set of H
and so there exist h1, h2 ∈ T such that the vertex y lies on some h1 − h2

geodesic of H. Hence by Lemma 2.4, the edge e = (x1, y1)(x2, y2) lies on
some (g1, h1) − (g2, h2) geodesic of G2H with (g1, h1), (g2, h2) ∈ S × T.
Thus, S × T is an edge geodetic set of G2H.

Theorem 2.6. Let G and H be connected graphs with g1(G) = p and
g1(H) = q such that p ≥ q ≥ 2. Then g1(G2H) ≤ pq − q.

Proof. Let S = {g1, g2, . . . , gp} and T = {h1, h2, . . . , hq} be edge geodetic
sets of G and H respectively. Let U = S × T −

⋃q
i=1

{(gi, hi)}. We claim
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that U is an edge geodetic set of G2H. Let e = (x, y)(x′, y′) ∈ E(G2H).
Without loss of generality we assume that e1 = xx′ ∈ E(G). Then y = y′ in
H. Since S is an edge geodetic set of G, there exist indices i and j with 1 ≤ i,
j ≤ p and i 6= j such that the edge e1 = xx′ lies on some gi − gj geodesic P
of G. By Theorem 1.4, T is a geodetic set of H. If y ∈ T, then y = hk for
some 1 ≤ k ≤ q. Since q ≥ 2, y lies on a hk −hl geodesic for any l with l 6= k
and 1 ≤ l ≤ q. If y /∈ T, then by Theorem 1.4, y lies on a hk −hl geodesic of
H with k 6= l and 1 ≤ k, l ≤ q. Let B = {(gi, hk), (gi, hl), (gj , hk), (gj , hl)}.
We consider the following cases.

Case 1. Suppose that B ⊆ U. Then (gi, hk) ∈ U and (gj , hl) ∈ U.
Since P is a gi − gj geodesic of G containing the edge e1 = xx′ and Q is a
hk − hl geodesic of H containing the vertex y, by Lemma 2.4, there exists
a (gi, hk) − (gj , hl) geodesic of G2H containing the edge e = (x, y)(x′, y′).
Hence U is an edge geodetic set of G2H.

Case 2. Suppose that B 6⊂ U.

Subcase 2.1. First suppose that (gi, hk) /∈ U. Then i = k and so i 6= l
and j 6= k. Thus (gi, hl) ∈ U and (gj , hk) ∈ U. Since the edge e1 = xx′

lies on the gi − gj geodesic P of G and the vertex y lies on the hl − hk

geodesic Q−1 of H, by Lemma 2.4, the edge e = (x, y)(x′, y′) lies on some
(gi, hl) − (gj , hk) geodesic of G2H. The other subcases are similar. Thus U
is an edge geodetic set of G2H.

Corollary 2.7. For any connected graphs G and H, max{g1(G), g1(H)} ≤
g1(G2H) ≤ g1(G)g1(H) − min{g1(G), g1(H)}.

Proof. This follows from Theorems 2.3 and 2.6.

Corollary 2.8. If G and H are connected graphs with g1(G) = g1(H) = 2,
then g1(G2H) = 2. Thus the bounds in Corollary 2.7 are sharp.

Proof. This follows from Corollary 2.7.

In the following we introduce a class of graphs G and H for which the upper
bound of the edge geodetic number g1(G2H) of G2H is further improved.
A linear geodetic set is defined in [1]. We now define linear edge geodetic set
and proceed.
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Definition 2.9. An edge geodetic set S = {x1, x2, . . . , xk} of a graph G is
called a linear edge geodetic set if for any edge e of G, there exists an index
i, 1 ≤ i < k such that the edge e lies on some xi − xi+1 geodesic of G.

If G is any graph with g1(G) = 2, then every minimum edge geodetic set is
linear. For the graph G given in Figure 2.1, S = {u, v, w, x} is the unique
linear minimum edge geodetic set. The complete graph Kn(n ≥ 3) does
not admit a linear edge geodetic set. For the double star, the set of all end
vertices is the unique linear minimum edge geodetic set.
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Figure 2.1. G

Theorem 2.10. For the complete bipartite graph Kr,s(2 ≤ r ≤ s) with
bipartition (X,Y ), |X| = r and |Y | = s, X is a linear minimum edge geodetic
set.

Proof. Let X = {x1, x2, . . . , xr} and Y = {y1, y2, . . . , ys}. Let xiyj be
any edge of Kr,s. For 1 ≤ i < r, xiyj lies on the geodesic xi, yj , xi+1. For
i = r, xiyj lies on the geodesic xr−1, yj , xr. It follows that X is a linear edge
geodetic set. Now, let T be any set of vertices of Kr,s such that |T | < |X|.
Then there exist vertices xi ∈ X and yj ∈ Y such that xi, yj /∈ T. Since
diam(Kr,s) = 2, it follows that the edge xiyj cannot lie on any geodesic
joining a pair of vertices in T. Thus T is not an edge geodetic set. Hence X
is a linear minimum edge geodetic set of Kr,s.

For any real number x, bxc denotes the greatest integer less than or equal
to x.

Theorem 2.11. Let G and H be connected graphs with g1(G) = p and
g1(H) = q. Suppose that both G and H contain linear minimum edge geodetic
sets. Then g1(G2H) ≤

⌊

pq
2

⌋

.
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Proof. Let S = {g1, g2, . . . , gp} and T = {h1, h2, . . . , hq} be linear min-
imum edge geodetic sets of G and H respectively. Let U = S × T −
⋃

i+j even{(gi, hj)}. Then |U | =
⌊

pq
2

⌋

. We claim that U is an edge geodetic
set of G2H. Let e = (x, y)(x′, y′) be an arbitrary edge of G2H. We assume
that e1 = xx′ ∈ E(G). Then y = y′. Since S is a linear edge geodetic set
of G, there exists an index i, 1 ≤ i < p such that the edge e1 = xx′ lies on
some gi − gi+1 geodesic P of G. Since T is a linear edge geodetic set of H,
it follows that there exists an index j, 1 ≤ j < q such that the vertex y lies
on some hj − hj+1 geodesic Q of H. Now we consider two cases.

Case 1. Suppose that i + j is odd. Then(i + 1) + (j + 1) is odd and so
(gi, hj) ∈ U and (gi+1, hj+1) ∈ U. By Lemma 2.4, the edge e = (x, y)(x′, y′)
lies on some (gi, hj) − (gi+1, hj+1) geodesic of G2H.

Case 2. Suppose that i + j is even. Then i + (j + 1) and (i + 1) + j
are odd and so (gi, hj+1) ∈ U and (gi+1, hj) ∈ U. Now, since the vertex y
lies on the hj − hj+1 geodesic Q of H, y also lies on the hj+1 − hj geodesic
Q−1 of H. Hence, by Lemma 2.4, the edge e = (x, y)(x′, y′) lies on some
(gi, hj+1) − (gi+1, hj) geodesic of G2H. Thus in both cases, U is an edge
geodetic set of G2H and so g1(G2H) ≤ |U | =

⌊

pq
2

⌋

.

Corollary 2.12. Let G and H be connected graphs such that G contains a
linear minimum edge geodetic set and g1(H) = 2, then g1(G2H) = g1(G).

Proof. Let g1(G) = p. Since g1(H) = 2, if follows that every minimum edge

geodetic set of H is linear and so by Theorem 2.11, g1(G2H) ≤
⌊

2p
2

⌋

= p =

g1(G). Also, by Theorem 2.3, g1(G) ≤ g1(G2H). Hence g1(G2H) = g1(G).

Corollary 2.13. For the complete bipartite graph Kr,s (2 ≤ r ≤ s),

g1(Kr,s2Kr,s) ≤
⌊

r2

2

⌋

.

Proof. This follows from Theorems 2.10 and 2.11.

3. Exact Edge Geodetic Numbers

In this section we determine the exact values of the edge geodetic numbers
of the Cartesian product for several classes of graphs. We also give several
classes of graphs G and H with g1(G2H) = g1(G). It is to be noted that the
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graphs given in Corollary 2.12 belong to this class. Further, we determine
a necessary condition on G for which g1(G2K2) = g1(G).

Observation 3.1. Let G be a connected graph of diameter 2. Then any
edge in G has at least one end in every edge geodetic set of G.

Theorem 3.2. For integers m ≥ n ≥ 2, g1(Km2Kn) = mn − n.

Proof. It follows from Theorems 1.2 and 2.6 that g1(Km2Kn) ≤ mn−n.
Now, we prove that g1(Km2Kn) ≥ mn − n. Let V (Km) = {x1, x2, . . . , xm}
and V (Kn) = {y1, y2, . . . , yn}. Let Gi be the copy of Km corresponding
to yi(1 ≤ i ≤ n) on Km2Kn. Let S be an edge geodetic set of Km2Kn of
minimum cardinality. Then g1(Km2Kn) = |S|. We claim that |S∩V (Gi)| ≥
m − 1 for all i = 1, 2, . . . , n. Suppose that |S ∩ V (Gi)| < m − 1 for some
i (1 ≤ i ≤ n). Then we can choose vertices u = (xj , yi) and v = (xk, yi)
in V (Gi) with 1 ≤ j 6= k ≤ m such that u, v /∈ S. Since Gi

∼= Km, it
follows that uv is an edge of Km2Kn and since diameter of Km2Kn is 2,
by Observation 3.1, uv has at least one end in S, which is a contradiction to
our choice. Thus |S ∩ V (Gi)| ≥ m − 1 for all i = 1, 2, . . . , n. It follows that
|S| ≥ n(m − 1) = mn − n. Thus, g1(Km2Kn) = mn − n.

Observation 3.3. Let T be a nontrivial tree with k end vertices and n ≥ 2
be any integer. Let Gv be the copy of Kn on T2Kn corresponding to an end
vertex v of T. Then, every edge e of Gv is either an initial edge or terminal
edge of any geodesic containing e.

Theorem 3.4. Let T be a nontrivial tree with k end vertices and n ≥ 2 be
any integer. Then

(i) g1(T2Kn) = kn − k for k ≤ n and

(ii) kn − k ≤ g1(T2Kn) ≤ kn − n for k > n.

Proof. Let V (Kn) = {x1, x2, . . . , xn}. First we prove that g1(T2Kn) ≥
kn − k. Let S be a minimum edge geodetic set of T2Kn. Let Gv be the
copy of Kn corresponding to an end vertex v of T . Now, we claim that
|S ∩ V (Gv)| ≥ n − 1. If |S ∩ V (Gv)| < n − 1, then there exist at least
two vertices say (v, x1), (v, x2) not in S. Since Gv

∼= Kn, it follows that
(v, x1)(v, x2) is an edge of Gv . Since S is an edge geodetic set of T2Kn,
it follows from Observation 3.3 that (v, x1) ∈ S or (v, x2) ∈ S, which is a
contradiction. Thus |S ∩ V (Gv)| ≥ n − 1. Since T has k end vertices, it
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follows that |S| ≥ k(n − 1) = kn − k. Now, by Theorem 1.3, g1(T ) = k
and by Theorem 1.2, g1(Kn) = n and it follows from Theorem 2.6 that
g1(T2Kn) ≤ kn − min{k, n}. Now the result follows.

Corollary 3.5. For integers m,n ≥ 2, g1(Pm2Kn) = 2n − 2.

Proof. This follows from Theorems 1.3 and 3.4.

Let S and T be disjoint nonempty subsets of V (G). Often, we use the ter-
minology that a vertex v (or an edge e) of G lies on an S geodesic of G if v
(edge e) lies on a x − y geodesic of G with x, y ∈ S and that v (edge e) lies
on an S − T geodesic of G if v (edge e) lies on a x − y geodesic of G with
x ∈ S and y ∈ T.

Theorem 3.6. Let G be a connected graph. If G has a minimum edge
geodetic set S, which can be partitioned into pairwise disjoint non-empty
subsets S1, S2, . . . , Sn(n ≥ 2) such that every edge of G lies on an Si − Sj

geodesic for every i, j with i 6= j, then g1(G2H) = g1(G) for every connected
graph H with g1(H) = n.

Proof. Let T = {h1, h2, . . . , hn} be a minimum edge geodetic set of H. Let
Wi = {(si, hi) : si ∈ Si} for 1 ≤ i ≤ n. Then |Wi| = |Si| for i = 1, 2, . . . , n.
Let W =

⋃n
i=1

Wi. Then |W | =
∑n

i=1
|Wi| =

∑n
i=1

|Si| = |S| = g1(G). We
claim that W is an edge geodetic set of G2H. Let e = (x1, y1)(x2, y2) be
any edge of G2H.

Case 1. Suppose that x1x2 ∈ E(G). Then y1 = y2. Since T is an edge
geodetic set of H, it follows that y1 lies on some hk − hl geodesic of H with
1 ≤ k 6= l ≤ n. By hypothesis, x1x2 lies on some sk − sl geodesic of G with
sk ∈ Sk and sl ∈ Sl. Hence by Lemma 2.4, the edge e = (x1, y1)(x2, y2)
lies on some (sk, hk)− (sl, hl) geodesic of G2H, where (sk, hk), (sl, hl) ∈ W .
Thus, W is an edge geodetic set of G2H.

Case 2. Suppose that y1y2 ∈ E(H). Then x1 = x2. Since T is an edge
geodetic set of H, the edge y1y2 lies on some hk − hl geodesic of H with
1 ≤ k 6= l ≤ n. Now, it follows from the hypothesis that the vertex x1 lies on
some sk−sl geodesic of G with sk ∈ Sk and sl ∈ Sl. Hence by Lemma 2.4, the
edge e = (x1, y1)(x2, y2) lies on a (sk, hk) − (sl, hl) geodesic of G2H, where
(sk, hk),(sl, hl) ∈ W. Thus W is an edge geodetic set of G2H. Therefore,
g1(G2H) ≤ |W | = g1(G). Now the result follows from Theorem 2.3.
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If a connected graph G has a minimum edge geodetic set S with a vertex
x in S such that every edge of G lies on a x − w geodesic of G for some
w ∈ S, then it follows from Theorem 3.6 that g1(G2H) = g1(G) for any
connected graph H with g1(H) = 2. Now, for the complete bipartite graph
Kr,s(2 ≤ r ≤ s), it follows from Theorem 2.10 that X = {v1, v2, . . . , vr} is
a minimum edge geodetic set. Letting S1 = {v1} and S2 = {v2, v3, . . . , vr},
we see that every edge of Kr,s lies on a S1−S2 geodesic and hence it follows
from Theorems 1.3 and 3.6 that g1(Kr,s2P ) = r for any path P .

Definition 3.7. An edge geodetic set S of a graph G is called a perfect edge
geodetic set if for every edge e of G, there exists a vertex x ∈ S such that
the edge e lies on a x − w geodesic of G for every w ∈ S, where w 6= x.

If G is graph with g1(G) = 2, then every minimum edge geodetic set is
perfect. For the graph G given in Figure 3.1, S = {a, d, e} is an edge
geodetic set of G, which is perfect. For the complete graph Kn(n ≥ 3), the
unique edge geodetic set V (Kn) is not perfect. For the graph G given in
the Figure 2.1, S = {u, v, w, x} is the unique edge geodetic set, which is not
perfect.
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Figure 3.1. G

Theorem 3.8. For connected graphs G and H, each having a perfect mini-
mum edge geodetic set, g1(G2H) = max{g1(G), g1(H)}.

Proof. Let S = {g1, g2, . . . , gp} and T = {h1, h2, . . . , hq} be perfect min-
imum edge geodetic sets of G and H respectively. Then g1(G) = p and
g1(H) = q.

Assume without loss of generality that p ≥ q. Let U = {(g1, h1), (g2, h2),
. . . , (gq, hq), (gq+1, hq), . . . , (gp, hq)}. Then |U | = p. We claim that U is an
edge geodetic set of G2H. Let e = (x1, y1)(x2, y2) be an edge of G2H.
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We assume that e1 = x1x2 is an edge in G. Then y1 = y2 = y (say). Since S
is a perfect edge geodetic set of G, there exists i0 ∈ {1, 2, . . . , p} such that
the edge e1 lies on some gi0 −gs geodesic of G for all s 6= i0, s ∈ {1, 2, . . . , p}.
Also since T is a perfect edge geodetic set of H, it follows that there exists
j0 ∈ {1, 2, . . . , q} such that the vertex y lies on a hj0 − ht geodesic of H for
all t 6= j0, t ∈ {1, 2, . . . , q}. Hence by Lemma 2.4, the edge e lies on some
(gi0 , hj0) − (gs, ht) geodesic of G2H for all s 6= i0 and t 6= j0.

Case 1. Suppose that i0 = j0. Now, choose k ∈ {1, 2, 3, . . . , q} different
from i0. Then k 6= j0 and both (gi0 , hj0) and (gk, hk) belong to U. Thus e
lies on a (gi0 , hj0) − (gk, hk) geodesic joining a pair of vertices of U and so
U is an edge geodetic set of G2H.

Case 2. Suppose that i0 6= j0. We consider two subcases.

Subcase 2.1. Suppose that 1 ≤ i0 ≤ q. Then 1 ≤ i0, j0 ≤ q and i0 6= j0.
Since i0 6= j0, the edge e1 lies on a gi0 − gj0 geodesic P of G. Also since
1 ≤ i0 ≤ q, i0 6= j0, the vertex y lies on a hj0 − hi0 geodesic Q of H.
Thus, y lies on the hi0 − hj0 geodesic Q−1 of H. By Lemma 2.4, the edge
e = (x1, y1)(x2, y2) lies on some (gi0 , hi0)− (gj0 , hj0) geodesic of G2H. Since
(gi0 , hi0), (gj0 , hj0) ∈ U, it follows that U is an edge geodetic set of G2H.

Subcase 2.2. Suppose that q + 1 ≤ i0 ≤ p. Then 1 ≤ j0 ≤ q < q + 1 ≤
i0 ≤ p. Suppose that j0 6= q. Then the vertex y lies on a hj0 −hq geodesic Q
of H. Thus y lies on the hq − hj0 geodesic Q−1 of H. Also since i0 6= j0, the
edge e1 lies on a gi0 − gj0 geodesic P of G. Thus, by Lemma 2.4, the edge
e = (x1, y1)(x2, y2) lies on some (gi0 , hq)− (gj0 , hj0) geodesic of G2H. Since
(gi0 , hq), (gjo

, hjo
) ∈ U, it follows that U is an edge geodetic set of G2H.

Suppose that j0 = q. Since q ≥ 2, the vertex y lies on a hq−h1 geodesic Q of
H. Also since i0 ≥ q + 1 ≥ 3, the edge e1 lies on a gi0 − g1 geodesic P of G.
By Lemma 2.4, the edge e = (x1, y1)(x2, y2) lies on some (gi0 , hq) − (g1, h1)
geodesic of G2H. Since (gi0 , hq), (g1, h1) ∈ U, it follows that U is an edge
geodetic set of G2H. Hence g1(G2H) ≤ |U | = p = g1(G) and it follows
from Theorem 2.3 that g1(G2H) = g1(G) = max{g1(G), g1(H)}.

Corollary 3.9. For integers r, s ≥ 1, g1(K1,r2K1,s) = max{r, s}.

Proof. The respective end vertices of K1,r and K1,s are the unique min-
imum perfect edge geodetic sets of K1,r and K1,s. Now the result follows
from Theorem 3.8.
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In view of Theorem 2.3, a natural question that arises is of when g1(G2G) =
g1(G). In the following we introduce a special class of graphs G and prove
that g1(G2G) = g1(G).

Definition 3.10. For a connected graph G, a set S ⊆ V (G) is called a
(edge, vertex)- geodetic set if for every pair of an edge e and a vertex v of
G, there exist x and y in S such that e and v lie on geodesics between x
and y.

Note 3.11. The edge e and the vertex v in Definition 3.10 need not lie on
a single x− y geodesic. If S is an (edge, vertex)-geodetic set, it follows that
S is an edge geodetic set and hence a geodetic set too.

If G is a graph with g1(G) = 2, then any minimum edge geodetic set is a
(edge, vertex)-geodetic set of G. The set of all end vertices of a tree T is
a (edge, vertex)-geodetic set of T. For n ≥ 3, the complete graph Kn has
no (edge, vertex)-geodetic set. Given an integer k ≥ 2, there exists a graph
G with an (edge, vertex)-geodetic set of cardinality k. (The star G = K1,k

works).

Theorem 3.12. If a connected graph G has an (edge, vertex )-geodetic set
S of cardinality g1(G), then g1(G2G) = g1(G).

Proof. Let S = {g1, g2, . . . , gp} be an (edge,vertex)-geodetic set of G of
cardinality g1(G) = p. Let T = {(g1, g1), (g2, g2), . . . , (gp, gp)}. We claim that
T is an edge geodetic set of G2G. Let e = (x1, y1)(x2, y2) be an edge in G2G.
Assume that e1 = x1x2 ∈ E(G). Then y1 = y2 = y (say). Since S is an (edge,
vertex)-geodetic set, there exist gi and gj in S such that the edge e1 lies on
some gi − gj geodesic P of G and the vertex y lies on some gi − gj geodesic
Q of G. Therefore, by Lemma 2.4, the edge e = (x1, y1)(x2, y2) lies on some
(gi, gi) − (gj , gj) geodesic of G2G. Thus, T is an edge geodetic set of G2G
and so g1(G2G) ≤ |T | = g1(G). Also by Theorem 2.3, g1(G) ≤ g1(G2G)
and so g1(G2G) = g1(G).

Corollary 3.13. For any tree T, g1(T2T ) = g1(T ).

Proof. Since the set of all end vertices of T is an (edge, vertex)-geodetic,
the result follows from Theorems 1.3 and 3.12.

Trees are yet another class of graphs that achieve the lower bound of Theo-
rem 2.3. For the proof, we use Theorem 1.3 and the simple properties given
in the following Lemma.
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Lemma 3.14. Let T be a tree and L be the set of all end vertices of T.
Then the following properties hold:

(P1) If x ∈ L and v ∈ V (T ), then there exists y ∈ L with y 6= x such that v
lies on the x − y geodesic of T.

(P2) If x, y ∈ L and if the edge e lies on the x − y geodesic of T, then for
any z ∈ L either e lies on the x− z geodesic of T or e lies on the y− z
geodesic of T.

(P3) If x, y ∈ L and if the vertex v lies on the x− y geodesic of T, then for
any z ∈ L either v lies on the x−z geodesic of T or v lies on the y−z
geodesic of T.

Proof. (P1) is obvious. Since T − e is disconnected and since e lies on
the x− y geodesic of T, x and y lie on different components of T − e. Let C
be the component of T − e that contains z. Then it is clear that not both
x and y are in C. If x /∈ C, then e lies on the x − z geodesic of T, and
otherwise, e lies on the y − z geodesic of T. Thus (P2) is proved and (P3)
follows from (P2).

Theorem 3.15. For any trees T1 and T2, g1(T12T2) = max{g1(T1), g1(T2)}.

Proof. Let L1 and L2 be the set of all end vertices of T1 and T2 respectively.
Then by Theorem 1.3, g1(T1) = |L1| and g1(T2) = |L2|. Let p = g1(T1) ≥
g1(T2) and let f : L1 → L2 be an arbitrary onto mapping. Let L1 =
{x1, x2, . . . , xp}. We claim that S = {(xi, f(xi)) : i = 1, 2, . . . , p} is an
edge geodetic set of T12T2. Let e = (g1, h1)(g2, h2) be any edge in T12T2.
Assume that e1 = g1g2 ∈ E(T1). Then h1 = h2 = h (say). Since L1 is
an edge geodetic set of T1, e1 lies on the xi − xj geodesic of T1 for some
xi, xj ∈ L1. By Theorem 1.4, L2 is a geodetic set T2. Now, if h lies on
the f(xi) − f(xj) geodesic of T2, then by Lemma 2.4, the edge e lies on
a (xi, f(xi)) − (xj , f(xj)) geodesic of T12T2. Hence S is an edge geodetic
set of T12T2. If h does not lie on the f(xi) − f(xj) geodesic of T2, then,
by (P1) of Lemma 3.14, there exists y ∈ L2 (different from f(xi)) such
that h lies on the f(xi) − y geodesic of T2. Also, since h does not lie on
the f(xi) − f(xj) geodesic of T2, by (P3) of Lemma 3.14, h lies on the
f(xj) − y geodesic of T2. Take any xk ∈ f−1(y)(1 ≤ k ≤ p). Since the
edge e1 lies on the xi − xj geodesic of T1, by (P2) of Lemma 3.14, either
e1 lies on the xi − xk geodesic of T1 or e1 lies on the xj − xk geodesic of
T1. Since y = f(xk), it follows now from Lemma 2.4 that the edge e lies on
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either (xi, f(xi))− (xk, f(xk)) geodesic of T12T2 or (xj , f(xj))− (xk, f(xk))
geodesic of T12T2. Since (xi, f(xi)), (xj , f(xj)), (xk, f(xk)) ∈ S, it follows
that S is an edge geodetic set of T12T2 so that g1(T12T2) ≤ p = g1(T1).
Now, it follows from Theorem 2.3 that g1(T12T2) = max{g1(T1), g1(T2)}.

Now, we proceed to investigate graphs G for which g1(G2K2) = g1(G). For
this we introduce a class of graphs called superior edge geodetic graphs.

Definition 3.16. Let G be a connected graph. An edge geodetic set S ⊆
V (G) is said to be a superior edge geodetic set of G if S can be partitioned
into two disjoint non-empty subsets S1 and S2 such that every edge of G
either lies on a S1 − S2 geodesic or it lies on both an S1 geodesic and an S2

geodesic of G. A graph G is called a superior edge geodetic graph if it has a
superior minimum edge geodetic set.

Graphs G with g1(G) = 2 and nontrivial trees are obvious instances of
such graphs. Now, for the graph G in Figure 3.2, S = {v1, v5, v6, v10} is
a minimum edge geodetic set. For the partition S1 = {v1, v10} and S2 =
{v5, v6} of S, all the edges except v3v8 lie on S1 − S2 geodesic and the edge
v3v8 lies on both an S1-geodesic and an S2-geodesic so that S is a superior
minimum edge geodetic set. Hence the graph in Figure 3.2 is a superior
edge geodetic graph.
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Proposition 3.17. The complete graph Kn(n ≥ 3) is not a superior edge
geodetic graph.

Proof. By Theorem 1.2, the set S of all vertices of Kn is the unique
minimum edge geodetic set of Kn. Let S = S1 ∪ S2 be any partition of S.
Since n ≥ 3, it is clear that |S1| ≥ 2 or |S2| ≥ 2. Assume without loss of
generality that |S1| ≥ 2. Now, the induced subgraph 〈S1〉 is complete and
has at least one edge e. This edge e does not lie on any S1 − S2 geodesic of
Kn. Also e does not lie on any S2 geodetic of Kn. Hence S is not a superior
edge geodetic set of Kn and so Kn(n ≥ 3) is not a superior edge geodetic
graph.

We make use of the following simple observation to prove Theorem 3.19.

Observation 3.18. Let G be any connected graph and let V (K2) = {v1, v2}.
Let G1 and G2 be the copies of G in G2K2 corresponding to the vertices v1

and v2 of K2 respectively. Then every u − v geodesic in G2K2, where both
u, v ∈ V (Gi) for either i = 1 or i = 2 lies completely in Gi.

Theorem 3.19. If G is a connected graph such that g1(G2K2) = g1(G),
then G is a superior edge geodetic graph.

Proof. Let V (K2) = {v1, v2}. Let G1 and G2 be the copies of G in G2K2

corresponding to the vertices v1 and v2 of K2 respectively. Let T be a
minimum edge geodetic set of G2K2. Then |T | = g1(G2K2). Let Ti =
T ∩ V (Gi) for i = 1, 2. Since T is an edge geodetic set of G2K2, it follows
from Observation 3.18 that Ti 6= ∅ for i = 1, 2. Also, T = T1 ∪ T2 and
T1 ∩ T2 = ∅. Let S = πG(T ) and Si = πG(Ti) for i = 1, 2. Since Ti 6= ∅, it
is clear that Si 6= ∅ for i = 1, 2. We prove that S is a superior minimum
edge geodetic set of G2K2. Now, x ∈ S iff (x, vi) ∈ T for some i ∈ {1, 2} iff
(x, vi) ∈ T1 ∪ T2 for some i ∈ {1, 2} iff x ∈ S1 ∪ S2. Thus S = S1 ∪ S2. We
now show that S1 ∩ S2 = ∅. Since S = πG(T ), we have |S| ≤ |T |...(1) and
by Lemma 2.1, S is an edge geodetic set of G so that g1(G) ≤ |S|...(2). By
hypothesis, g1(G2K2) = g1(G)...(3). Hence it follows from (1), (2) and (3)
that |S| ≤ |T | = g1(G2K2) = g1(G) ≤ |S|. Thus |S| = |T | = g1(G) and this
shows that S is a minimum edge geodetic set of G. Since Si = πG(Ti) for
i = 1, 2 and T1 ∩ T2 = ∅, it follows that |S| = |T | = |T1| + |T2| ≥ |S1| + |S2|.
Also, since S = S1 ∪ S2, we have |S| ≤ |S1| + |S2| and so |S| = |S1| + |S2|.
Hence S1∩S2 = ∅. Therefore, S1 and S2 form a partition of S. Now, we prove
that the minimum edge geodetic set S is superior. Let e = uv ∈ E(G) be
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arbitrary. If e does not lie on any S1 − S2 geodesic of G, then, since S is an
edge geodetic set of G, we may assume without loss of generality that e lies on
a S2 geodesic of G. Now, e1 = (u, v1)(v, v1) is an edge of G1 and so the edge
e1 lies on some g′ − h′ geodesic of G2K2, where g′, h′ ∈ T. Hence it follows
from Observation 3.18 that either g ′ ∈ T1 or h′ ∈ T1. We claim that both
g′ and h′ belong to T1. Suppose that g′ ∈ T1 and h′ ∈ T2. Then g′ = (g, v1)
and h′ = (h, v2) for some g, h ∈ V (G). Hence it follows that g ∈ S1 and
h ∈ S2. Since the edge e1 lies on the (g, v1) − (h, v2) geodesic of G2K2, by
Lemma 2.4, the edge e = uv lies on some g − h geodesic of G, where g ∈ S1

and h ∈ S2, which is a contradiction to the assumption that e does not lie
on any S1 − S2 geodesic of G. Thus, both g′ and h′ belongs to T1. Hence
g′ = (g, v1) and h′ = (h, v1) for some g, h ∈ S1. Thus e1 = (u, v1)(v, v1) lies
on a (g, v1) − (h, v1) geodesic of G2K2, where g, h ∈ S1. Hence by Lemma
2.4, the edge e = uv lies on some g −h geodesic of G, where g, h ∈ S1. Thus
e lies on a S1 geodesic of G so that S is a superior minimum edge geodetic
set of G.

We leave the following problem as an open question.

Problem 3.20. Charactrize graphs G for which g1(G2K2) = g1(G).
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