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Abstract

In [3], Faudree and Gould showed that if a 2-connected graph con-
tains no K1,3 and P6 as an induced subgraph, then the graph is hamil-
tonian. In this paper, we consider the extension of this result to cycles
passing through specified vertices. We define the families of graphs
which are extension of the forbidden pair K1,3 and P6, and prove that
the forbidden families implies the existence of cycles passing through
specified vertices.

Keywords: forbidden subgraph, cycle.

2000 Mathematics Subject Classification: 05C38.



646 T. Sugiyama and M. Tsugaki

1. Introduction

In this paper, we only consider finite undirected graphs without loops or
multiple edges. For standard graph-theoretic terminology not explained in
this paper, we refer the reader to [2].

For a family {H1,H2, . . . ,Hk} of graphs, a graph G is called an
H1H2 · · ·Hk-free graph if G contains no induced subgraphs isomorphic to
any Hi with i = 1, 2, . . . , k. A cycle containing all vertices of a graph is
called hamiltonian cycle. There exists a close relation between forbidden
subgraphs and hamiltonicity. In fact, for k = 1, we can easily see that
a P3-free graph is a hamiltonian, where Pi is a path of length i − 1 (this
is known that a X-free graph is a hamiltonian implies that X = P3 [3]).
For k = 2, Faudree and Gould dertermined all pairs of such forbidden sub-
graphs (not contain P3), and proved that one of the graphs in the pair must
be isomorphic to K1,3. For convenience, we denote C = K1,3.

Theorem A (Faudree and Gould [3]. Let G be a 2-connected graph of

order n ≥ 10, and let X is one of the ten graphs, which are called as

C3, P4, P5, P6, Z1, Z2, Z3, B,N,W . If G is CX-free, then G is hamiltonian.

On the other hand, many hamiltonian conditions are generalized to sufficient
conditions for graphs to contain cycles passing through all specified vertices
(see [1, 5]). The purpose of this paper is to generalize Theorem A. For
cases X ∈ {C3, Z1, Z2, Z3, B,N}, such a generalization have already been
done (for C3, B, N in [4], for Z1, Z2, Z3 in [6]). In this paper, we focus on
the generalization for case X = P6. (Note that Pi-free graph (i = 4, 5, 6) is
P6-free.) For a generalization, we define the following two families of graphs.
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Figure 1. C and P6

Let G be a graph and S ⊆ V (G). We define a family of graphs C(S) as
following. For any F ∈ C(S), F satisfies the following properties.
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(1) F consists of three paths P1, P2 and P3 such that they have only one
common vertex x and V (F ) = V (P1) ∪ V (P2) ∪ V (P3) (we call x the

root of F ),

(2) for any i ∈ {1, 2, 3}, the end vertex of Pi which is not x is contained in
S (we call such a vertex of Pi a leaf of F ),

(3) for any i ∈ {1, 2, 3}, internal vertices of Pi are contained in V (G)\S
and

(4) E(F ) = E(P1) ∪ E(P2) ∪ E(P3).

We also define a family of graphs P6(S) as following. For any F ∈ P6(S), F
satisfies the following properties,

(1) F is a path of length at least 5 and

(2) the end vertices of F are contained in S.

If there exist no induced subgraph contained in C(S) ∪ P6(S), we call G a
CP6(S)-free graph.

In this paper, we prove the following theorem.

Theorem 1. Let G be a 2-connected graph and S ⊆ V (G). If G is CP6(S)-
free, then G contains a cycle D such that S ⊆ V (D).

We let T (G) denote the set of triples (T ;A,B) of subsets of V (G) such that
{T,A,B} is a partiton of V (G), |T | = 2, A 6= ∅, B 6= ∅, and no edge of G
joins a vertex in A and a vertex in B.

For a CP6(S)-free graph G with S ⊆ V (G), the following two lemmas
hold.

Lemma 1. For any x ∈ V (G) \ S, G \ x is a CP6(S)-free graph.

Lemma 2. Let T = {x, y} be a 2-cut set of G with (T ;A,B) ∈ T (G). If

A ⊆ V (G) \ S, then (G \ A) + xy is a 2-connected CP6(S)-free graph.

Proof of Lemmas 1 and 2. We can easily obtain Lemma 1. For every
two vertices in V ((G \ A) + xy), there exists a cycle which contains them,
because G is 2-connected. Therefore (G \ A) + xy is 2-conneted.

Suppose that (G \ A) + xy contains an induced subgraph F ∈ C(S) ∪
P6(S). If xy ∈ E(G) or xy /∈ E(F ), G contains F , a contradiction. Hence
xy /∈ E(G) and xy ∈ E(F ). Let P ⊆ G \B be a shortest path which joins x
and y. Now (F \ xy) ∪ P is an element of C(S) ∪ P6(S), and is an induced
subgraph of G, a contradiction.
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2. Proof of Theorem 1

Let G be a 2-connected graph and S ⊆ V (G). Suppose G is CP6(S)-free
and there is no cycle D with S ⊆ V (D). Take such a graph G and S ⊆ V (G)
as

(1) |V (G)| is as small as possible,

(2) |V (G) \ S| is as small as possible, subject to (1), and

(3) |E(G)| is as large as possible, subject to (1) and (2).

If V (G) \ S = ∅, then by Theorem A there exists a cycle D such that
S ⊆ V (D). Hence V (G)\S 6= ∅. Let x ∈ V (G)\S. If G\x is a 2-connected
graph, then by the minimality of |V (G)| and Lemma 1, G \ x contains a
cycle D such that S ⊆ V (D). Now D is also a cycle in G with S ⊆ V (D),
a contradiction. It follows that there exists (T ;A,B) ∈ T (G) with x ∈ T .
Let T = {x, y}.

Claim 1. A ∩ S 6= ∅ and B ∩ S 6= ∅.

Proof of Claim 1. Suppose A∩S = ∅. Then by Lemma 2, (G \A) + xy is
a 2-connected CP6(S)-free graph. By the minimality of |V (G)|, there exists
a cycle D ⊆ (G\A)+xy with S ⊆ V (D). Since G contains no cycle passing
through all the vertices of S, we may assume xy 6∈ E(G) and xy ∈ E(D).
Take an x-y path P ⊆ 〈A ∪ {x, y}〉. Then (D \ xy) ∪ P is a cycle passing
through all the vertices of S, a contradiction.

Claim 2. |A| = 1 or |B| = 1.

Proof of Claim 2. Suppose |A| ≥ 2 and |B| ≥ 2. Let GA be a graph such
that V (GA) = V (G \ A) ∪ {a} and E(GA) = E(G \ A) ∪ {ax, ay}, where a
is a new vertex. Let SA = (S \ A) ∪ {a}. (Note that |V (G)| > |V (GA)|.)

Now we show that GA is a CP6(SA)-free graph. Suppose that GA is not
a CP6(SA)-free graph. Let F ∈ C(SA) ∪ P6(SA) be an induced subgraph in
GA. Then V (F ) contains a, otherwise G contains F as an induced subgraph.
If F ∈ C(S), a is a leaf of F since dGA

(a) = 2 and a ∈ SA. On the other
hand, suppose F ∈ P6(S) and a is an endvertex of S. Therefore we can
see |{x, y} ∩ V (F )| = 1. Let {z} = {x, y} ∩ V (F ). Take an (A ∩ S)-z
path P in 〈A ∪ {z}〉 as |V (P )| is as small as possible. Then (F \ a) ∪ P
belongs to C(S)∪P6(S), and is an induced subgraph in G, a contradiction.
If F ∈ P6(S) and a is not an endvertex of S, then V (F ) contains x and y.
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Let P ′ is x-y path in G and is an induced subgraph in G. Then F ∪P ′ also
belongs to P6(S), a contradiction.

By the minimality of |V (G)|, there exists a cycle DA in GA such that
SA ⊆ V (DA). Hence we obtain an x-y path PA in G \ A such that S ∩ B ⊆
V (PA). By the same argument as above, there exists an x-y path PB in
G \ B which satisfies S ∩ A ⊆ V (PB). Now PA ∪ PB consists a cycle with
S ⊆ V (PA ∪ PB), a contradiction.

Without loss of generality, we may assume |A| = 1. Let A = {a}. Since
A ∩ S 6= ∅, we have a ∈ S.

Claim 3. G + xy is a CP6(S)-free graph.

Proof of Claim 3. Since G is CP6(S)-free, we may assume xy /∈ E(G). Let
G′ = G + xy. Suppose that G′ has an induced subgraph F ∈ C(S)∪P6(S).
If xy /∈ E(F ), F is an induced subgraph in G, a contradiction. Hence we
may assume that E(F ) contains xy. Since ax, ay ∈ E(G) and dG(a) = 2,
we have a /∈ F . Then F \ xy is disconnected. Suppose that F ∈ C(S).
Let F ′ be a component of F \ xy such that F ′ contains a root of F . Let
{z} = V (F ′) ∩ {x, y}. Then F ′ + za belongs to C(S), and is an induced
subgraph of G, a contradiction. Next, suppose that F ∈ P6(S). Then
(F \ xy) ∪ {xa, ya} belongs to P6(S), and is an induced subgraph of G, a
contradiction.

By Claim 3 and the maximality of |E(G)|, we may assume xy ∈ E(G). Let
S′ = S ∪ {x}.

Claim 4. G is a CP6(S
′)-free graph.

Proof of Claim 4. Suppose that G contains F ∈ C(S ′)∪P6(S
′). Hence we

may assume that F contains x as a leaf or an endvertex of F . If y ∈ V (F ),
then a /∈ V (F ), and hence (F \ x) + ay ∈ C(S) ∪ P6(S), a contradiction. If
y /∈ V (F ), then F + ax ∈ C(S) ∪ P6(S), also a contradiction.

By Claim 4 and the minimality of |V (G) \ S|, there exists a cycle D with
S′ ⊆ V (D). Since S ⊆ S ′, D contains all vertices of S, which contradicts
the assumption of G and completes the proof of Theorem 1.
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