Discussiones Mathematicae Graph Theory 30 (2010) 33–44

FRACTIONAL GLOBAL DOMINATION IN GRAPHS

SUBRAMANIAN ARUMUGAM, KALIMUTHU KARUPPASAMY

Core Group Research Facility (CGRF) National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH), Kalasalingam University Anand Nagar, Krishnankoil-626 190, India

> e-mail: s.arumugam.klu@gmail.com k_karuppasamy@yahoo.co.in

> > AND

ISMAIL SAHUL HAMID

Department of Mathematics The Madura College, Madurai-625 011, India

e-mail: sahulmat@yahoo.co.in

Abstract

Let G = (V, E) be a graph. A function $g: V \to [0, 1]$ is called a global dominating function (GDF) of G, if for every $v \in V$, $g(N[v]) = \sum_{u \in N[v]} g(u) \ge 1$ and $g(\overline{N(v)}) = \sum_{u \notin N(v)} g(u) \ge 1$. A $GDF \ g$ of a graph G is called minimal (MGDF) if for all functions $f: V \to [0, 1]$ such that $f \le g$ and $f(v) \ne g(v)$ for at least one $v \in V$, f is not a GDF. The fractional global domination number $\gamma_{fg}(G)$ is defined as follows: $\gamma_{fg}(G) = \min\{|g|: g \text{ is an MGDF of } G\}$ where $|g| = \sum_{v \in V} g(v)$. In this paper we initiate a study of this parameter.

Keywords: domination, global domination, dominating function, global dominating function, fractional global domination number.

2010 Mathematics Subject Classification: 05C69.

1. INTRODUCTION

By a graph G = (V, E), we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. For basic terminology in graphs we refer to Chartrand and Lesniak [3].

The study of domination and related subset problems such as independence, covering and matching is one of the fastest growing areas within graph theory. A comprehensive treatment of fundamentals of domination in graphs is given in the book by Haynes *et al.* [6]. Survey of several advanced topics on domination are given in the book edited by Haynes *et al.* [7].

Let G = (V, E) be a graph. A subset D of V is called a *dominating* set of G if every vertex in V - D is adjacent to at least one vertex in D. A dominating set D is called a *minimal dominating set* if no proper subset of D is a dominating set of G. The minimum (maximum) cardinality of a minimal dominating set of G is called the *domination number* (upper *domination number*) of G and is denoted by $\gamma(G)$ ($\Gamma(G)$).

The open neighborhood N(v) and the closed neighborhood N[v] of a vertex $v \in V$ are defined by $N(v) = \{u \in V : uv \in E\}$ and $N[v] = \{v\} \cup N(v)$. Sampathkumar [9] introduced the concept of global domination.

A dominating set S of G = (V, E) is a global dominating set of G if S is also a dominating set of the complement \overline{G} of G. The minimum cardinality of a global dominating set of G is called the global domination number of Gand is denoted by $\gamma_g(G)$ or simply γ_g . A global dominating set of cardinality γ_g is called a γ_g -set.

Brigham and Carrington has given a survey of results on global domination in Chapter 11 of Haynes *et al.* [7].

A recent trend in graph theory is to generalize integer-valued graph theoretic concepts in such a way that they take on rational values. A detailed study of fractional graph theory and fractionalization of various graph parameters are given in Scheinerman and Ullman [10].

Hedetniemi *et al.* [8] introduced the concept of fractional domination in graphs.

Let G = (V, E) be a graph. Let $f : V \to R$ be any function. For any subset S of V, let $f(S) = \sum_{v \in S} f(v)$. The weight of f is defined by $|f| = f(V) = \sum_{v \in V} f(v)$.

A function $h: V \to [0, 1]$ is called a *dominating function* of the graph G = (V, E) if $h(N[v]) = \sum_{u \in N[v]} h(u) \ge 1$ for all $v \in V$.

A dominating function h of a graph G is minimal if for all functions $f: V \to [0,1]$ such that $f \leq h$ and $f(v) \neq h(v)$ for at least one $v \in V$, f is not a dominating function of G.

The fractional domination number $\gamma_f(G)$ and the upper fractional domination number $\Gamma_f(G)$ are defined as follows:

 $\gamma_f(G) = \min\{|h|: h \text{ is a dominating function of } G\}$ and

 $\Gamma_f(G) = \max\{|h| : h \text{ is a minimal dominating function of } G\}.$

For a survey of various domination related functions we refer to Chapters 1, 2, 3 and 5 of Haynes *et al.* [7]. In this paper we introduce the concept of global dominating function and fractional global domination number.

We need the following definition and theorems.

Definition 1.1. The *corona* of two graphs G_1 and G_2 is the graph $G = G_1 \circ G_2$ formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 where the i^{th} vertex of G_1 is adjacent to every vertex in the i^{th} copy of G_2 .

Theorem 1.2 [7]. For any tree T, $\gamma_f(T) = \gamma(T)$.

Theorem 1.3 [7]. If G is a triangle-free graph, then $\gamma \leq \gamma_q \leq \gamma + 1$.

Theorem 1.4 [1]. Let T be a tree. Then $\gamma_g(T) = \gamma + 1$ if and and only if either T is a star or T is a tree of diameter 4 which is constructed from two or more stars, each having at least two pendant vertices, by connecting the centres of these stars to a common vertex.

2. GLOBAL DOMINATING FUNCTION

Definition 2.1. A function $g: V \to [0,1]$ is called a global dominating function (GDF) of a graph G = (V, E), if for every $v \in V$, $g(N[v]) = \sum_{u \in N[v]} g(u) \ge 1$ and $g(\overline{N(v)}) = \sum_{u \notin N(v)} g(u) \ge 1$. A GDF g of a graph G is called minimal (MGDF) if for all functions $f: V \to [0,1]$ such that $f \le g$ and $f(v) \ne g(v)$ for at least one $v \in V$, f is not a GDF. The fractional global domination number $\gamma_{fg}(G)$ is defined as follows: $\gamma_{fg}(G) = \min\{|g|: g \text{ is an MGDF of } G\}$.

Remark 2.2. The fractional global domination number is the optimal solution of the following linear programming problem (LPP).

Minimize $z = \sum_{i=1}^{n} f(v_i)$ Subject to $\sum_{u \in N[v]} f(u) \ge 1$ for all $v \in V$, $\sum_{u \notin N(v)} f(u) \ge 1$ for all $v \in V$ and $0 \le f(v) \le 1$ for all $v \in V$.

Remark 2.3. We observe that if u is an isolated vertex of G or \overline{G} then g(u) = 1 for every MGDF g of G. Hence it follows that $\gamma_{fg}(K_n) = n$.

Remark 2.4. Since every GDF of G is a dominating function of G and the characteristic function of a γ_g -set is a GDF of G, we have $\gamma_f \leq \gamma_{fg} \leq \gamma_g$. These inequalities can be strict. For example, for the graph G given in Figure 2.1, it can be easily verified that $\gamma_f(G) = 2$, $\gamma_{fg}(G) = 2.5$ and $\gamma_g(G) = 3$.

Figure 2.1

Further, for the corona $G \circ K_1$ of any graph G and for the cycle C_{3n} , we have $\gamma_f = \gamma_{fg} = \gamma_g$.

Theorem 2.5. For any graph G of order $n, 1 \leq \gamma_{fg}(G) \leq n$. Further $\gamma_{fg}(G) = n$ if and only if $G = K_n$ or $\overline{K_n}$.

Proof. The inequalities are trivial. Suppose $\gamma_{fg}(G) = 1$. Let g be a minimum GDF of G and let $v \in V(G)$. Then $\sum_{u \in N[v]} g(u) = 1$ and $\sum_{u \notin N(v)} g(u) = 1$. Summing up these inequalities, we have |g| + g(v) = 2. Hence g(v) = 1 and consequently $G = K_1$. Now, suppose $n \ge 2$, $\gamma_{fg}(G) = n$, and $G \ne \overline{K_n}$. If there exist two non-isolated vertices u and v in G which are not adjacent in G, then $g: V \rightarrow [0, 1]$ defined by g(u) = 0 and g(w) = 1 for all $w \ne u$, is a GDF and hence $\gamma_{fg}(G) \le |g| = n-1$, which is a contradiction. Hence $G = K_n$. The Converse is obvious.

36

We now proceed to determine γ_{fg} for some standard graphs.

Theorem 2.6. For the complete k-partite graph $G = K_{n_1,n_2,\ldots,n_k}$, we have $\gamma_{fg}(G) = k.$

Proof. Let X_1, X_2, \ldots, X_k be the k-partition of G and let $X_i = \{x_{ij} : 1 \leq i \leq k\}$ $j \leq n_i$. Then $g: V \to [0, 1]$ defined by

$$g(x_{ij}) = \begin{cases} 1 & \text{if } j = 1, \\ 0 & \text{otherwise} \end{cases}$$

for all i = 1, 2, ..., k, is a GDF and hence $\gamma_{fg}(G) \leq |g| = k$. Now, let g be any GDF of G. Since $\overline{G} = K_{n_1} \cup K_{n_2} \cup \cdots \cup K_{n_k}$, it follows that $|g| \ge k$ and hence $\gamma_{fg}(G) \ge k$. Thus $\gamma_{fg}(G) = k$.

Theorem 2.7. For any r-regular graph G of order n, $\gamma_{fg}(G) = \frac{n}{k+1}$, where $k = \min\{r, n - r - 1\}.$

Proof. The constant function $g: V \to [0,1]$ defined by $g(v) = \frac{1}{k+1}$ is a GDF of G and hence $\gamma_{fg}(G) \leq |g| = \frac{n}{k+1}$.

Now, let g be a GDF of G. Then for every $v \in V$, we have

(1)
$$\sum_{u \in N[v]} g(u) \ge 1 \text{ and}$$

(2)
$$\sum_{u \notin N(v)} g(u) \ge 1.$$

Adding the *n* inequalities in (1), we get $(r+1)|g| \ge n$ and hence $|g| \ge \frac{n}{r+1}$. Similarly $|g| \ge \frac{n}{(n-r-1)+1}$, so that $|g| \ge \frac{n}{k+1}$, where $k = \min\{r, n-r-1\}$. Thus $\gamma_{fg}(G) \ge \frac{n}{k+1}$ and hence $\gamma_{fg}(G) = \frac{n}{k+1}$.

Corollary 2.8. For the cycle C_n on n-vertices, we have

$$\gamma_{fg}(C_n) = \begin{cases} 3 & \text{if } n = 3, \\ 2 & \text{if } n = 4, \\ \frac{n}{3} & \text{if } n \ge 5. \end{cases}$$

Theorem 2.9. For the wheel $W_n = K_1 + C_{n-1}$, we have $\gamma_{fg}(W_n) = \frac{2n-4}{n-3}$.

Proof. Let $V(W_n) = \{v_0, v_1, v_2, \dots, v_{n-1}\}$ and $E(W_n) = \{v_0v_i : 1 \le i \le n-1\} \cup \{v_iv_{i+1} : 1 \le i \le n-2\} \cup \{v_{n-1}v_1\}$. Then $g: V \to [0,1]$ defined by $g(v_0) = 1$ and $g(v_i) = \frac{1}{n-3}$ for $i = 1, 2, \dots, n-1$, is a *GDF* of W_n . Hence $\gamma_{fg}(W_n) \le |g| = \frac{2n-4}{n-3}$. Now, let g be any *GDF* of W_n . Since v_0 is an isolated vertex in \overline{W}_n , we have $g(v_0) = 1$. Also $\sum_{u \notin N(v_i)} g(u) \ge 1, 1 \le i \le n-1$. Adding these (n-1) inequalities, we get $(n-3) \sum_{i=1}^{n-1} g(v_i) \ge (n-1)$. Hence $(n-3)[|g|-1] \ge (n-1)$, so that $|g| \ge \frac{2n-4}{n-3}$. Thus $\gamma_{fg}(W_n) \ge \frac{2n-4}{n-3}$ and hence $\gamma_{fg}(W_n) = \frac{2n-4}{n-3}$.

Theorem 2.10. For any graph G on n vertices $\gamma_{fg}(G \circ K_1) = n$.

Proof. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and let u_1, u_2, \ldots, u_n be the pendant vertices of $G \circ K_1$ adjacent to v_1, v_2, \ldots, v_n , respectively. Then $g: V(G \circ K_1) \to [0,1]$ defined by $g(v_i) = 1$ and $g(u_i) = 0, 1 \le i \le n$, is a GDF of $G \circ K_1$ and hence $\gamma_{fg}(G \circ K_1) \le |g| = n$. Also if g is any GDF of $G \circ K_1$, we have $g(u_i) + g(v_i) \ge 1$ for all $i = 1, 2, \ldots, n$. Hence $|g| \ge n$ so that $\gamma_{fg}(G \circ K_1) \ge n$. Thus $\gamma_{fg}(G \circ K_1) = n$.

Theorem 2.11. For any bipartite graph G, we have $\gamma_f \leq \gamma_{fg} \leq \gamma_f + 1$.

Proof. Let (X, Y) be the bipartition of G with $|X| \leq |Y|$. Obviously $\gamma_f \leq \gamma_{fg}$. Now let h be a γ_f -function of G. Suppose $\sum_{u \in X} h(u) \geq 1$. Let $y \in Y$. Then the function $g: V \to [0,1]$ defined by g(y) = 1 and g(v) = h(v) for $v \neq y$ is a GDF of G and hence $\gamma_{fg}(G) \leq |g| \leq |h| + 1 = \gamma_f + 1$. The proof is similar if $\sum_{u \in Y} h(u) \geq 1$. Suppose $\sum_{x \in X} h(x) < 1$ and $\sum_{y \in Y} h(y) < 1$. Let $\sum_{x \in X} h(x) = 1 - \alpha$ and $\sum_{y \in Y} h(y) = 1 - \beta$ where $0 < \alpha, \beta < 1$. Clearly $\gamma_f(G) = |h| = 2 - \alpha - \beta$ and since $\gamma_f \geq 1$ it follows that $\alpha + \beta \leq 1$. Now let $x \in X$ and $y \in Y$. Then the function $g: V \to [0, 1]$ defined by

$$g(v) = \begin{cases} h(v) + \alpha & \text{if } v = x, \\ h(v) + \beta & \text{if } v = y, \\ h(v) & \text{otherwise} \end{cases}$$

is a *GDF* of *G*, so that $\gamma_{fg}(G) \leq |g| = |h| + \alpha + \beta \leq \gamma_f + 1$.

Corollary 2.12. For any tree T, we have $\gamma \leq \gamma_{fg} \leq \gamma + 1$.

Proof. It follows from Theorem 1.2 that $\gamma_f(T) = \gamma(T)$ and hence the result follows.

Theorem 2.13. Let \mathcal{F} denote the family of trees obtained from two or more stars each having at least two pendant vertices by joining the centres of these stars to a common vertex. Let T be any tree and let $s = \min\{\deg u - 1 : u \text{ is a support of } T\}$. Then,

$$\gamma_{fg}(T) = \begin{cases} \gamma + 1 & \text{if } T \text{ is a star,} \\ \gamma + 1 - \frac{1}{s} & \text{if } T \in \mathcal{F}, \\ \gamma & \text{otherwise.} \end{cases}$$

Proof. If T is neither a star nor a member of \mathcal{F} , then by Theorem 1.2 and Remark 2.4 we have $\gamma \leq \gamma_{fg} \leq \gamma_g$. Also, by Theorem 1.3 and Theorem 1.4, we have $\gamma_g = \gamma$ and hence $\gamma_{fg} = \gamma$.

If T is a star, then obviously $\gamma_{fg} = \gamma + 1$.

Now let $T \in \mathcal{F}$. We claim that $\gamma_{fg}(T) = \gamma + 1 - \frac{1}{s}$. Let u be the centre of T. Let v_1, v_2, \ldots, v_r be the support vertices of T. Let $w_{i1}, w_{i2}, \ldots, w_{it_i}$ be the pendant vertices of T adjacent to v_i , where $1 \leq i \leq r$ and $t_i \geq 2$. Then $s = \min t_i$. Without loss of generality, we assume $s = t_1$. Define $g: V(T) \to [0, 1]$ by

$$g(x) = \begin{cases} 1 - \frac{1}{s} & \text{if } x = v_1, \\ \frac{1}{s} & \text{if } x = w_{1i}, 1 \le i \le t_1 \, (=s), \\ 1 & \text{if } x = v_i, 2 \le i \le r, \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to see that g is a GDF of T and $|g| = \gamma + 1 - \frac{1}{s}$, so that $\gamma_{fg} \leq \gamma + 1 - \frac{1}{s}$.

Now let g be any MGDF of T. We claim that $|g| \ge \gamma + 1 - \frac{1}{s}$. If $g(v_i) = 1$ for all $i, 1 \le i \le r$, then $|g| \ge r + 1 > \gamma + 1 - \frac{1}{s}$. Suppose $g(v_i) < 1$ for at least one i. Let $g(v_1) = 1 - k$, where k > 0. Then $g(w_{1j}) \ge k$, where $1 \le j \le t_1$ and hence $|g| \ge r - 1 + (1 - k) + t_1 k = \gamma + (t_1 - 1)k$. If $k \ge \frac{1}{t_1}$, then $|g| \ge \gamma + (t_1 - 1)\frac{1}{t_1} \ge \gamma + 1 - \frac{1}{s}$. If $k < \frac{1}{t_1}$, let $k = \frac{1}{t_1} - x$, x > 0. Now, since $g(u) + \sum_{i=1}^r \sum_{j=1}^{t_i} g(w_{ij}) \ge 1$ and $\sum_{j=1}^{t_1} g(w_{1j}) \ge t_1 k = t_1(\frac{1}{t_1} - x) = 1 - t_1 x$, it follows that

$$|g| \ge \left(\gamma + 1 - \frac{1}{t_1}\right) - x(t_1 - 1) + t_1 x$$

= $\gamma + 1 - \frac{1}{t_1} + x > \gamma + 1 - \frac{1}{t_1} \ge \gamma + 1 - \frac{1}{s}$.

Thus $|g| \ge \gamma + 1 - \frac{1}{s}$ and the result follows.

Corollary 2.14. Let a, b and c be three positive integers such that $1 < a < \frac{b}{c} < a + 1$ and $\frac{c}{c(1+a)-b}$ is an integer. Then there exists a tree T such that $\gamma(T) = a$ and $\gamma_{fg}(T) = \frac{b}{c}$.

Proof. Let $k = \frac{c}{c(1+a)-b}$. Clearly $k \ge 2$. Let T be a tree obtained from a stars, each having at least k pendant vertices, by joining the centres of these stars to a common vertex. Clearly $\gamma(T) = a$. Further by Theorem 2.13, we have $\gamma_{fg}(T) = \gamma + 1 - \frac{1}{k} = a + 1 - \frac{c(1+a)-b}{c} = \frac{b}{c}$.

Corollary 2.15. For any integer $n \ge 2$, there exists a tree T such that $1 + \gamma(T) - \gamma_{fg}(T) = \frac{1}{n}$.

Proof. Take a = n, $b = n^2 + n - 1$ and c = n in Corollary 2.14.

We now proceed to obtain bounds for γ_{fg} .

Theorem 2.16. For any graph G of order $n, \gamma_{fg}(G) \geq \frac{2n}{n+1}$.

Proof. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and let g be any GDF of G. Let $v \in V$. Then $\sum_{u \in N[v]} g(u) \ge 1$ and $\sum_{u \notin N(v)} g(u) \ge 1$. Adding these inequalities, we get $g(v) + |g| \ge 2$ for all $v \in V$. Hence $\sum_{v \in V} (g(v) + |g|) \ge 2n$, so that $(n+1)|g| \ge 2n$. Thus $|g| \ge \frac{2n}{n+1}$, so that $\gamma_{fg}(G) \ge \frac{2n}{n+1}$.

Remark 2.17. The bound given in Theorem 2.16 is sharp. Let *n* be any integer with $n \equiv 1 \pmod{4}$. Then it follows from Theorem 2.7, that for any $\frac{n-1}{2}$ -regular graph *G* on *n* vertices, $\gamma_{fg}(G) = \frac{2n}{n+1}$.

Theorem 2.18. For any non-regular graph G with $\Delta \leq \frac{n}{2}$, we have $\gamma_{fg}(G) \leq \frac{n}{\delta+1}$.

Proof. Define $g: V \to [0,1]$ by $f(g) = \frac{1}{\delta+1}$ for all $v \in V$.

Let $v \in V$. Then $\sum_{u \in N[v]} g(u) = |N[v]| \frac{1}{\delta+1} \ge (\delta+1) \frac{1}{\delta+1} = 1$. Also $\sum_{u \notin N(v)} g(u) = (n - |N(v)|) (\frac{1}{\delta+1}) \ge \frac{n-\Delta}{\delta+1}$. Since $\Delta \le \frac{n}{2}$ and $\delta < \Delta$ it follows that $\frac{n-\Delta}{\delta+1} \ge 1$ and hence $\sum_{u \notin N(v)} g(u) \ge 1$. Thus g is a GDF of G and hence $\gamma_{fg}(G) \le |g| = \frac{n}{\delta+1}$.

Remark 2.19. The bound given in Theorem 2.18 is sharp. For any graph G on *n*-vertices, it follows from Theorem 2.10 that $\gamma(G \circ K_1) = n = \frac{2n}{\delta+1}$.

3. MINIMAL GLOBAL DOMINATING FUNCTIONS

We recall that, a *GDF* g of a graph G is minimal if $f \leq g$ and $f(v) \neq g(v)$ for at least one $v \in V$, then f is not a GDF of G.

Definition 3.1. Let g be a GDF of a graph G. The boundary set \mathcal{B}_q and the positive set \mathcal{P}_g of g are defined by $\mathcal{B}_g = N_g \cup \overline{N_g}$ where $N_g =$ $\{v \in V : \sum_{w \in N[v]} g(w) = 1\}, \overline{N_g} = \{v \in V : \sum_{w \notin N(v)} g(w) = 1\}$ and $\mathcal{P}_g = \big\{ v \in V : g(v) > 0 \big\}.$

Example 3.2. Consider the graph G given in Figure 3.1. Define $g(v_1) =$ $g(v_2) = g(v_3) = \frac{1}{2}, g(v_4) = g(v_6) = 0$ and $g(v_5) = 1$. Then $\mathcal{P}_g =$ $\{v_1, v_2, v_3, v_5\}, N_g = \{v_1, v_2, v_5, v_6\}$ and $\overline{N_g} = \{v_4\}$. Hence $\mathcal{B}_g = N_g \cup \overline{N_g} =$ $\{v_1, v_2, v_4, v_5, v_6\}.$

Definition 3.3. Let g be a GDF of a graph with positive set \mathcal{P}_q and boundary set $\mathcal{B}_g = N_f \cup \overline{N}_g$. We say that \mathcal{B}_g globally dominates \mathcal{P}_g if for every vertex $v \in \mathcal{P}_g - \mathcal{B}_g$, there exists a vertex $u \in N_g$ such that u is adjacent to v or there exists a vertex $u \in \overline{N}_g$ such that u is not adjacent to v and write $\mathcal{B}_g \to \mathcal{P}_g.$

Theorem 3.4. A GDF g of a graph G is an MGDF if and only if $\mathcal{B}_q \to \mathcal{P}_q$.

Proof. Suppose $\mathcal{B}_g \to \mathcal{P}_g$. Let $v \in \mathcal{P}_g$, suppose $h: V \to [0,1]$ be such that h(v) < g(v) and $h \leq g$. We claim that h is not a *GDF*.

If $v \in \mathcal{B}_g$, then $v \in N_g$ or $v \in N_g$.

Hence $\sum_{w \in N[v]}^{g} g(w) = 1$ or $\sum_{w \notin N(v)}^{g} g(w) = 1$. Since h(v) < g(v), it follows that $\sum_{w \in N[v]} h(w) < 1$ or $\sum_{w \notin N(v)} h(w) < 1$. If $v \notin \mathcal{B}_g$ then $v \in \mathcal{P}_g - \mathcal{B}_g$. Since $\mathcal{B}_g \to \mathcal{P}_g$, there exists $u \in N_g$ such that v is adjacent to u or there exists $w \in \overline{N}_g$ such that v is not adjacent to w. Hence $\sum_{x \in N[u]} g(x) = 1$ or $\sum_{x \notin N(w)} g(x) = 1$ and hence $\sum_{x \in N[u]} h(x) < 1$ or $\sum_{x \notin N(w)} h(x) < 1.$

Thus h is not a GDF of G, so that g is an MGDF of G.

Conversely, suppose g is an MGDF of G. Let $v \in \mathcal{P}_g - \mathcal{B}_g$. Suppose that for every $u \in N[v]$, $\sum_{x \in N[u]} g(x) > 1$ and for every $w \notin N(v)$, $\sum_{x \notin N(w)} g(x) > 1$. Let $\sum_{x \in N[u]} g(x) = 1 + \epsilon_u$ and $\sum_{x \notin N(w)} g(x) = 1 + \epsilon_w$. Let $\epsilon_1 = \min\{\epsilon_u : u \in N[v]\}, \ \epsilon_2 = \min\{\epsilon_w : w \notin N(v)\}$ and $\epsilon = \sum_{x \in N[v]} \sum_{x$

Let $\epsilon_1 = \min\{\epsilon_u : u \in N[v]\}, \epsilon_2 = \min\{\epsilon_w : w \notin N(v)\}$ and $\epsilon = \min\{\epsilon_1, \epsilon_2\}$. Define $h: V \to [0, 1]$ by $h(v) = g(v) - \frac{\epsilon}{2}$ and h(u) = g(u) for all $u \in V - \{v\}$. Clearly h is a GDF of G and h < g, which is a contradiction. Hence $\mathcal{B}_g \to \mathcal{P}_g$.

Definition 3.5. Let f and g be GDFs of G and let $0 < \lambda < 1$. Then $h_{\lambda} = \lambda f + (1 - \lambda)g$ is called a *convex combination* of f and g.

Theorem 3.6. A convex combination of two GDFs of G is again a GDF of G.

Proof. Let f and g be two GDFs of G. Let $h_{\lambda} = \lambda f + (1 - \lambda)g$, where $0 < \lambda < 1$. Let $v \in V$. Then $\sum_{w \in N[v]} h_{\lambda}(w) = \sum_{w \in N[v]} (\lambda f(w) + (1 - \lambda)g(w)) = \lambda \sum_{w \in N[v]} f(w) + (1 - \lambda) \sum_{w \in N[v]} g(w) \ge \lambda \cdot 1 + (1 - \lambda) \cdot 1 = 1$. Similarly $\sum_{w \notin N(v)} h_{\lambda}(w) \ge 1$. Hence h_{λ} is a GDF of G.

Remark 3.7. A convex combination of two MGDFs of G need not be an MGDF of G. For example, consider the graph given in Figure 3.2.

Define $f: V \to [0,1]$ by $f(v_1) = f(v_2) = f(v_3) = f(v_4) = \frac{1}{2}, f(v_5) = 0$ and $f(v_6) = 1$, and $g: V \to [0,1]$ by $g(v_1) = g(v_2) = g(v_3) = \frac{1}{2}, g(v_4) = g(v_6) = 0$ and $g(v_5) = 1$. It is easy to verify that f and g are GDFs of G. Also $\mathcal{B}_f = \{v_1, v_2, v_4, v_6\}, \mathcal{P}_f = \{v_1, v_2, v_3, v_4, v_6\}, \mathcal{B}_g = \{v_1, v_2, v_4, v_5, v_6\}$ and $\mathcal{P}_g = \{v_1, v_2, v_3, v_5\}$. Clearly $\mathcal{B}_f \to \mathcal{P}_f$ and $\mathcal{B}_g \to \mathcal{P}_g$ and hence f and gare MGDFs of G. But h_λ is not an MGDF for $\lambda = \frac{1}{2}$, since the boundary set of h_λ does not globally dominate the positive set of h_λ .

Theorem 3.8. Let f and g be two minimal GDFs of G and let $0 < \lambda < 1$. Then $h_{\lambda} = \lambda f + (1 - \lambda)g$ is a minimal GDF of G if and only if $(N_f \cap N_g) \cup (\overline{N_f} \cap \overline{N_g}) \rightarrow \mathcal{P}_f \cup \mathcal{P}_g$. **Proof.** We prove that $\mathcal{B}_{h_{\lambda}} = (N_f \cap N_g) \cup (\overline{N_f} \cap \overline{N_g})$ and $\mathcal{P}_{h_{\lambda}} = \mathcal{P}_f \cup \mathcal{P}_g$. The result is then immediate from Theorem 3.4. If $v \notin \mathcal{P}_f \cup \mathcal{P}_g$, then $f(v) = g(v) = h_{\lambda}(v) = 0$. Also if $v \in \mathcal{P}_f$, then $h_{\lambda}(v) \ge \lambda f(v) > 0$. Thus $\mathcal{P}_{h_{\lambda}} = \mathcal{P}_f \cup \mathcal{P}_g$.

Now, suppose $v \in (N_f \cap N_g) \cup (\overline{N_f} \cap \overline{N_g})$. If $v \in (N_f \cap N_g)$, then $\sum_{w \in N[v]} h_{\lambda}(v) = \lambda \sum_{w \in N[v]} f(v) + (1 - \lambda) \sum_{w \in N[v]} g(v) = \lambda + (1 - \lambda) = 1$. Also if $v \in \overline{N_f} \cap \overline{N_g}$, then $\sum_{w \notin N(v)} h_{\lambda}(v) = \lambda \sum_{w \notin N(v)} f(v) + (1 - \lambda)$ $\sum_{w \notin N(v)} g(v) = \lambda + (1 - \lambda) = 1$. A similar calculation shows that if $v \notin (N_f \cap N_g) \cup (\overline{N_f} \cap \overline{N_g})$, then $h_{\lambda}(v) > 1$. Hence $\mathcal{B}_{h_{\lambda}} = (N_f \cap N_g) \cup (\overline{N_f} \cap \overline{N_g})$.

Remark 3.9. The above theorem shows that if f and g are MGDFs of G then either all convex combinations of f and g are MGDFs or no convex combination of f and g is an MGDF.

Conclusion and Scope. As in the case of minimal dominating functions, it follows from Theorem 3.8 that f and g are MGDFs of G, then either all convex combinations f and g are MGDFs or no convex combinations of f and g is an MGDF. Hence one can introduce and study the concepts analogus to universal minimal dominating functions [5], basic minimal dominating functions [2] and convexity graphs [4] with respect to global dominating functions. Results in these directions will be reported in subsequent papers.

Acknowledgement

We are thankful to the Department of Science and Technology, New Delhi for its support through the project SR/S4/MS:282/05, awarded to the first author.

References

- S. Arumugam and R. Kala, A note on global domination in graphs, Ars Combin. 93 (2009) 175–180.
- [2] S. Arumugam and K. Rejikumar, *Basic minimal dominating functions*, Utilitas Mathematica 77 (2008) 235–247.
- [3] G. Chartrand and L. Lesniak, Graphs & Digraphs (Fourth Edition, Chapman & Hall/CRC, 2005).
- [4] E.J. Cockayne, G. MacGillivray and C.M. Mynhardt, Convexity of minimal dominating functions of trees-II, Discrete Math. 125 (1994) 137–146.

- [5] E.J. Cockayne, C.M. Mynhardt and B. Yu, Universal minimal total dominating functions in graphs, Networks 24 (1994) 83–90.
- [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., 1998).
- [7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., 1998).
- [8] S.M. Hedetniemi, S.T. Hedetniemi and T.V. Wimer, Linear time resource allocation algorithms for trees, Technical report URI -014, Department of Mathematics, Clemson University (1987).
- [9] E. Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci. 23 (1989) 377–385.
- [10] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approch to the Theory of Graphs (John Wiley & Sons, New York, 1997).

Received 19 September 2008 Revised 12 January 2009 Accepted 12 January 2009