FRACTIONAL GLOBAL DOMINATION IN GRAPHS

Subramanian Arumugam, Kalimuthu Karuppasamy
Core Group Research Facility (CGRF)
National Centre for Advanced Research in Discrete Mathematics
(n-CARDMATH), Kalasalingam University
Anand Nagar, Krishnankoil-626 190, India
e-mail: s.arumugam.klu@gmail.com
k_karuppasamy@yahoo.co.in

AND
Ismail Sahul Hamid
Department of Mathematics
The Madura College, Madurai-625 011, India
e-mail: sahulmat@yahoo.co.in

Abstract

Let $G=(V, E)$ be a graph. A function $g: V \rightarrow[0,1]$ is called a global dominating function $(G D F)$ of G, if for every $v \in V, g(N[v])=$ $\sum_{u \in N[v]} g(u) \geq 1$ and $g(\overline{N(v)})=\sum_{u \notin N(v)} g(u) \geq 1$. A $G D F g$ of a graph G is called minimal ($M G D F$) if for all functions $f: V \rightarrow[0,1]$ such that $f \leq g$ and $f(v) \neq g(v)$ for at least one $v \in V, f$ is not a $G D F$. The fractional global domination number $\gamma_{f g}(G)$ is defined as follows: $\gamma_{f g}(G)=\min \{|g|: g$ is an MGDF of $G\}$ where $|g|=\sum_{v \in V} g(v)$. In this paper we initiate a study of this parameter. Keywords: domination, global domination, dominating function, global dominating function, fractional global domination number.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

By a graph $G=(V, E)$, we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. For basic terminology in graphs we refer to Chartrand and Lesniak [3].

The study of domination and related subset problems such as independence, covering and matching is one of the fastest growing areas within graph theory. A comprehensive treatment of fundamentals of domination in graphs is given in the book by Haynes et al. [6]. Survey of several advanced topics on domination are given in the book edited by Haynes et al. [7].

Let $G=(V, E)$ be a graph. A subset D of V is called a dominating set of G if every vertex in $V-D$ is adjacent to at least one vertex in D. A dominating set D is called a minimal dominating set if no proper subset of D is a dominating set of G. The minimum (maximum) cardinality of a minimal dominating set of G is called the domination number (upper domination number) of G and is denoted by $\gamma(G)(\Gamma(G))$.

The open neighborhood $N(v)$ and the closed neighborhood $N[v]$ of a vertex $v \in V$ are defined by $N(v)=\{u \in V: u v \in E\}$ and $N[v]=\{v\} \cup N(v)$.

Sampathkumar [9] introduced the concept of global domination.
A dominating set S of $G=(V, E)$ is a global dominating set of G if S is also a dominating set of the complement \bar{G} of G. The minimum cardinality of a global dominating set of G is called the global domination number of G and is denoted by $\gamma_{g}(G)$ or simply γ_{g}. A global dominating set of cardinality γ_{g} is called a γ_{g}-set.

Brigham and Carrington has given a survey of results on global domination in Chapter 11 of Haynes et al. [7].

A recent trend in graph theory is to generalize integer-valued graph theoretic concepts in such a way that they take on rational values. A detailed study of fractional graph theory and fractionalization of various graph parameters are given in Scheinerman and Ullman [10].

Hedetniemi et al. [8] introduced the concept of fractional domination in graphs.

Let $G=(V, E)$ be a graph. Let $f: V \rightarrow R$ be any function. For any subset S of V, let $f(S)=\sum_{v \in S} f(v)$. The weight of f is defined by $|f|=f(V)=\sum_{v \in V} f(v)$.

A function $h: V \rightarrow[0,1]$ is called a dominating function of the graph $G=(V, E)$ if $h(N[v])=\sum_{u \in N[v]} h(u) \geq 1$ for all $v \in V$.

A dominating function h of a graph G is minimal if for all functions $f: V \rightarrow$ $[0,1]$ such that $f \leq h$ and $f(v) \neq h(v)$ for at least one $v \in V, f$ is not a dominating function of G.

The fractional domination number $\gamma_{f}(G)$ and the upper fractional domination number $\Gamma_{f}(G)$ are defined as follows:
$\gamma_{f}(G)=\min \{|h|: h$ is a dominating function of $G\}$ and $\Gamma_{f}(G)=\max \{|h|: h$ is a minimal dominating function of $G\}$.

For a survey of various domination related functions we refer to Chapters $1,2,3$ and 5 of Haynes et al. [7]. In this paper we introduce the concept of global dominating function and fractional global domination number.

We need the following definition and theorems.
Definition 1.1. The corona of two graphs G_{1} and G_{2} is the graph $G=$ $G_{1} \circ G_{2}$ formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} where the $i^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Theorem 1.2 [7]. For any tree $T, \gamma_{f}(T)=\gamma(T)$.
Theorem 1.3 [7]. If G is a triangle-free graph, then $\gamma \leq \gamma_{g} \leq \gamma+1$.
Theorem 1.4 [1]. Let T be a tree. Then $\gamma_{g}(T)=\gamma+1$ if and and only if either T is a star or T is a tree of diameter 4 which is constructed from two or more stars, each having at least two pendant vertices, by connecting the centres of these stars to a common vertex.

2. Global Dominating Function

Definition 2.1. A function $g: V \rightarrow[0,1]$ is called a global dominating function $(G D F)$ of a graph $G=(V, E)$, if for every $v \in V, g(N[v])=$ $\sum_{u \in N[v]} g(u) \geq 1$ and $g(\overline{N(v)})=\sum_{u \notin N(v)} g(u) \geq 1$. A GDF g of a graph G is called minimal (MGDF) if for all functions $f: V \rightarrow[0,1]$ such that $f \leq g$ and $f(v) \neq g(v)$ for at least one $v \in V, f$ is not a GDF. The fractional global domination number $\gamma_{f g}(G)$ is defined as follows: $\gamma_{f g}(G)=\min \{|g|$: g is an MGDF of $G\}$.

Remark 2.2. The fractional global domination number is the optimal solution of the following linear programming problem (LPP).

$$
\begin{aligned}
& \text { Minimize } z=\sum_{i=1}^{n} f\left(v_{i}\right) \\
& \text { Subject to } \sum_{u \in N[v]} f(u) \geq 1 \text { for all } v \in V, \\
& \\
& \sum_{u \notin N(v)} f(u) \geq 1 \text { for all } v \in V \text { and } \\
& \\
& 0 \leq f(v) \leq 1 \text { for all } v \in V .
\end{aligned}
$$

Remark 2.3. We observe that if u is an isolated vertex of G or \bar{G} then $g(u)=1$ for every MGDF g of G. Hence it follows that $\gamma_{f g}\left(K_{n}\right)=n$.

Remark 2.4. Since every $G D F$ of G is a dominating function of G and the characteristic function of a γ_{g}-set is a $G D F$ of G, we have $\gamma_{f} \leq \gamma_{f g} \leq \gamma_{g}$. These inequalities can be strict. For example, for the graph G given in Figure 2.1, it can be easily verified that $\gamma_{f}(G)=2, \gamma_{f g}(G)=2.5$ and $\gamma_{g}(G)=3$.

Figure 2.1
Further, for the corona $G \circ K_{1}$ of any graph G and for the cycle $C_{3 n}$, we have $\gamma_{f}=\gamma_{f g}=\gamma_{g}$.

Theorem 2.5. For any graph G of order $n, 1 \leq \gamma_{f g}(G) \leq n$. Further $\gamma_{f g}(G)=n$ if and only if $G=K_{n}$ or $\overline{K_{n}}$.

Proof. The inequalities are trivial. Suppose $\gamma_{f g}(G)=1$. Let g be a minimum $G D F$ of G and let $v \in V(G)$. Then $\sum_{u \in N[v]} g(u)=1$ and $\sum_{u \notin N(v)} g(u)=1$. Summing up these inequalities, we have $|g|+g(v)=2$. Hence $g(v)=1$ and consequently $G=K_{1}$. Now, suppose $n \geq 2, \gamma_{f g}(G)=n$, and $G \neq \overline{K_{n}}$. If there exist two non-isolated vertices u and v in G which are not adjacent in G, then $g: V \rightarrow[0,1]$ defined by $g(u)=0$ and $g(w)=1$ for all $w \neq u$, is a $G D F$ and hence $\gamma_{f g}(G) \leq|g|=n-1$, which is a contradiction. Hence $G=K_{n}$. The Converse is obvious.

We now proceed to determine $\gamma_{f g}$ for some standard graphs.
Theorem 2.6. For the complete k-partite graph $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$, we have $\gamma_{f g}(G)=k$.

Proof. Let $X_{1}, X_{2}, \ldots, X_{k}$ be the k-partition of G and let $X_{i}=\left\{x_{i j}: 1 \leq\right.$ $\left.j \leq n_{i}\right\}$. Then $g: V \rightarrow[0,1]$ defined by

$$
g\left(x_{i j}\right)= \begin{cases}1 & \text { if } j=1 \\ 0 & \text { otherwise }\end{cases}
$$

for all $i=1,2, \ldots, k$, is a $G D F$ and hence $\gamma_{f g}(G) \leq|g|=k$.
Now, let g be any $G D F$ of G. Since $\bar{G}=K_{n_{1}} \cup K_{n_{2}} \cup \cdots \cup K_{n_{k}}$, it follows that $|g| \geq k$ and hence $\gamma_{f g}(G) \geq k$. Thus $\gamma_{f g}(G)=k$.

Theorem 2.7. For any r-regular graph G of order $n, \gamma_{f g}(G)=\frac{n}{k+1}$, where $k=\min \{r, n-r-1\}$.

Proof. The constant function $g: V \rightarrow[0,1]$ defined by $g(v)=\frac{1}{k+1}$ is a $G D F$ of G and hence $\gamma_{f g}(G) \leq|g|=\frac{n}{k+1}$.

Now, let g be a $G D F$ of G. Then for every $v \in V$, we have

$$
\begin{equation*}
\sum_{u \in N[v]} g(u) \geq 1 \text { and } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{u \notin N(v)} g(u) \geq 1 . \tag{2}
\end{equation*}
$$

Adding the n inequalities in (1), we get $(r+1)|g| \geq n$ and hence $|g| \geq \frac{n}{r+1}$. Similarly $|g| \geq \frac{n}{(n-r-1)+1}$, so that $|g| \geq \frac{n}{k+1}$, where $k=\min \{r, n-r-1\}$. Thus $\gamma_{f g}(G) \geq \frac{n}{k+1}$ and hence $\gamma_{f g}(G)=\frac{n}{k+1}$.

Corollary 2.8. For the cycle C_{n} on n-vertices, we have

$$
\gamma_{f g}\left(C_{n}\right)= \begin{cases}3 & \text { if } n=3, \\ 2 & \text { if } n=4, \\ \frac{n}{3} & \text { if } n \geq 5 .\end{cases}
$$

Theorem 2.9. For the wheel $W_{n}=K_{1}+C_{n-1}$, we have $\gamma_{f g}\left(W_{n}\right)=\frac{2 n-4}{n-3}$.

Proof. Let $V\left(W_{n}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and $E\left(W_{n}\right)=\left\{v_{0} v_{i}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{v_{i} v_{i+1}: 1 \leq i \leq n-2\right\} \cup\left\{v_{n-1} v_{1}\right\}$. Then $g: V \rightarrow[0,1]$ defined by $g\left(v_{0}\right)=1$ and $g\left(v_{i}\right)=\frac{1}{n-3}$ for $i=1,2, \ldots, n-1$, is a $G D F$ of W_{n}. Hence $\gamma_{f g}\left(W_{n}\right) \leq|g|=\frac{2 n-4}{n-3}$. Now, let g be any $G D F$ of W_{n}. Since v_{0} is an isolated vertex in \bar{W}_{n}, we have $g\left(v_{0}\right)=1$. Also $\sum_{u \notin N\left(v_{i}\right)} g(u) \geq 1,1 \leq i \leq n-1$. Adding these $(n-1)$ inequalities, we get $(n-3) \sum_{i=1}^{n-1} g\left(v_{i}\right) \geq(n-1)$. Hence $(n-3)[|g|-1] \geq(n-1)$, so that $|g| \geq \frac{2 n-4}{n-3}$. Thus $\gamma_{f g}\left(W_{n}\right) \geq \frac{2 n-4}{n-3}$ and hence $\gamma_{f g}\left(W_{n}\right)=\frac{2 n-4}{n-3}$.

Theorem 2.10. For any graph G on n vertices $\gamma_{f g}\left(G \circ K_{1}\right)=n$.
Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $u_{1}, u_{2}, \ldots, u_{n}$ be the pendant vertices of $G \circ K_{1}$ adjacent to $v_{1}, v_{2}, \ldots, v_{n}$, respectively. Then $g: V(G \circ$ $\left.K_{1}\right) \rightarrow[0,1]$ defined by $g\left(v_{i}\right)=1$ and $g\left(u_{i}\right)=0,1 \leq i \leq n$, is a $G D F$ of $G \circ K_{1}$ and hence $\gamma_{f g}\left(G \circ K_{1}\right) \leq|g|=n$. Also if g is any $G D F$ of $G \circ K_{1}$, we have $g\left(u_{i}\right)+g\left(v_{i}\right) \geq 1$ for all $i=1,2, \ldots, n$. Hence $|g| \geq n$ so that $\gamma_{f g}\left(G \circ K_{1}\right) \geq n$. Thus $\gamma_{f g}\left(G \circ K_{1}\right)=n$.

Theorem 2.11. For any bipartite graph G, we have $\gamma_{f} \leq \gamma_{f g} \leq \gamma_{f}+1$.
Proof. Let (X, Y) be the bipartition of G with $|X| \leq|Y|$. Obviously $\gamma_{f} \leq \gamma_{f g}$. Now let h be a γ_{f}-function of G. Suppose $\sum_{u \in X} h(u) \geq 1$. Let $y \in Y$. Then the function $g: V \rightarrow[0,1]$ defined by $g(y)=1$ and $g(v)=h(v)$ for $v \neq y$ is a $G D F$ of G and hence $\gamma_{f g}(G) \leq|g| \leq|h|+1=$ $\gamma_{f}+1$. The proof is similar if $\sum_{u \in Y} h(u) \geq 1$. Suppose $\sum_{x \in X} h(x)<1$ and $\sum_{y \in Y} h(y)<1$. Let $\sum_{x \in X} h(x)=1-\alpha$ and $\sum_{y \in Y} h(y)=1-\beta$ where $0<\alpha, \beta<1$. Clearly $\gamma_{f}(G)=|h|=2-\alpha-\beta$ and since $\gamma_{f} \geq 1$ it follows that $\alpha+\beta \leq 1$. Now let $x \in X$ and $y \in Y$. Then the function $g: V \rightarrow[0,1]$ defined by

$$
g(v)= \begin{cases}h(v)+\alpha & \text { if } v=x \\ h(v)+\beta & \text { if } v=y \\ h(v) & \text { otherwise }\end{cases}
$$

is a $G D F$ of G, so that $\gamma_{f g}(G) \leq|g|=|h|+\alpha+\beta \leq \gamma_{f}+1$.
Corollary 2.12. For any tree T, we have $\gamma \leq \gamma_{f g} \leq \gamma+1$.
Proof. It follows from Theorem 1.2 that $\gamma_{f}(T)=\gamma(T)$ and hence the result follows.

Theorem 2.13. Let \mathcal{F} denote the family of trees obtained from two or more stars each having at least two pendant vertices by joining the centres of these stars to a common vertex. Let T be any tree and let $s=\min \{d e g u-1$: u is a support of $T\}$. Then,

$$
\gamma_{f g}(T)= \begin{cases}\gamma+1 & \text { if } T \text { is a star } \\ \gamma+1-\frac{1}{s} & \text { if } T \in \mathcal{F} \\ \gamma & \text { otherwise }\end{cases}
$$

Proof. If T is neither a star nor a member of \mathcal{F}, then by Theorem 1.2 and Remark 2.4 we have $\gamma \leq \gamma_{f g} \leq \gamma_{g}$. Also, by Theorem 1.3 and Theorem 1.4, we have $\gamma_{g}=\gamma$ and hence $\gamma_{f g}=\gamma$.

If T is a star, then obviously $\gamma_{f g}=\gamma+1$.
Now let $T \in \mathcal{F}$. We claim that $\gamma_{f g}(T)=\gamma+1-\frac{1}{s}$. Let u be the centre of T. Let $v_{1}, v_{2}, \ldots, v_{r}$ be the support vertices of T. Let $w_{i 1}, w_{i 2}, \ldots, w_{i t_{i}}$ be the pendant vertices of T adjacent to v_{i}, where $1 \leq i \leq r$ and $t_{i} \geq 2$. Then $s=\min t_{i}$. Without loss of generality, we assume $s=t_{1}$. Define $g: V(T) \rightarrow[0,1]$ by

$$
g(x)= \begin{cases}1-\frac{1}{s} & \text { if } x=v_{1} \\ \frac{1}{s} & \text { if } x=w_{1 i}, 1 \leq i \leq t_{1}(=s) \\ 1 & \text { if } x=v_{i}, 2 \leq i \leq r \\ 0 & \text { otherwise }\end{cases}
$$

It is easy to see that g is a $G D F$ of T and $|g|=\gamma+1-\frac{1}{s}$, so that $\gamma_{f g} \leq$ $\gamma+1-\frac{1}{s}$.

Now let g be any $M G D F$ of T. We claim that $|g| \geq \gamma+1-\frac{1}{s}$. If $g\left(v_{i}\right)=1$ for all $i, 1 \leq i \leq r$, then $|g| \geq r+1>\gamma+1-\frac{1}{s}$. Suppose $g\left(v_{i}\right)<1$ for at least one i. Let $g\left(v_{1}\right)=1-k$, where $k>0$. Then $g\left(w_{1 j}\right) \geq k$, where $1 \leq j \leq t_{1}$ and hence $|g| \geq r-1+(1-k)+t_{1} k=\gamma+\left(t_{1}-1\right) k$. If $k \geq \frac{1}{t_{1}}$, then $|g| \geq \gamma+\left(t_{1}-1\right) \frac{1}{t_{1}} \geq \gamma+1-\frac{1}{s}$. If $k<\frac{1}{t_{1}}$, let $k=\frac{1}{t_{1}}-x, x>0$. Now, since $g(u)+\sum_{i=1}^{r} \sum_{j=1}^{t_{i}} g\left(w_{i j}\right) \geq 1$ and $\sum_{j=1}^{t_{1}} g\left(w_{1 j}\right) \geq t_{1} k=t_{1}\left(\frac{1}{t_{1}}-x\right)=1-t_{1} x$, it follows that

$$
\begin{aligned}
|g| & \geq\left(\gamma+1-\frac{1}{t_{1}}\right)-x\left(t_{1}-1\right)+t_{1} x \\
& =\gamma+1-\frac{1}{t_{1}}+x>\gamma+1-\frac{1}{t_{1}} \geq \gamma+1-\frac{1}{s}
\end{aligned}
$$

Thus $|g| \geq \gamma+1-\frac{1}{s}$ and the result follows.

Corollary 2.14. Let a, b and c be three positive integers such that $1<a<$ $\frac{b}{c}<a+1$ and $\frac{c}{c(1+a)-b}$ is an integer. Then there exists a tree T such that $\gamma(T)=a$ and $\gamma_{f g}(T)=\frac{b}{c}$.

Proof. Let $k=\frac{c}{c(1+a)-b}$. Clearly $k \geq 2$. Let T be a tree obtained from a stars, each having at least k pendant vertices, by joining the centres of these stars to a common vertex. Clearly $\gamma(T)=a$. Further by Theorem 2.13, we have $\gamma_{f g}(T)=\gamma+1-\frac{1}{k}=a+1-\frac{c(1+a)-b}{c}=\frac{b}{c}$.

Corollary 2.15. For any integer $n \geq 2$, there exists a tree T such that $1+\gamma(T)-\gamma_{f g}(T)=\frac{1}{n}$.

Proof. Take $a=n, b=n^{2}+n-1$ and $c=n$ in Corollary 2.14.
We now proceed to obtain bounds for $\gamma_{f g}$.
Theorem 2.16. For any graph G of order $n, \gamma_{f g}(G) \geq \frac{2 n}{n+1}$.
Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let g be any $G D F$ of G. Let $v \in V$. Then $\sum_{u \in N[v]} g(u) \geq 1$ and $\sum_{u \notin N(v)} g(u) \geq 1$. Adding these inequalities, we get $g(v)+|g| \geq 2$ for all $v \in V$. Hence $\sum_{v \in V}(g(v)+|g|) \geq 2 n$, so that $(n+1)|g| \geq 2 n$. Thus $|g| \geq \frac{2 n}{n+1}$, so that $\gamma_{f g}(G) \geq \frac{2 n}{n+1}$.

Remark 2.17. The bound given in Theorem 2.16 is sharp. Let n be any integer with $n \equiv 1(\bmod 4)$. Then it follows from Theorem 2.7 , that for any $\frac{n-1}{2}$-regular graph G on n vertices, $\gamma_{f g}(G)=\frac{2 n}{n+1}$.

Theorem 2.18. For any non-regular graph G with $\Delta \leq \frac{n}{2}$, we have $\gamma_{f g}(G) \leq$ $\frac{n}{\delta+1}$.

Proof. Define $g: V \rightarrow[0,1]$ by $f(g)=\frac{1}{\delta+1}$ for all $v \in V$.
Let $v \in V$. Then $\sum_{u \in N[v]} g(u)=|N[v]| \frac{1}{\delta+1} \geq(\delta+1) \frac{1}{\delta+1}=1$. Also $\sum_{u \notin N(v)} g(u)=(n-|N(v)|)\left(\frac{1}{\delta+1}\right) \geq \frac{n-\Delta}{\delta+1}$. Since $\Delta \leq \frac{n}{2}$ and $\delta<\Delta$ it follows that $\frac{n-\Delta}{\delta+1} \geq 1$ and hence $\sum_{u \notin N(v)} g(u) \geq 1$. Thus g is a $G D F$ of G and hence $\gamma_{f g}(G) \leq|g|=\frac{n}{\delta+1}$.

Remark 2.19. The bound given in Theorem 2.18 is sharp. For any graph G on n-vertices, it follows from Theorem 2.10 that $\gamma\left(G \circ K_{1}\right)=n=\frac{2 n}{\delta+1}$.

3. Minimal Global Dominating Functions

We recall that, a $G D F g$ of a graph G is minimal if $f \leq g$ and $f(v) \neq g(v)$ for at least one $v \in V$, then f is not a $G D F$ of G.

Definition 3.1. Let g be a $G D F$ of a graph G. The boundary set \mathcal{B}_{g} and the positive set \mathcal{P}_{g} of g are defined by $\mathcal{B}_{g}=N_{g} \cup \overline{N_{g}}$ where $N_{g}=$ $\left\{v \in V: \sum_{w \in N[v]} g(w)=1\right\}, \overline{N_{g}}=\left\{v \in V: \sum_{w \notin N(v)} g(w)=1\right\}$ and $\mathcal{P}_{g}=\{v \in V: g(v)>0\}$.

Example 3.2. Consider the graph G given in Figure 3.1. Define $g\left(v_{1}\right)=$ $g\left(v_{2}\right)=g\left(v_{3}\right)=\frac{1}{2}, g\left(v_{4}\right)=g\left(v_{6}\right)=0$ and $g\left(v_{5}\right)=1$. Then $\mathcal{P}_{g}=$ $\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}, N_{g}=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$ and $\overline{N_{g}}=\left\{v_{4}\right\}$. Hence $\mathcal{B}_{g}=N_{g} \cup \overline{N_{g}}=$ $\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}\right\}$.

Figure 3.1
Definition 3.3. Let g be a $G D F$ of a graph with positive set \mathcal{P}_{g} and boundary set $\mathcal{B}_{g}=N_{f} \cup \bar{N}_{g}$. We say that \mathcal{B}_{g} globally dominates \mathcal{P}_{g} if for every vertex $v \in \mathcal{P}_{g}-\mathcal{B}_{g}$, there exists a vertex $u \in N_{g}$ such that u is adjacent to v or there exists a vertex $u \in \bar{N}_{g}$ such that u is not adjacent to v and write $\mathcal{B}_{g} \rightarrow \mathcal{P}_{g}$.

Theorem 3.4. A GDF g of a graph G is an MGDF if and only if $\mathcal{B}_{g} \rightarrow \mathcal{P}_{g}$.
Proof. Suppose $\mathcal{B}_{g} \rightarrow \mathcal{P}_{g}$. Let $v \in \mathcal{P}_{g}$, suppose $h: V \rightarrow[0,1]$ be such that $h(v)<g(v)$ and $h \leq g$. We claim that h is not a GDF.

If $v \in \mathcal{B}_{g}$, then $v \in N_{g}$ or $v \in \overline{N_{g}}$.
Hence $\sum_{w \in N[v]} g(w)=1$ or $\sum_{w \notin N(v)} g(w)=1$. Since $h(v)<g(v)$, it follows that $\sum_{w \in N[v]} h(w)<1$ or $\sum_{w \notin N(v)}^{w \notin N(v)} h(w)<1$.

If $v \notin \mathcal{B}_{g}$ then $v \in \mathcal{P}_{g}-\mathcal{B}_{g}$. Since $\mathcal{B}_{g} \rightarrow \mathcal{P}_{g}$, there exists $u \in N_{g}$ such that v is adjacent to u or there exists $w \in N_{g}$ such that v is not adjacent to w. Hence $\sum_{x \in N[u]} g(x)=1$ or $\sum_{x \notin N(w)} g(x)=1$ and hence $\sum_{x \in N[u]} h(x)<1$ or $\sum_{x \notin N(w)} h(x)<1$.

Thus h is not a $G D F$ of G, so that g is an MGDF of G.

Conversely, suppose g is an MGDF of G. Let $v \in \mathcal{P}_{g}-\mathcal{B}_{g}$. Suppose that for every $u \in N[v], \sum_{x \in N[u]} g(x)>1$ and for every $w \notin N(v), \sum_{x \notin N(w)} g(x)>1$.

Let $\sum_{x \in N[u]} g(x)=1+\epsilon_{u}$ and $\sum_{x \notin N(w)} g(x)=1+\epsilon_{w}$.
Let $\epsilon_{1}=\min \left\{\epsilon_{u}: u \in N[v]\right\}, \epsilon_{2}=\min \left\{\epsilon_{w}: w \notin N(v)\right\}$ and $\epsilon=$ $\min \left\{\epsilon_{1}, \epsilon_{2}\right\}$. Define $h: V \rightarrow[0,1]$ by $h(v)=g(v)-\frac{\epsilon}{2}$ and $h(u)=g(u)$ for all $u \in V-\{v\}$. Clearly h is a GDF of G and $h<g$, which is a contradiction. Hence $\mathcal{B}_{g} \rightarrow \mathcal{P}_{g}$.

Definition 3.5. Let f and g be GDFs of G and let $0<\lambda<1$. Then $h_{\lambda}=\lambda f+(1-\lambda) g$ is called a convex combination of f and g.

Theorem 3.6. A convex combination of two GDFs of G is again a GDF of G.

Proof. Let f and g be two $G D F s$ of G. Let $h_{\lambda}=\lambda f+(1-\lambda) g$, where $0<\lambda<1$. Let $v \in V$. Then $\sum_{w \in N[v]} h_{\lambda}(w)=\sum_{w \in N[v]}(\lambda f(w)+(1-\lambda) g(w))$ $=\lambda \sum_{w \in N[v]} f(w)+(1-\lambda) \sum_{w \in N[v]} g(w) \geq \lambda \cdot 1+(1-\lambda) \cdot 1=1$.

Similarly $\sum_{w \notin N(v)} h_{\lambda}(w) \geq 1$. Hence h_{λ} is a $G D F$ of G.
Remark 3.7. A convex combination of two MGDFs of G need not be an $M G D F$ of G. For example, consider the graph given in Figure 3.2.

Define $f: V \rightarrow[0,1]$ by $f\left(v_{1}\right)=f\left(v_{2}\right)=f\left(v_{3}\right)=f\left(v_{4}\right)=\frac{1}{2}, f\left(v_{5}\right)=0$ and $f\left(v_{6}\right)=1$, and $g: V \rightarrow[0,1]$ by $g\left(v_{1}\right)=g\left(v_{2}\right)=g\left(v_{3}\right)=\frac{1}{2}, g\left(v_{4}\right)=$ $g\left(v_{6}\right)=0$ and $g\left(v_{5}\right)=1$. It is easy to verify that f and g are GDFs of G. Also $\mathcal{B}_{f}=\left\{v_{1}, v_{2}, v_{4}, v_{6}\right\}, \mathcal{P}_{f}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}\right\}, \mathcal{B}_{g}=\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}\right\}$ and $\mathcal{P}_{g}=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$. Clearly $\mathcal{B}_{f} \rightarrow \mathcal{P}_{f}$ and $\mathcal{B}_{g} \rightarrow \mathcal{P}_{g}$ and hence f and g are MGDFs of G. But h_{λ} is not an $M G D F$ for $\lambda=\frac{1}{2}$, since the boundary set of h_{λ} does not globally dominate the positive set of h_{λ}.

Theorem 3.8. Let f and g be two minimal GDFs of G and let $0<\lambda<1$. Then $h_{\lambda}=\lambda f+(1-\lambda) g$ is a minimal GDF of G if and only if $\left(N_{f} \cap N_{g}\right) \cup$ $\left(\overline{N_{f}} \cap \overline{N_{g}}\right) \rightarrow \mathcal{P}_{f} \cup \mathcal{P}_{g}$.

Proof. We prove that $\mathcal{B}_{h_{\lambda}}=\left(N_{f} \cap N_{g}\right) \cup\left(\overline{N_{f}} \cap \overline{N_{g}}\right)$ and $\mathcal{P}_{h_{\lambda}}=\mathcal{P}_{f} \cup \mathcal{P}_{g}$. The result is then immediate from Theorem 3.4. If $v \notin \mathcal{P}_{f} \cup \mathcal{P}_{g}$, then $f(v)=g(v)=h_{\lambda}(v)=0$. Also if $v \in \mathcal{P}_{f}$, then $h_{\lambda}(v) \geq \lambda f(v)>0$. Thus $\mathcal{P}_{h_{\lambda}}=\mathcal{P}_{f} \cup \mathcal{P}_{g}$.

Now, suppose $v \in\left(N_{f} \cap N_{g}\right) \cup\left(\overline{N_{f}} \cap \overline{N_{g}}\right)$. If $v \in\left(N_{f} \cap N_{g}\right)$, then $\sum_{w \in N[v]} h_{\lambda}(v)=\lambda \sum_{w \in N[v]} f(v)+(1-\lambda) \sum_{w \in N[v]} g(v)=\lambda+(1-\lambda)=1$. Also if $v \in \overline{N_{f}} \cap \overline{N_{g}}$, then $\sum_{w \notin N(v)} h_{\lambda}(v)=\lambda \sum_{w \notin N(v)} f(v)+(1-\lambda)$ $\sum_{w \notin N(v)} g(v)=\lambda+(1-\lambda)=1$. A similar calculation shows that if $v \notin$ $\left(N_{f} \cap N_{g}\right) \cup\left(\overline{N_{f}} \cap \overline{N_{g}}\right)$, then $h_{\lambda}(v)>1$. Hence $\mathcal{B}_{h_{\lambda}}=\left(N_{f} \cap N_{g}\right) \cup\left(\overline{N_{f}} \cap \overline{N_{g}}\right)$.

Remark 3.9. The above theorem shows that if f and g are MGDFs of G then either all convex combinations of f and g are MGDFs or no convex combination of f and g is an MGDF.

Conclusion and Scope. As in the case of minimal dominating functions, it follows from Theorem 3.8 that f and g are MGDFs of G, then either all convex combinations f and g are MGDFs or no convex combinations of f and g is an MGDF. Hence one can introduce and study the concepts analogus to universal minimal dominating functions [5], basic minimal dominating functions [2] and convexity graphs [4] with respect to global dominating functions. Results in these directions will be reported in subsequent papers.

Acknowledgement

We are thankful to the Department of Science and Technology, New Delhi for its support through the project SR/S4/MS:282/05, awarded to the first author.

References

[1] S. Arumugam and R. Kala, A note on global domination in graphs, Ars Combin. 93 (2009) 175-180.
[2] S. Arumugam and K. Rejikumar, Basic minimal dominating functions, Utilitas Mathematica 77 (2008) 235-247.
[3] G. Chartrand and L. Lesniak, Graphs \& Digraphs (Fourth Edition, Chapman \& Hall/CRC, 2005).
[4] E.J. Cockayne, G. MacGillivray and C.M. Mynhardt, Convexity of minimal dominating funcitons of trees-II, Discrete Math. 125 (1994) 137-146.
[5] E.J. Cockayne, C.M. Mynhardt and B. Yu, Universal minimal total dominating functions in graphs, Networks 24 (1994) 83-90.
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., 1998).
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., 1998).
[8] S.M. Hedetniemi, S.T. Hedetniemi and T.V. Wimer, Linear time resource allocation algorithms for trees, Technical report URI -014, Department of Mathematics, Clemson University (1987).
[9] E. Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci. 23 (1989) 377-385.
[10] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approch to the Theory of Graphs (John Wiley \& Sons, New York, 1997).

Received 19 September 2008
Revised 12 January 2009
Accepted 12 January 2009

