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Abstract

In [3], Faudree and Gould showed that if a 2-connected graph con-
tains no K 3 and Fs as an induced subgraph, then the graph is hamil-
tonian. In this paper, we consider the extension of this result to cycles
passing through specified vertices. We define the families of graphs
which are extension of the forbidden pair K4 3 and Fs, and prove that
the forbidden families implies the existence of cycles passing through
specified vertices.
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1. INTRODUCTION

In this paper, we only consider finite undirected graphs without loops or
multiple edges. For standard graph-theoretic terminology not explained in
this paper, we refer the reader to [2].

For a family {H;, Ho,...,H;} of graphs, a graph G is called an
H{Hy - Hi-free graph if G' contains no induced subgraphs isomorphic to
any H; with ¢ = 1,2,... k. A cycle containing all vertices of a graph is
called hamiltonian cycle. There exists a close relation between forbidden
subgraphs and hamiltonicity. In fact, for ¥ = 1, we can easily see that
a Ps-free graph is a hamiltonian, where P; is a path of length ¢ — 1 (this
is known that a X-free graph is a hamiltonian implies that X = Ps [3]).
For k = 2, Faudree and Gould dertermined all pairs of such forbidden sub-
graphs (not contain Ps), and proved that one of the graphs in the pair must
be isomorphic to K1 3. For convenience, we denote C' = K 3.

Theorem A (Faudree and Gould [3]. Let G be a 2-connected graph of
order n > 10, and let X is one of the ten graphs, which are called as
Cs, Py, Ps, Ps, 21,725,723, B, N, W. If G is CX-free, then G is hamiltonian.

On the other hand, many hamiltonian conditions are generalized to sufficient
conditions for graphs to contain cycles passing through all specified vertices
(see [1, 5]). The purpose of this paper is to generalize Theorem A. For
cases X € {Cs,21,7Z5,7Z3,B, N}, such a generalization have already been
done (for Cs, B, N in [4], for Z1, Z,, Z3 in [6]). In this paper, we focus on
the generalization for case X = Ps. (Note that P;-free graph (i = 4,5,6) is
Ps-free.) For a generalization, we define the following two families of graphs.

Figure 1. C' and Ps

Let G be a graph and S C V(G). We define a family of graphs C(S) as
following. For any F' € C(S), F satisfies the following properties.
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(1) F consists of three paths Py, P, and P such that they have only one
common vertex x and V(F) = V(P;) UV (Py) UV(Ps) (we call x the
root of F),

(2) for any i € {1,2,3}, the end vertex of P; which is not z is contained in
S (we call such a vertex of P; a leaf of F),

(3) for any i € {1,2,3}, internal vertices of P; are contained in V(G)\S
and

(4) E(F) = E(Py) UE(Py) U E(Ps).

We also define a family of graphs Ps(S) as following. For any F' € Ps(S), F
satisfies the following properties,

(1) F is a path of length at least 5 and

(2) the end vertices of F' are contained in S.

If there exist no induced subgraph contained in C'(S) U Ps(S), we call G a
CPs(S)-free graph.

In this paper, we prove the following theorem.

Theorem 1. Let G be a 2-connected graph and S C V(G). If G is CPs(S)-
free, then G contains a cycle D such that S C V(D).

We let 7 (G) denote the set of triples (T'; A, B) of subsets of V(G) such that
{T, A, B} is a partiton of V(G), |T| = 2, A # (), B # (), and no edge of G
joins a vertex in A and a vertex in B.

For a C'Ps(S)-free graph G with S C V(G), the following two lemmas
hold.

Lemma 1. For any x € V(G)\ S, G\ x is a CPs(S)-free graph.

Lemma 2. Let T = {x,y} be a 2-cut set of G with (T;A,B) € T(G). If
ACV(G)\ S, then (G\ A) + zy is a 2-connected C'Pg(S)-free graph.

Proof of Lemmas 1 and 2. We can easily obtain Lemma 1. For every
two vertices in V((G \ A) + xy), there exists a cycle which contains them,
because G is 2-connected. Therefore (G \ A) + xy is 2-conneted.

Suppose that (G \ A) + zy contains an induced subgraph F' € C(S) U
Ps(S). If zy € E(G) or zy ¢ E(F), G contains F, a contradiction. Hence
xy ¢ E(G) and zy € E(F). Let P C G\ B be a shortest path which joins
and y. Now (F'\ zy) U P is an element of C'(S) U Ps(S), and is an induced
subgraph of G, a contradiction. [ |
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2. PROOF OF THEOREM 1

Let G be a 2-connected graph and S C V(G). Suppose G is CPg(S)-free
and there is no cycle D with S C V(D). Take such a graph G and S C V(G)

as
(1) |[V(G)] is as small as possible,

(2) |[V(G)\ S| is as small as possible, subject to (1), and
(3) |E(G)| is as large as possible, subject to (1) and (2).

If V(G)\ S = 0, then by Theorem A there exists a cycle D such that
S C V(D). Hence V(G)\ S # 0. Let z € V(G)\ S. If G\ z is a 2-connected
graph, then by the minimality of |V (G)| and Lemma 1, G \ = contains a
cycle D such that S C V(D). Now D is also a cycle in G with S C V(D),
a contradiction. It follows that there exists (T; A, B) € T(G) with z € T.
Let T = {z,y}.

Claim 1. ANS # 0 and BN S # 0.

Proof of Claim 1. Suppose ANS = (). Then by Lemma 2, (G \ A) + zy is
a 2-connected C Pgs(S)-free graph. By the minimality of |V (G)|, there exists
acycle D C (G\ A)+zy with S C V(D). Since G contains no cycle passing
through all the vertices of S, we may assume zy ¢ E(G) and zy € E(D).
Take an z-y path P C (AU {x,y}). Then (D \ xzy) U P is a cycle passing
through all the vertices of S, a contradiction. [ |

Claim 2. [A|=1or |B| = 1.

Proof of Claim 2. Suppose |A| > 2 and |B| > 2. Let G 4 be a graph such
that V(Ga) = V(G \ A)U{a} and E(Ga) = E(G \ A) U {ax,ay}, where a
is a new vertex. Let Sq = (S\ A) U {a}. (Note that |V (G)| > |V(G4)|.)
Now we show that G 4 is a C'Ps(S4)-free graph. Suppose that G 4 is not
a C'Ps(Sa)-free graph. Let F' € C(Sa) U Ps(S4) be an induced subgraph in
G 4. Then V(F) contains a, otherwise G contains F' as an induced subgraph.
If F e C(S), ais a leaf of F since dg,(a) = 2 and a € S4. On the other
hand, suppose F' € Ps(S) and a is an endvertex of S. Therefore we can
see [{z,y} NV(F)| = 1. Let {z} = {z,y} N V(F). Take an (AN S)-z
path P in (AU {z}) as |V(P)| is as small as possible. Then (F'\ a) U P
belongs to C'(S) U Fs(S), and is an induced subgraph in G, a contradiction.
If F € Ps(S) and a is not an endvertex of S, then V(F') contains z and y.
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Let P’ is z-y path in G and is an induced subgraph in G. Then F'U P’ also
belongs to Ps(S), a contradiction.

By the minimality of |V(G)|, there exists a cycle D4 in G4 such that
Sa CV(Dj4). Hence we obtain an z-y path P4 in G \ A such that SN B C
V(P4). By the same argument as above, there exists an z-y path Pp in
G \ B which satisfies SN A C V(Pp). Now P4 U Pp consists a cycle with
S C V(P4 U Pg), a contradiction. |

Without loss of generality, we may assume |A| = 1. Let A = {a}. Since
ANS #(, we have a € S.

Claim 3. G + xy is a C'Py(S)-free graph.

Proof of Claim 3. Since G is C Ps(S5)-free, we may assume xy ¢ E(G). Let
G’ = G + xy. Suppose that G’ has an induced subgraph F € C(S) U Ps(S).
If xy ¢ E(F), F is an induced subgraph in G, a contradiction. Hence we
may assume that E(F) contains zy. Since ax,ay € E(G) and dg(a) = 2,
we have a ¢ F. Then F \ xy is disconnected. Suppose that F' € C(S).
Let F' be a component of F'\ zy such that F’ contains a root of F. Let
{z} = V(F')n{z,y}. Then F’' + za belongs to C(S), and is an induced
subgraph of G, a contradiction. Next, suppose that F' € Pg(S). Then
(F\ xy) U {za,ya} belongs to Ps(S), and is an induced subgraph of G, a
contradiction. n

By Claim 3 and the maximality of |E(G)|, we may assume zy € E(G). Let
S =S uU{z}.

Claim 4. G is a CPs(S’)-free graph.

Proof of Claim 4. Suppose that G contains F' € C(S”)U Ps(S”). Hence we
may assume that F' contains z as a leaf or an endvertex of F. If y € V(F),
then a ¢ V(F'), and hence (F'\ z) + ay € C(S) U Ps(S), a contradiction. If
y ¢ V(F), then F + ax € C(S) U Ps(95), also a contradiction. |

By Claim 4 and the minimality of |V(G) \ S|, there exists a cycle D with
S’ C V(D). Since S C S’, D contains all vertices of S, which contradicts
the assumption of G and completes the proof of Theorem 1. [ |
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