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Abstract

The periphery graph of a median graph is the intersection graph of
its peripheral subgraphs. We show that every graph without a univer-
sal vertex can be realized as the periphery graph of a median graph.
We characterize those median graphs whose periphery graph is the join
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of two graphs and show that they are precisely Cartesian products of
median graphs. Path-like median graphs are introduced as the graphs
whose periphery graph has independence number 2, and it is proved
that there are path-like median graphs with arbitrarily large geodetic
number. Peripheral expansion with respect to periphery graph is also
considered, and connections with the concept of crossing graph are
established.
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peripheral expansion.
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1. Introduction

Median graphs are one of the most studied classes of graphs, cf. a survey
containing over 50 characterization [17] and the references therein. Several
applications of median graphs have been found, in particular in recent stud-
ies in phylogenetics [5, 13]. A strong connection between median graphs
and triangle free-graphs was established in [15] by which both classes have
roughly the same recognition complexity. Another very useful result is a
characterization of finite median graphs via a (finite) sequence of contrac-
tions that ends with the one-vertex graph, where at each step a so-called
peripheral subgraph is contracted or deleted [19]. In terms of convexity
theory peripheral subgraphs in median graphs can be described as minimal
half-spaces, and they play a similar role also in some generalizations of me-
dian graphs, where a more strict type of convexity applies, cf. [2, 6, 11, 21].

It was shown in [10] that given a geodetic set S of a median graph,
every periphery contains a vertex from S; this yields the concept of the
periphery transversal number as the smallest number of vertices that meet all
peripheral subgraphs. Moreover, median graphs with geodetic number 2 and
those with periphery transversal number 2 coincide [1]. Hence it is natural to
ask whether there is a general connection between the geodetic number of a
median graph and the structure that is derived from intersecting peripheral
subgraphs. For this purpose we introduce the periphery graph P (G) of a
median graph G as the graph whose vertices are peripheral subgraphs in G
and two vertices are adjacent in P (G) if and only if the peripheral subgraphs
intersect.

Several intersection concepts on median graphs and partial cubes have
been studied so far [2, 8, 16, 18, 22]. It turns out that the periphery graph
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is closely related to the crossing graph that was introduced by Bandelt and
Chepoi [2] and independently by Klavžar and Mulder [18]. In fact, as we
show in Section 3, unless a median graph G is a prism, the periphery graph
of G is an induced subgraph of the crossing graph of G. In this paper we
answer the following questions: which graphs can be realized as the periphery
graph of some median graph, what are the periphery graphs of Cartesian
products, and how is the periphery graph related to the peripheral contraction
and expansion. We also consider its relation with geodetic number, and
show that there are median graphs whose periphery graph has independence
number 2, and have arbitrarily large geodetic number.

The paper is organized as follows. In the next section we fix the nota-
tion, and state some basic observations. In Section 3 we establish a useful
connection between the crossing graph and the periphery graph of a median
graph. Then in Section 4 we show that the periphery graph of a median
graph G is the join of two graphs S and T if and only if G = H2K and
P (H) = S, P (K) = T . In Section 5 it is described how the peripheral
expansion affects the periphery graph of a median graph.

2. Notation and Basic Observations

All graphs considered in this paper are undirected, simple and finite. The
distance d (or dG when G is not clear from the context) is the usual shortest
path distance. A shortest path between vertices u and v will be called a
u, v-geodesic. The set of vertices on all u, v-geodesics is called the interval
between u and v, denoted I(u, v). A subset S of vertices in a graph G is
convex in G if I(u, v) ⊆ S for any u, v ∈ S. It is well-known that convex sets
in median graphs enjoy the Helly property, that is, any family of pairwise
non-disjoint convex sets has a common intersection.

The Cartesian product G2H of graphs G and H is the graph with the
vertex set V (G) × V (H) where vertices (g, h) and (g ′, h′) are adjacent if
gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H). It is well-known that
for connected graphs G and H, dG2H((g, h), (g′ , h′)) = dG(g, g′)+dH(h, h′).
Cartesian products of the form H2K2 are called prisms.
For a connected graph and an edge xy of G we denote

Wxy = {w ∈ V (G) | d(x,w) < d(y, w)}.

Note that if G is a bipartite graph then V (G) = Wab ∪ Wba holds for any
edge ab. Next, for an edge xy of G let Uxy denote the set of vertices u that
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are in Wxy and have a neighbor in Wyx. Sets in a graph that are Uxy for
some edge xy will be called U -sets. Similarly we define W -sets. To simplify
the notation, Wxy and Uxy will also denote the subgraph induced by these
sets. It should be clear from the context what is meant in each case.

Note that U -sets and W -sets are convex in median graphs. Moreover,
a bipartite graph G is a median graph if and only if all its U -sets are convex
[3]. If for some edge xy in a median graph, Wxy = Uxy, we call the set (the
subgraph) Uxy peripheral set (subgraph) or periphery.

Edges e = xy and f = uv of a graph G are in the Djoković-Winkler
relation Θ [12, 23] if dG(x, u)+dG(y, v) 6= dG(x, v)+dG(y, u). Relation Θ is
reflexive and symmetric. If G is bipartite, then Θ can be defined as follows:
e = xy and f = uv are in relation Θ if d(x, u) = d(y, v) and d(x, v) = d(y, u).
It is well-known that the relation Θ is an equivalence relation on the edge
set of every median graph, and the classes of the corresponding partition
will be called Θ-classes. For a Θ-class we will use the notation

Fab = {f |f ∈ E(G), eΘf}

where e has endvertices a and b. We say that a Θ-class Fab is peripheral (or
that Θ-class induces a periphery) if Wab = Uab or Wba = Uba.

Lemma 1 [19]. Let G be a median graph. Then for any edge ab of G the
set Wab contains at least one periphery.

Let G be a median graph. The intersection graph of peripheries (or periphery
graph for short) P (G) is the graph whose vertices are peripheries in G and
two vertices in P (G) are adjacent if the corresponding peripheries share a
common vertex.

Given an arbitrary graph G, a set S of its vertices is called geodetic set
of G if for every vertex x ∈ V (G) there exist u, v ∈ S such that x ∈ I(u, v).
The geodetic number g(G) of a graph G is the least size of a geodetic set
in G.

Let G be a median graph. We say that a set S is a periphery transversal
if every peripheral subgraph of G contains a vertex of S. We denote by
pt(G) the size of a minimum periphery transversal in a median graph G.
Since every geodetic set is periphery transversal [10],

pt(G) ≤ g(G).
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Because every set of pairwise disjoint peripheries in G corresponds to an
independent set in P (G), we derive that

α(P (G)) ≤ pt(G)

where α(G) is the independence number of G.

A clique-cover of size k of a graph G is a partition of the vertex set
V (G) into C1, C2, . . . , Ck, such that each Ci, 1 ≤ i ≤ k, induces a complete
subgraph. The clique-covering number κ(G) is the cardinality of a minimum
clique-cover in G.

Proposition 2. Let G be a median graph. Then pt(G) = κ(P (G)).

Proof. Let P be a periphery transversal of G and k = pt(G). Then, for
xi ∈ P let Pi = {U1, U2, . . . , Uki

} be the set of peripheral sets in G that
contain xi. In P (G) vertices of Pi form a clique (since they all intersect
in xi). Therefore P1, P2, . . . , Pk yields a clique cover of P (G). We infer
pt(G) ≥ κ(P (G)).

Let C1, C2, . . . , Cl be a clique cover of P (G). Each Ci consists of vertices
that correspond to peripheries in G that pairwise intersect. These are convex
sets, thus their common intersection is nonempty by the Helly property.
Hence pt(G) ≤ κ(P (G)).

A median graph is called path-like if and only if α(P (G)) = 2 (that is, no
three peripheries are pairwise disjoint in G). Clearly path-like trees are
precisely paths. Using Lemma 1, we derive a simple characterization of
path-like median graphs.

Proposition 3. A median graph is path-like if and only if no three W -sets
in G are pairwise disjoint.

Proof. Suppose G is a path-like median graph. Then no three periph-
eral sets are pairwise disjoint. Suppose to the contrary that there are three
W -sets that are pairwise disjoint. Then by Lemma 1 there exist three pe-
ripheries in these three W -sets, respectively, thus these three peripheries
are also pairwise disjoint, a contradiction. The converse is clear since every
peripheral set is a W -set.

Using the above observations and propositions, we have the following straight-
forward
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Remark 4. Every median graph with geodetic number 2 is path-like.

3. Periphery Graph and Crossing Graph of a Median Graph

For a median graph G the crossing graph G# is the graph whose vertices
are the Θ-classes of G and two vertices are adjacent if there exists a C4 that
contains edges of both Θ-classes (we say that these two Θ-classes cross).
The concept of the crossing graph was introduced by Bandelt and Chepoi
under the name incompatibility graph [2], and independently by Klavžar and
Mulder who considered a more general case of partial cubes [18], see also [9]
for a different generalization of the crossing graph concept.

Let G be a median graph and ab ∈ E(G) such that P = Uab = Wab is a
periphery and Uba 6= Wba. Then P corresponds to a vertex in P (G), and the
Θ-class Fab = {xy : x ∈ Uab, y ∈ Uba} corresponds to a vertex in G#. Let
uv be another edge such that P ′ = Uuv = Wuv. If P ∩P ′ 6= ∅ then it is clear
that Fab and Fuv cross on some C4. Conversely, if Fab and Fuv are adjacent
in G# then also P and P ′ intersect and there is an edge between them in
P (G). By identifying the peripheries Uab = Wab for which Uba 6= Wba with
their corresponding Θ-classes Fab, we derive that the subgraph of P (G)
induced by these peripheries is an induced subgraph of G#. Consequently,
if in G there are no peripheries such that both Uab = Wab and Uba = Wba

hold then P (G) is an induced subgraph of G#. Note that this happens
precisely when G cannot be realized as the prism H2K2 for some subgraph
H (that corresponds to some Wab = Uab). We extract these observations in
the following proposition.

Proposition 5. Let G be a median graph such that G is not isomorphic to
H2K2 for some (median) graph H. Then the periphery graph P (G) is an
induced subgraph of the crossing graph G#. If in addition all Θ-classes are
peripheral, then P (G) = G#.

Consider for instance the bipartite wheel BWn that consists of the vertex u
adjacent to n vertices x1, . . . , xn, and there are another n vertices y1, . . . , yn,
where yi is adjacent to xi and xi+1 (modulo n) for i = 1, . . . , n. There are
n peripheries of BWn that are isomorphic to the paths P3, and there are
exactly n Θ-classes that can be written as Fuxi

. Hence by Proposition 5 we

infer that P (BWn) = BW#
n which is isomorphic to Cn, as observed also in

[18]. As another example consider hypercubes G = Qn. For every Θ-class
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Fab in a hypercube G, the graph obtained from G by deletion of edges from
Fab consists of two hypercubes, i.e., Wab = Uab and Wba = Uba. Thus G# =
Kn and P (G) is obtained from Kn by deleting edges of a perfect matching.
Finally, there can be many Θ-classes in a median graph that do not induce
any periphery. For instance in the square grid Pn2Pm, we only have 4
peripheries, but n+m−2 Θ-classes. Note that (Pn2Pm)# = Kn−1,m−1 and
P (Pn2Pm) = C4 being an induced subgraph of (Pn2Pm)#, as follows from
Proposition 5.

Klavžar and Mulder proved that any graph can be realized as the cross-
ing graph of some median graph [18]. The natural question appears: which
graphs can be realized as the periphery graph of a median graph.

The vertex u in a graph G is called universal if it is adjacent to all other
vertices in G.

Theorem 6. Let H be a graph. Then there exists a median graph G such
that P (G) = H if and only if H has no universal vertices.

Proof. First suppose that H has a universal vertex x, and assume that
there is a median graph G such that P (G) = H. Then x corresponds to
some periphery Wab = Uab. By Lemma 1 there is a periphery contained in
Wba, and let y be its corresponding vertex in P (G). Clearly, x and y are not
adjacent since Wab and Wba are disjoint, a contradiction. This direction is
proved.

For the converse let H be a graph without universal vertices. We will
use the construction of the simplex graph, introduced by Bandelt and van
de Vel [4]. Given an arbitrary graph G the simplex graph σ(G) of G has
simplices of G as vertices (where simplices are sets of vertices that induce
a complete subgraph of G, including the empty set), and two simplices are
adjacent in σ(G) if and only if they are comparable and differ in one vertex.
It is well-known that the simplex graph of any graph is a median graph, and
its Θ-classes are induced by edges between the vertex ∅ (of degree |V (G)|)
and one-element simplices, each corresponding to a vertex of G. Note that
two Θ-classes in σ(G) cross if and only if the corresponding vertices are
adjacent in G, hence (σ(G))# = G, see [18]. We claim that for a vertex
u ∈ V (G), the subset W{u}∅ in σ(G) (of vertices closer to the simplex {u}
than to the simplex ∅) is peripheral. Indeed, if S ∈ W{u}∅ we infer that
u ∈ S, and S is adjacent to S \ {u} in σ(G), and S \ {u} is clearly in W∅{u}.
Hence every Θ-class in σ(G) induces a periphery.
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Now, since H has no universal vertex we claim that σ(H) is not a prism
(Cartesian product with K2). For, if σ(H) would be a prism, σ(H) =
M2K2, then there would exist a Θ-class F{u}∅ that would cross with all other
Θ-classes. Hence for any x ∈ V (H) there would exist a simplex {u, x} ∈
σ(H) which implies that u and x are adjacent in H. This in turn implies
that u is a universal vertex, a contradiction with the assumption on H.
Thus σ(H) is not a prism, and so by Proposition 5, P (σ(H)) = (σ(H))#.
As noted above (σ(H))# = H, and so P (G) = H for G = σ(H). The proof
is complete.

By the well-known Mycielski construction [20] there are triangle-free graphs
(graphs G with ω(G) = 2), with arbitrarily large chromatic number. By
duality of these notions, namely, α(G) = ω(G) and κ(G) = χ(G), we in-
fer that there are graphs with independence number equal to 2 that have
arbitrarily large clique-covering number. Since Mycielski construction gives
connected graphs (thus with no isolated vertices), their complements have
no universal vertices. Such graphs can thus be realized as periphery graphs
P (G) of median graphs G, which are path-like median graphs. This fact
was observed implicitly already in [2].

Corollary 7. There are path-like median graphs with arbitrarily large pe-
riphery transversal number, and (by consequence) arbitrarily large geodetic
number.

4. Periphery Graphs of Cartesian Products

Let A⊕B denote the join of graphs A and B, i.e., the graph obtained from
the disjoint union of A and B by joining every vertex of A with every vertex
of B by an edge.

Brešar and Klavžar proved the following theorem for crossing graphs of
median graphs.

Theorem 8 [7]. Let G be a median graph. Then G# = A ⊕ B if and only
if G = H2K, where H# = A and K# = B.

We prove in this section an analogous result for the periphery graph. We
start with the easier direction.

Proposition 9. Let H and K be median graphs. Then P (H2K) = P (H)⊕
P (K).
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Proof. Using the distance formula in the Cartesian product G = H2K
we easily derive that the W -sets in G are precisely of the form Wx1y1

2K or
H2Wx2y2

, where x1y1 is an edge in H and x2y2 is an edge in K. Obviously,
Wx1y1

2K (resp. H2Wx2y2
) is a periphery in G if and only if Wx1y1

is
a periphery in H (resp. Wx2y2

is a periphery in K). Thus V (P (G)) =
V (P (H)) ∪ V (P (K)).

Two peripheries of the form Wx1y1
2K (H2Wx2y2

, respectively) in G in-
tersect if and only if the corresponding peripheries in H (resp. K) intersect.
Moreover, any periphery of the form Wx1y1

2K intersects with any periphery
of the form H2Wx2y2

, since Wx1y1
2Wx2y2

is a subset of both Wx1y1
2K and

H2Wx2y2
. Thus in P (G) any vertex corresponding to a vertex in V (P (H))

is adjacent to all vertices in V (P (K)). Hence P (G) = P (H) ⊕ P (K).

From the proof of Proposition 9 we derive the following

Corollary 10. A Θ-class in the Cartesian product of graphs is peripheral if
and only if the corresponding Θ-class is peripheral in a factor.

Let H be a subgraph of G. Then ∂H is the set of all edges xy of G with
x ∈ H and y /∈ H. Imrich and Klavžar [14] proved that an induced connected
subgraph H of a bipartite graph G is convex if and only if no edge of ∂H
is in relation Θ with any edge of H. This result is known under the name
Convexity Lemma.

Lemma 11. Let G be a median graph. Then G is a prism if and only if G
contains a Θ-class that crosses with every peripheral Θ-class.

Proof. If G = H2K2 then Θ-class that corresponds to K2 obviously
crosses with every other Θ-class of G.

Suppose that Fab is a Θ-class that crosses with every peripheral Θ-
class of G. We claim that Wab = Uab and Wba = Uba. Suppose to the
contrary and without loss of generality that there is a vertex u ∈ Wab \ Uab

and it is adjacent to a vertex v ∈ Uab. By Convexity Lemma, uv is not in
relation Θ to any of the edges of the subgraph induced by Uab. Hence the
set of edges Fuv is completely contained in the subgraph induced by Wab

and Wuv ⊂ Wab.

Moreover, we claim that Wuv ⊂ Wab \ Uab. Suppose to the contrary
that there is a vertex z ∈ Wuv ∩ Uab. Since z is closer to u than to v and
G is bipartite, d(u, z) = k − 1 if k = d(v, z). But this contradicts the fact
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that Uab is convex. By Lemma 1, Wuv contains at least one periphery and
the Θ-class that induces it cannot cross Fab since Wuv ⊂ Wab \ Uab, a final
contradiction.

Lemma 12. Let G be a median graph, P (G) = T ⊕S and Si ∈ S and Ti ∈ T
arbitrary peripheral subgraphs. Then for every Θ-class E there exists e ∈ E
that is contained in Si or Ti.

Proof. Let Si ∈ S and Ti ∈ T be arbitrary peripheral subgraphs. Since
P (G) = T ⊕S, Si and Ti intersect in G. Suppose to the contrary that there
is a Θ-class E with no edge in Si nor in Ti. Let e = ab ∈ E. Note that
Si and Ti lie in the same W -set with respect to ab, say Si, Ti ∈ Wab. By
Lemma 1, Wba contains a peripheral subgraph that is disjoint with both Si

and Ti, a contradiction since P (G) is a join.

Theorem 13. Let G be a median graph. Then P (G) = T ⊕S if and only if
G = H2K and P (H) = S, P (K) = T .

Proof. By Proposition 9 one direction is proved: the periphery graph of
the Cartesian product of median graphs is the join of the periphery graphs
of the factors. To prove the converse we distinguish three cases.

First, suppose that G is a prism, G = H2K2. Then P (G) = P (H) ⊕
P (K2) by Proposition 9. Let P (K2) = {A,B}. Note that in any represen-
tation of P (G) as the join, say P (G) = S ⊕ T , peripheries A and B have
to be in the same partition, say S, since they are disjoint. If S ⊕ T is a
different join representation of P (G) as P (H) ⊕ P (K2), there must be a
vertex C in S. Hence P (H) = S \ {A,B} ⊕ T is also the join. By using
induction (which is applicable since H is smaller than G), H = H ′

2H ′′

where P (H ′) = S \ {A,B} and P (H ′′) = T . Thus G = H ′
2K22H ′′ and

P (H ′
2K2) = S, P (H ′′) = T .

If G is not a prism and every Θ-class is peripheral, then by Proposition
5, G# = P (G) = S ⊕ T . Hence by Theorem 8, G = H2K, where H# = S
and K# = T , and by Corollary 10, P (H) = S and P (K) = T .

Finally, assume that P (G) = S ⊕ T , G is not a prism and G contains
non-peripheral Θ-classes. The first and main step in the proof is to show
that then also G# is a join.

By Ti let us denote the peripheral subgraph that is induced by a periph-
eral Θ-class T ′

i (recall that if G is not a prism, every peripheral Θ-class in-
duces exactly one peripheral subgraph). Also we denote by S ′ (T ′, resp.)
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the set of Θ-class that induce peripheries from S (T resp.). Let P denote the
set of non-peripheral Θ-classes that do not cross with some Θ-class from S ′

and let R denote the set of non-peripheral Θ-classes that do not cross with
some Θ-class from T ′. By Lemma 11, every non-peripheral Θ-class is either
in P or in R, since P and R are disjoint (indeed, if there is a Θ-class E in
P ∩ R, then E does not cross with some S ′

i ∈ S′ and E does not cross with
some T ′

i ∈ T ′, a contradiction with Lemma 12). Now let F be an arbitrary
Θ-class in P . As such it does not cross with some Θ-class in S ′. Since Si

and Ti in Lemma 12 were arbitrarily chosen, there is an edge from F in
every peripheral subgraph Ti ∈ T , hence F crosses with every Θ-class T ′

i .
Similarly, any Θ-class in R crosses with every Θ-class S ′

i. To prove that
G# = (P ∪ S′)⊕ (R ∪ T ′) we now only need to show that every vertex in P
is adjacent to every vertex in R.

Suppose to the contrary that there are P ′
i ∈ P and R′

i ∈ R that do
not cross and choose S ′

i ∈ S′ and T ′
i ∈ T ′ such that P ′

iS
′
i /∈ E(G#) and

R′
iT

′
i /∈ E(G#). Since P ′

i and T ′
i cross, there is an edge ab ∈ P ′

i that lies in
the peripheral subgraph Ti. Similarly, there is an edge cd ∈ R′

i in Si. Since
P ′

i and R′
i do not cross, all edges from R′

i lie in the same W -set with respect
to ab, say in Wab, and hence also the whole Si is contained in Wab (since
S′

i and P ′
i do not cross). We may without loss of generality assume that

V (Ti) ⊂ Wdc, since R′
iT

′
i /∈ E(G#). Note that Wcd ∩ Wba = ∅ (otherwise P ′

i

and R′
i would cross). By Lemma 1, Wcd contains a peripheral subgraph A.

Since A∩Ti = ∅ and P (G) = S⊕T , we derive that A = Tj ∈ T , j 6= i. Since
P ′

i is a non-peripheral Θ-class, Wba 6= Uba, and Wba contains a peripheral
subgraph B. From B∩Si = ∅ we derive that B intersects with every Ti ∈ T ,
hence B = Sj ∈ S, j 6= i. But now we have two peripheral subgraphs A = Tj

and B = Sj that do not intersect, a contradiction to P (G) = S ⊕ T . Hence
G# = (P ∪ S′) ⊕ (R ∪ T ′).

Now, by Theorem 8, G = H2K where H# = P ∪ S′ and K# = R∪ T ′.
By Corollary 10, S (T , respectively) corresponds to the set of peripheral
Θ-classes of H (K, respectively), thus P (H) = S and P (K) = R, which
completes the proof.

Corollary 14. The Cartesian product G2H of two median graphs is path-
like if and only if both G and H are path-like.

It is clear from Proposition 9 that a clique in P (G) with a clique in P (H)
forms a clique in P (G2H). Thus the minimum number of cliques needed



28 B. Brešar, M. Changat, A.R. Subhamathi and ...

to cover the vertices of P (G2H) will be the maximum of the clique-cover
numbers of P (G) and P (H).

Proposition 15. For median graphs G and H, κ(P (G2H)) =
max{κ(P (G)), κ(P (H))}.

Combined with Proposition 2 we obtain also the following result.

Corollary 16. Let G and H be median graphs. Then pt(G2H) =
max{pt(G), pt(H)}.

As an application of Theorem 13 we can characterize graphs G for which
P (G) is the complete bipartite graph Km,n. Since Km,n is of the form
P (H)⊕P (K), peripheries in H and K are pairwise disjoint and converse is
also true. We state this observation as a remark.

Remark 17. The periphery graph P (G) is the complete bipartite graph if
and only if G = H2K where H and K are median graphs having no pairwise
intersecting peripheries.

As another application of Theorem 13 we note that P (G) = C4 implies
that G = H2K, where H and K are median graphs having exactly two
peripheries. By Lemma 1 it is easy to derive that median graphs with only
two peripheries are just paths. Hence P (G) = C4 if and only if G is the grid
graph, G = Pn2Pm for arbitrary n,m ≥ 2.

In view of Theorem 6 and Theorem 13 it would be interesting to char-
acterize some natural classes of graphs as periphery graphs of some median
graphs. For instance, for which median graphs, their periphery graph is
connected (2-connected, tree, chordal, . . .). In particular, is there a nice
structural characterization of path-like median graphs?

5. Peripheral Expansion

In the main result of this section we describe, what happens with the pe-
riphery graph of a median graph after we perform one step of peripheral
expansion (the construction that we mentioned in the introduction, and is
defined formally below).

Let H be a connected graph and P its convex subgraph, meaning the
subgraph, induced by a convex subset V (P ) of V (H). Then the peripheral
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expansion of H along P is the graph G obtained as follows. Take the disjoint
union of a copy of H and a copy of P . Join each vertex u in the copy of
P with the vertex that corresponds to u in the copy of H (actually in
the subgraph P of H). We say that the resulting graph G is obtained by a
(peripheral) expansion from H along P , and denote this operation in symbols
by G = pe(H,P ). We also say that we expand P in H to obtain G. We will
denote by H also the subgraph of G that corresponds (and is isomorphic to)
H, and by P ′ the subgraph of G induced by V (G) \ V (H).

As we noted in the introduction, a graph G is a median graph if and
only if it can be obtained from K1 by a sequence of peripheral expansions,
a result due to Mulder [19].

Lemma 18. Let G = pe(H,P ) and P ′ the subgraph of G induced by V (G)\
V (H). Let S be a peripheral subgraph of H such that P 6⊆ S and X =
P ∩ S 6= ∅. Let X ′ be the subgraph of G induced by vertices in P ′ that are
adjacent to a vertex from X. Then the subgraph S ′ = S ∪X ′ is a peripheral
subgraph in G.

Proof. We will use the notation W H
ab for a W -set in H and W G

ab for the
corresponding W -set in G. Since S is a peripheral subgraph of H there is
an edge ab ∈ E(H) such that V (S) = W H

ab = UH
ab . We claim that V (S ′) =

WG
ab = UG

ab.

Let a′ be an arbitrary vertex in X. Since X ⊂ S, there is a vertex
b′ ∈ UH

ba , adjacent to a′. We note that b′ ∈ P for otherwise we obtain a
contradiction to convexity of P (since b′ lies on a shortest path from a′ to
any vertex of P ∩ (H \ S)).

Let c′ be a vertex in V (X ′). Then the unique neighbor c of c′ that lies
in X, lies also in UG

ab; c has a unique neighbor b1 in UG
ab which lies in P by

the previous paragraph. Hence b′1 which is the neighbor of b1 in P ′ is also
the neighbor of c′. This implies that c′ ∈ UG

ab. Since UH
ab ⊂ UG

ab we derive
that V (S′) ⊆ UG

ab. We claim that V (S ′) is equal to W G
ab. First note that

V (H \ S) is a subset of W H
ba and thus also of W G

ba. Now, any d′ ∈ P ′ \ X ′

has a unique neighbor d in P \ X, and thus d ∈ W G
ba. The complement of

(H \S)∪(P ′ \X ′) in G is precisely S ′, thus V (S ′) = W G
ab. Since V (S ′) ⊆ UG

ab,
we derive W G

ab = UG
ab and so S′ is a peripheral subgraph.

Proposition 19. Let G = pe(H,P ) and P ′ the (peripheral) subgraph of G
induced by V (G) \ V (H). Then one of the following cases appear:
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(i) If P = H, then P (G) = P (H) ⊕ P (K2).

(ii) If P is equal to some periphery, then P (G) = P (H).

(iii) Let P be a proper subgraph of some periphery in H and let S1, S2,
. . . , Sk be peripheries in H such that P ⊂ Si, i ∈ {1, . . . , k}. Then
V (P (G)) = V (P (H)) \ {S1, . . . , Sk} ∪ {P ′}, subgraph of P (H), induced
by vertices V (P (H)) \ {S1, . . . , Sk}, is an induced subgraph of P (G),
and for T ∈ V (P (H)) \ {S1, . . . , Sk}, P ′T ∈ E(P (G)) if and only if P
and T intersect in H.

(iv) If P is not a subgraph of any periphery (and is not equal to H), then
P (G) is obtained from P (H) by adding a vertex that is adjacent to all
those peripheries in P (H) that have a nonempty intersection with P .

Proof. Let G = pe(H,P ) and P ′ the subgraph of G induced by V (G) \
V (H).

(i) If P = H, then G = H2K2 and P (G) = P (H)⊕P (K2) by Proposi-
tion 9.

(ii) Suppose that P is a peripheral subgraph in H. Peripheral subgraphs
in H that have an empty intersection with P obviously stay peripheral also
in G and they intersect in G if and only if they intersect in H. The sub-
graph P is clearly no longer peripheral in G but P ′ is (hence in P (G) the
vertex that corresponds to P in P (H) is replaced by the vertex correspond-
ing to P ′). By Lemma 18, every peripheral subgraph S in H that has a
nonempty intersection with P corresponds to a peripheral subgraph S ′ in G
that has a nonempty intersection with P ′. Clearly P ′ does not intersect with
peripheries that have an empty intersection with P . Hence P (G) = P (H).

(iii) It is clear that a peripheral subgraph Si of H that contains P as
a proper subgraph is not peripheral in G and that P ′ is a peripheral sub-
graph of G. Peripheral subgraphs in H that are disjoint with P clearly
stay peripheral also in G, and peripheries in H that intersect with P (but
do not contain P as a proper subgraph) only become larger in G after pe-
ripheral expansion by Lemma 18. Since we do not obtain any other new
peripheral subgraph in G except P ′ after peripheral expansion, we derive
V (P (G)) = V (P (H))\{S1, . . . , Sk}∪{P

′} where S1, . . . , Sk are peripheries in
H that properly contain P . If two peripheries from V (P (H)) \ {S1, . . . , Sk}
are adjacent in P (H) they are clearly also adjacent in P (G), and any
T ∈ V (P (H)) \ {S1, . . . , Sk} is adjacent to P ′ in P (G) if the corresponding
periphery has a nonempty intersection with P in H by Lemma 18 (we may
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use it since P is not contained in T ). If T ∩ P = ∅ in H, then obviously
T ∩ P ′ = ∅ in G.

(iv) The result of the last case follows immediately by using Lemma 18.
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[10] B. Brešar and A. Tepeh Horvat, On the geodetic number of median graphs,
Discrete Math. 308 (2008) 4044–4051.

[11] M. Chastand, Fiber-complemented graphs, I. Structure and invariant sub-
graphs, Discrete Math. 226 (2001) 107–141.
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[15] W. Imrich, S. Klavžar and H.M. Mulder, Median graphs and triangle-free
graphs, SIAM J. Discrete Math. 12 (1999) 111–118.
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haim/Wien/Zürich, 1990) 459–477.

[20] J. Mycielski, Sur le coloriage des graphs, Colloq. Math. 3 (1955) 161–162.

[21] I. Peterin, A characterization of planar median graphs, Discuss. Math. Graph
Theory 26 (2006) 41–48.

[22] A. Vesel, Characterization of resonance graphs of catacondensed hexagonal
graphs, MATCH Commun. Math. Comput. Chem. 53 (2005) 195–208.

[23] P. Winkler, Isometric embeddings in products of complete graphs, Discrete
Appl. Math. 7 (1984) 221–225.

Received 11 June 2008
Revised 5 January 2009

Accepted 5 January 2009

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

