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Abstract

Let G = (V, E) be a graph. A function g : V → [0, 1] is called a
global dominating function (GDF ) of G, if for every v ∈ V, g(N [v]) =
∑

u∈N [v] g(u) ≥ 1 and g(N(v)) =
∑

u/∈N(v) g(u) ≥ 1. A GDF g of a

graph G is called minimal (MGDF ) if for all functions f : V → [0, 1]
such that f ≤ g and f(v) 6= g(v) for at least one v ∈ V , f is not a GDF .
The fractional global domination number γfg(G) is defined as follows:
γfg(G) = min{|g| : g is an MGDF of G} where |g| =

∑

v∈V g(v). In
this paper we initiate a study of this parameter.
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1. Introduction

By a graph G = (V,E), we mean a finite, undirected graph with neither
loops nor multiple edges. The order and size of G are denoted by n and
m respectively. For basic terminology in graphs we refer to Chartrand and
Lesniak [3].

The study of domination and related subset problems such as indepen-
dence, covering and matching is one of the fastest growing areas within
graph theory. A comprehensive treatment of fundamentals of domination in
graphs is given in the book by Haynes et al. [6]. Survey of several advanced
topics on domination are given in the book edited by Haynes et al. [7].

Let G = (V,E) be a graph. A subset D of V is called a dominating

set of G if every vertex in V − D is adjacent to at least one vertex in
D. A dominating set D is called a minimal dominating set if no proper
subset of D is a dominating set of G. The minimum (maximum) cardinality
of a minimal dominating set of G is called the domination number (upper

domination number) of G and is denoted by γ(G) (Γ(G)).

The open neighborhood N(v) and the closed neighborhood N [v] of a ver-
tex v ∈ V are defined by N(v) = {u ∈ V : uv ∈ E} and N [v] = {v} ∪ N(v).

Sampathkumar [9] introduced the concept of global domination.

A dominating set S of G = (V,E) is a global dominating set of G if S is
also a dominating set of the complement G of G. The minimum cardinality
of a global dominating set of G is called the global domination number of G
and is denoted by γg(G) or simply γg. A global dominating set of cardinality
γg is called a γg-set.

Brigham and Carrington has given a survey of results on global domi-
nation in Chapter 11 of Haynes et al. [7].

A recent trend in graph theory is to generalize integer-valued graph
theoretic concepts in such a way that they take on rational values. A de-
tailed study of fractional graph theory and fractionalization of various graph
parameters are given in Scheinerman and Ullman [10].

Hedetniemi et al. [8] introduced the concept of fractional domination in
graphs.

Let G = (V,E) be a graph. Let f : V → R be any function. For
any subset S of V , let f(S) =

∑

v∈S f(v). The weight of f is defined by
|f | = f(V ) =

∑

v∈V f(v).

A function h : V → [0, 1] is called a dominating function of the graph
G = (V,E) if h(N [v]) =

∑

u∈N [v] h(u) ≥ 1 for all v ∈ V .
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A dominating function h of a graph G is minimal if for all functions f : V →
[0, 1] such that f ≤ h and f(v) 6= h(v) for at least one v ∈ V , f is not a
dominating function of G.

The fractional domination number γf (G) and the upper fractional dom-

ination number Γf (G) are defined as follows:

γf (G) = min{|h| : h is a dominating function of G} and

Γf (G) = max{|h| : h is a minimal dominating function of G}.

For a survey of various domination related functions we refer to Chapters
1, 2, 3 and 5 of Haynes et al. [7]. In this paper we introduce the concept of
global dominating function and fractional global domination number.

We need the following definition and theorems.

Definition 1.1. The corona of two graphs G1 and G2 is the graph G =
G1 ◦G2 formed from one copy of G1 and |V (G1)| copies of G2 where the ith

vertex of G1 is adjacent to every vertex in the ith copy of G2.

Theorem 1.2 [7]. For any tree T , γf (T ) = γ(T ).

Theorem 1.3 [7]. If G is a triangle-free graph, then γ ≤ γg ≤ γ + 1.

Theorem 1.4 [1]. Let T be a tree. Then γg(T ) = γ + 1 if and and only if

either T is a star or T is a tree of diameter 4 which is constructed from two

or more stars, each having at least two pendant vertices, by connecting the

centres of these stars to a common vertex.

2. Global Dominating Function

Definition 2.1. A function g : V → [0, 1] is called a global dominating

function (GDF ) of a graph G = (V,E), if for every v ∈ V , g(N [v]) =
∑

u∈N [v] g(u) ≥ 1 and g(N(v)) =
∑

u/∈N(v) g(u) ≥ 1. A GDF g of a graph G
is called minimal (MGDF ) if for all functions f : V → [0, 1] such that f ≤ g
and f(v) 6= g(v) for at least one v ∈ V, f is not a GDF . The fractional

global domination number γfg(G) is defined as follows: γfg(G) = min{|g| :
g is an MGDF of G}.

Remark 2.2. The fractional global domination number is the optimal so-
lution of the following linear programming problem (LPP).
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Minimize z =
n
∑

i=1
f(vi)

Subject to
∑

u∈N [v]

f(u) ≥ 1 for all v ∈ V,

∑

u/∈N(v)

f(u) ≥ 1 for all v ∈ V and

0 ≤ f(v) ≤ 1 for all v ∈ V.

Remark 2.3. We observe that if u is an isolated vertex of G or G then
g(u) = 1 for every MGDF g of G. Hence it follows that γfg(Kn) = n.

Remark 2.4. Since every GDF of G is a dominating function of G and the
characteristic function of a γg-set is a GDF of G, we have γf ≤ γfg ≤ γg.
These inequalities can be strict. For example, for the graph G given in Figure
2.1, it can be easily verified that γf (G) = 2, γfg(G) = 2.5 and γg(G) = 3.

�
�

�

s

s
s

s s s
s

Figure 2.1

Further, for the corona G ◦ K1 of any graph G and for the cycle C3n, we
have γf = γfg = γg.

Theorem 2.5. For any graph G of order n, 1 ≤ γfg(G) ≤ n. Further

γfg(G) = n if and only if G = Kn or Kn.

Proof. The inequalities are trivial. Suppose γfg(G) = 1. Let g be a
minimum GDF of G and let v ∈ V (G). Then

∑

u∈N [v] g(u) = 1 and
∑

u/∈N(v) g(u) = 1. Summing up these inequalities, we have |g| + g(v) = 2.
Hence g(v) = 1 and consequently G = K1. Now, suppose n ≥ 2, γfg(G) = n,
and G 6= Kn. If there exist two non-isolated vertices u and v in G which are
not adjacent in G, then g : V → [0, 1] defined by g(u) = 0 and g(w) = 1 for
all w 6= u, is a GDF and hence γfg(G) ≤ |g| = n−1, which is a contradiction.
Hence G = Kn. The Converse is obvious.
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We now proceed to determine γfg for some standard graphs.

Theorem 2.6. For the complete k-partite graph G = Kn1,n2,...,nk
, we have

γfg(G) = k.

Proof. Let X1, X2, . . . , Xk be the k-partition of G and let Xi = {xij : 1 ≤
j ≤ ni}. Then g : V → [0, 1] defined by

g(xij) =

{

1 if j = 1,

0 otherwise

for all i = 1, 2, . . . , k, is a GDF and hence γfg(G) ≤ |g| = k.
Now, let g be any GDF of G. Since G = Kn1

∪ Kn2
∪ · · · ∪ Knk

, it
follows that |g| ≥ k and hence γfg(G) ≥ k. Thus γfg(G) = k.

Theorem 2.7. For any r-regular graph G of order n, γfg(G) = n
k+1 , where

k = min{r, n − r − 1}.

Proof. The constant function g : V → [0, 1] defined by g(v) = 1
k+1 is a

GDF of G and hence γfg(G) ≤ |g| = n
k+1 .

Now, let g be a GDF of G. Then for every v ∈ V , we have

(1)
∑

u∈N [v]

g(u) ≥ 1 and

(2)
∑

u/∈N(v)

g(u) ≥ 1.

Adding the n inequalities in (1), we get (r + 1)|g| ≥ n and hence |g| ≥ n
r+1 .

Similarly |g| ≥ n
(n−r−1)+1 , so that |g| ≥ n

k+1 , where k = min{r, n − r − 1}.

Thus γfg(G) ≥ n
k+1 and hence γfg(G) = n

k+1 .

Corollary 2.8. For the cycle Cn on n-vertices , we have

γfg(Cn) =







3 if n = 3,

2 if n = 4,
n
3 if n ≥ 5.

Theorem 2.9. For the wheel Wn = K1 + Cn−1, we have γfg(Wn) = 2n−4
n−3 .
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Proof. Let V (Wn) = {v0, v1, v2, . . . , vn−1} and E(Wn) = {v0vi : 1 ≤ i ≤
n− 1} ∪ {vivi+1 : 1 ≤ i ≤ n− 2} ∪ {vn−1v1}. Then g : V → [0, 1] defined by
g(v0) = 1 and g(vi) = 1

n−3 for i = 1, 2, . . . , n − 1, is a GDF of Wn. Hence

γfg(Wn) ≤ |g| = 2n−4
n−3 . Now, let g be any GDF of Wn. Since v0 is an isolated

vertex in Wn, we have g(v0) = 1. Also
∑

u/∈N(vi)
g(u) ≥ 1, 1 ≤ i ≤ n − 1.

Adding these (n−1) inequalities, we get (n−3)
∑n−1

i=1 g(vi) ≥ (n−1). Hence
(n − 3)[|g| − 1] ≥ (n − 1), so that |g| ≥ 2n−4

n−3 . Thus γfg(Wn) ≥ 2n−4
n−3 and

hence γfg(Wn) = 2n−4
n−3 .

Theorem 2.10. For any graph G on n vertices γfg(G ◦ K1) = n.

Proof. Let V (G) = {v1, v2, . . . , vn} and let u1, u2, . . . , un be the pendant
vertices of G ◦ K1 adjacent to v1, v2, . . . , vn, respectively. Then g : V (G ◦
K1) → [0, 1] defined by g(vi) = 1 and g(ui) = 0, 1 ≤ i ≤ n, is a GDF of
G ◦ K1 and hence γfg(G ◦ K1) ≤ |g| = n. Also if g is any GDF of G ◦ K1,
we have g(ui) + g(vi) ≥ 1 for all i = 1, 2, . . . , n. Hence |g| ≥ n so that
γfg(G ◦ K1) ≥ n. Thus γfg(G ◦ K1) = n.

Theorem 2.11. For any bipartite graph G, we have γf ≤ γfg ≤ γf + 1.

Proof. Let (X,Y ) be the bipartition of G with |X| ≤ |Y |. Obviously
γf ≤ γfg. Now let h be a γf -function of G. Suppose

∑

u∈X h(u) ≥ 1.
Let y ∈ Y . Then the function g : V → [0, 1] defined by g(y) = 1 and
g(v) = h(v) for v 6= y is a GDF of G and hence γfg(G) ≤ |g| ≤ |h| + 1 =
γf + 1. The proof is similar if

∑

u∈Y h(u) ≥ 1. Suppose
∑

x∈X h(x) < 1
and

∑

y∈Y h(y) < 1. Let
∑

x∈X h(x) = 1−α and
∑

y∈Y h(y) = 1− β where
0 < α, β < 1. Clearly γf (G) = |h| = 2 − α − β and since γf ≥ 1 it follows
that α + β ≤ 1. Now let x ∈ X and y ∈ Y . Then the function g : V → [0, 1]
defined by

g(v) =







h(v) + α if v = x,

h(v) + β if v = y,

h(v) otherwise

is a GDF of G, so that γfg(G) ≤ |g| = |h| + α + β ≤ γf + 1.

Corollary 2.12. For any tree T , we have γ ≤ γfg ≤ γ + 1.

Proof. It follows from Theorem 1.2 that γf (T ) = γ(T ) and hence the
result follows.
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Theorem 2.13. Let F denote the family of trees obtained from two or more

stars each having at least two pendant vertices by joining the centres of these

stars to a common vertex. Let T be any tree and let s = min{deg u − 1 :
u is a support of T}. Then,

γfg(T ) =







γ + 1 if T is a star,

γ + 1 − 1
s if T ∈ F ,

γ otherwise.

Proof. If T is neither a star nor a member of F , then by Theorem 1.2 and
Remark 2.4 we have γ ≤ γfg ≤ γg. Also, by Theorem 1.3 and Theorem 1.4,
we have γg = γ and hence γfg = γ.

If T is a star, then obviously γfg = γ + 1.
Now let T ∈ F . We claim that γfg(T ) = γ + 1− 1

s . Let u be the centre
of T . Let v1, v2, . . . , vr be the support vertices of T . Let wi1, wi2, . . . , witi

be the pendant vertices of T adjacent to vi, where 1 ≤ i ≤ r and ti ≥ 2.
Then s = min ti. Without loss of generality, we assume s = t1. Define
g : V (T ) → [0, 1] by

g(x) =



















1 − 1
s if x = v1,

1
s if x = w1i, 1 ≤ i ≤ t1 (= s),

1 if x = vi, 2 ≤ i ≤ r,

0 otherwise.

It is easy to see that g is a GDF of T and |g| = γ + 1 − 1
s , so that γfg ≤

γ + 1 − 1
s .

Now let g be any MGDF of T . We claim that |g| ≥ γ + 1 − 1
s . If

g(vi) = 1 for all i, 1 ≤ i ≤ r, then |g| ≥ r + 1 > γ + 1− 1
s . Suppose g(vi) < 1

for at least one i. Let g(v1) = 1 − k, where k > 0. Then g(w1j) ≥ k, where
1 ≤ j ≤ t1 and hence |g| ≥ r−1+(1−k)+t1k = γ+(t1−1)k. If k ≥ 1

t1
, then

|g| ≥ γ + (t1 − 1) 1
t1

≥ γ + 1 − 1
s . If k < 1

t1
, let k = 1

t1
− x, x > 0. Now, since

g(u)+
∑r

i=1

∑ti
j=1 g(wij) ≥ 1 and

∑t1
j=1 g(w1j) ≥ t1k = t1(

1
t1
−x) = 1− t1x,

it follows that

|g| ≥
(

γ + 1 −
1

t1

)

− x(t1 − 1) + t1x

= γ + 1 −
1

t1
+ x > γ + 1 −

1

t1
≥ γ + 1 −

1

s
.

Thus |g| ≥ γ + 1 − 1
s and the result follows.
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Corollary 2.14. Let a, b and c be three positive integers such that 1 < a <
b
c < a + 1 and c

c(1+a)−b is an integer. Then there exists a tree T such that

γ(T ) = a and γfg(T ) = b
c .

Proof. Let k = c
c(1+a)−b . Clearly k ≥ 2. Let T be a tree obtained from a

stars, each having at least k pendant vertices, by joining the centres of these
stars to a common vertex. Clearly γ(T ) = a. Further by Theorem 2.13, we

have γfg(T ) = γ + 1 − 1
k = a + 1 − c(1+a)−b

c = b
c .

Corollary 2.15. For any integer n ≥ 2, there exists a tree T such that

1 + γ(T ) − γfg(T ) = 1
n .

Proof. Take a = n, b = n2 + n − 1 and c = n in Corollary 2.14.

We now proceed to obtain bounds for γfg.

Theorem 2.16. For any graph G of order n, γfg(G) ≥ 2n
n+1 .

Proof. Let V (G) = {v1, v2, . . . , vn} and let g be any GDF of G. Let v ∈ V.
Then

∑

u∈N [v] g(u) ≥ 1 and
∑

u/∈N(v) g(u) ≥ 1. Adding these inequalities,
we get g(v) + |g| ≥ 2 for all v ∈ V . Hence

∑

v∈V (g(v) + |g|) ≥ 2n, so that
(n + 1)|g| ≥ 2n. Thus |g| ≥ 2n

n+1 , so that γfg(G) ≥ 2n
n+1 .

Remark 2.17. The bound given in Theorem 2.16 is sharp. Let n be any
integer with n ≡ 1(mod 4). Then it follows from Theorem 2.7, that for any
n−1

2 -regular graph G on n vertices, γfg(G) = 2n
n+1 .

Theorem 2.18. For any non-regular graph G with ∆ ≤ n
2 , we have γfg(G) ≤

n
δ+1 .

Proof. Define g : V → [0, 1] by f(g) = 1
δ+1 for all v ∈ V .

Let v ∈ V . Then
∑

u∈N [v] g(u) = |N [v]| 1
δ+1 ≥ (δ + 1) 1

δ+1 = 1. Also
∑

u/∈N(v) g(u) = (n − |N(v)|)( 1
δ+1 ) ≥ n−∆

δ+1 . Since ∆ ≤ n
2 and δ < ∆ it

follows that n−∆
δ+1 ≥ 1 and hence

∑

u/∈N(v) g(u) ≥ 1. Thus g is a GDF of G
and hence γfg(G) ≤ |g| = n

δ+1 .

Remark 2.19. The bound given in Theorem 2.18 is sharp. For any graph
G on n-vertices, it follows from Theorem 2.10 that γ(G ◦ K1) = n = 2n

δ+1 .
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3. Minimal Global Dominating Functions

We recall that, a GDF g of a graph G is minimal if f ≤ g and f(v) 6= g(v)
for at least one v ∈ V, then f is not a GDF of G.

Definition 3.1. Let g be a GDF of a graph G. The boundary set Bg

and the positive set Pg of g are defined by Bg = Ng ∪ Ng where Ng =
{

v ∈ V :
∑

w∈N [v] g(w) = 1
}

, Ng =
{

v ∈ V :
∑

w/∈N(v) g(w) = 1
}

and

Pg =
{

v ∈ V : g(v) > 0
}

.

Example 3.2. Consider the graph G given in Figure 3.1. Define g(v1) =
g(v2) = g(v3) = 1

2 , g(v4) = g(v6) = 0 and g(v5) = 1. Then Pg =
{v1, v2, v3, v5}, Ng = {v1, v2, v5, v6} and Ng = {v4}. Hence Bg = Ng ∪ Ng =
{v1, v2, v4, v5, v6}.

s

s

s s s s

PPPPP

Figure 3.1

v1

v2

v3 v4 v5 v6

Definition 3.3. Let g be a GDF of a graph with positive set Pg and bound-
ary set Bg = Nf ∪ N g. We say that Bg globally dominates Pg if for every
vertex v ∈ Pg − Bg, there exists a vertex u ∈ Ng such that u is adjacent to
v or there exists a vertex u ∈ N g such that u is not adjacent to v and write
Bg → Pg.

Theorem 3.4. A GDF g of a graph G is an MGDF if and only if Bg → Pg.

Proof. Suppose Bg → Pg. Let v ∈ Pg, suppose h : V → [0, 1] be such that
h(v) < g(v) and h ≤ g. We claim that h is not a GDF.

If v ∈ Bg, then v ∈ Ng or v ∈ Ng.
Hence

∑

w∈N [v] g(w) = 1 or
∑

w/∈N(v) g(w) = 1. Since h(v) < g(v), it
follows that

∑

w∈N [v] h(w) < 1 or
∑

w/∈N(v) h(w) < 1.
If v /∈ Bg then v ∈ Pg−Bg. Since Bg → Pg, there exists u ∈ Ng such that

v is adjacent to u or there exists w ∈ N g such that v is not adjacent to w.
Hence

∑

x∈N [u] g(x) = 1 or
∑

x/∈N(w) g(x) = 1 and hence
∑

x∈N [u] h(x) < 1
or

∑

x/∈N(w) h(x) < 1.
Thus h is not a GDF of G, so that g is an MGDF of G.
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Conversely, suppose g is an MGDF of G. Let v ∈ Pg −Bg. Suppose that for
every u ∈ N [v],

∑

x∈N [u] g(x) > 1 and for every w /∈ N(v),
∑

x/∈N(w) g(x)>1.
Let

∑

x∈N [u] g(x) = 1 + εu and
∑

x/∈N(w) g(x) = 1 + εw.
Let ε1 = min{εu : u ∈ N [v]}, ε2 = min{εw : w /∈ N(v)} and ε =

min{ε1, ε2}. Define h : V → [0, 1] by h(v) = g(v)− ε
2 and h(u) = g(u) for all

u ∈ V − {v}. Clearly h is a GDF of G and h < g, which is a contradiction.
Hence Bg → Pg.

Definition 3.5. Let f and g be GDFs of G and let 0 < λ < 1. Then
hλ = λf + (1 − λ)g is called a convex combination of f and g.

Theorem 3.6. A convex combination of two GDFs of G is again a GDF
of G.

Proof. Let f and g be two GDFs of G. Let hλ = λf + (1 − λ)g, where
0 < λ < 1. Let v ∈ V . Then

∑

w∈N [v] hλ(w) =
∑

w∈N [v](λf(w)+(1−λ)g(w))
= λ

∑

w∈N [v] f(w) + (1 − λ)
∑

w∈N [v] g(w) ≥ λ · 1 + (1 − λ) · 1 = 1.
Similarly

∑

w/∈N(v) hλ(w) ≥ 1. Hence hλ is a GDF of G.

Remark 3.7. A convex combination of two MGDFs of G need not be an
MGDF of G. For example, consider the graph given in Figure 3.2.

s

s

s s s s
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Figure 3.2
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Define f : V → [0, 1] by f(v1) = f(v2) = f(v3) = f(v4) = 1
2 , f(v5) = 0

and f(v6) = 1, and g : V → [0, 1] by g(v1) = g(v2) = g(v3) = 1
2 , g(v4) =

g(v6) = 0 and g(v5) = 1. It is easy to verify that f and g are GDFs of
G. Also Bf = {v1, v2, v4, v6}, Pf = {v1, v2, v3, v4, v6},Bg = {v1, v2, v4, v5, v6}
and Pg = {v1, v2, v3, v5}. Clearly Bf → Pf and Bg → Pg and hence f and g
are MGDFs of G. But hλ is not an MGDF for λ = 1

2 , since the boundary
set of hλ does not globally dominate the positive set of hλ.

Theorem 3.8. Let f and g be two minimal GDFs of G and let 0 < λ < 1.
Then hλ = λf +(1−λ)g is a minimal GDF of G if and only if (Nf ∩Ng)∪
(Nf ∩ Ng) → Pf ∪ Pg.
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Proof. We prove that Bhλ
= (Nf ∩ Ng) ∪ (Nf ∩ Ng) and Phλ

= Pf ∪ Pg.
The result is then immediate from Theorem 3.4. If v /∈ Pf ∪ Pg, then
f(v) = g(v) = hλ(v) = 0. Also if v ∈ Pf , then hλ(v) ≥ λf(v) > 0. Thus
Phλ

= Pf ∪ Pg.

Now, suppose v ∈ (Nf ∩ Ng) ∪ (Nf ∩ Ng). If v ∈ (Nf ∩ Ng), then
∑

w∈N [v] hλ(v) = λ
∑

w∈N [v] f(v) + (1 − λ)
∑

w∈N [v] g(v) = λ + (1 − λ) = 1.

Also if v ∈ Nf ∩ Ng, then
∑

w/∈N(v) hλ(v) = λ
∑

w/∈N(v) f(v) + (1 − λ)
∑

w/∈N(v) g(v) = λ + (1 − λ) = 1. A similar calculation shows that if v /∈

(Nf ∩Ng)∪ (Nf ∩Ng), then hλ(v) > 1. Hence Bhλ
= (Nf ∩Ng)∪ (Nf ∩Ng).

Remark 3.9. The above theorem shows that if f and g are MGDFs of G
then either all convex combinations of f and g are MGDFs or no convex
combination of f and g is an MGDF.

Conclusion and Scope. As in the case of minimal dominating functions,
it follows from Theorem 3.8 that f and g are MGDFs of G, then either all
convex combinations f and g are MGDFs or no convex combinations of f and
g is an MGDF. Hence one can introduce and study the concepts analogus
to universal minimal dominating functions [5], basic minimal dominating
functions [2] and convexity graphs [4] with respect to global dominating
functions. Results in these directions will be reported in subsequent papers.
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