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Abstract

This paper is based on the element splitting operation for binary
matroids that was introduced by Azadi as a natural generalization of
the corresponding operation in graphs. In this paper, we consider the
problem of determining precisely which graphic matroids M have the
property that the element splitting operation, by every pair of elements
on M yields a graphic matroid. This problem is solved by proving that
there is exactly one minor-minimal matroid that does not have this
property.
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1. Introduction

Let M(G) and M ∗(G) denote the circuit matroid and the cocircuit matriod,
respectively of a graph G. A matroid is Eulerian if its ground set can be
expressed as a union of disjoint circuits of the matroid (see [14]). A matroid
is bipartite if every circuit of it has an even number of elements. Welsh [14]
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proved that a binary matroid is Eulerian if and only if its dual is bipartite.
As the matroids F7 and M(K5) are Eulerian, their dual matroids F ∗

7
and

M∗(K5) are bipartite. It is easy to see that a binary matroid M is Eulerian
iff the sum of column vectors of A is zero where A is a matrix over GF (2)
that represents M. For undefined notation and terminology in graphs and
matroids, we refer [6] and [8].

Fleischner [3] defined the splitting operation for a graph with respect to
a pair of adjacent edges as follows: Let G be a connected graph and v be
a vertex of degree at least three in G. If x = uv and y = wv are two edges
incident at v, then splitting away the pair x, y from v results in a new graph
Gx,y obtained from G by deleting the edges x and y, and adding a new
vertex vx,y adjacent to u and w. The transition from G to Gx,y is called the
splitting operation on G. For practical purposes, we denote the new edges
vx,yu and vx,yw in Gx,y by x and y, respectively (See Figure 1). Fleischner
[3] characterized Eulerian graphs and developed an algorithm to find all
distinct Eulerian trails in an Eulerian graph using the splitting operation.
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In a similar way, Tutte [13] specified the point splitting operation for graphs
as follows: Let G be a graph and v be a vertex of degree at least 4 in G. Let
H be the graph obtained from G by replacing v by two adjacent vertices
v1, v2 such that each point formerly joined to v is joined to exactly one of
v1 and v2 so that in H, deg v1 ≥ 3 and deg v2 ≥ 3. We say that H arises
from G by point-splitting operation. Tutte [13] characterized 3-connected
graphs using this operation. Later on, Slater [12] classified 4-connected
graphs using n-point splitting operation which is a natural generalization of
the point splitting operation.

Azadi [1] defined an operation which, in a sense, combines the splitting
operation and the point splitting operation as follows: Let v be a vertex of
G and let x, y be distinct edges of G incident at v. Let G′

x,y be the graph
obtained from G such that G′

x,y = Gx,y + vx,yv, where Gx,y is the graph
obtained from G by splitting operation with respect to the edges x and y.
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Then we say that G′

x,y is obtained from G by the element splitting operation

with respect to the pair of edges x and y (see Figure 2).
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Raghunathan et al. [7] extended the definition of Fleischner’s splitting op-
eration to binary matroids as follows: Let A be a matrix over GF (2) that
represents the matroid M. Consider distinct elements x and y of M. Let
Ax,y be the matrix that is obtained by adjoining an extra row to A with this
row being zero everywhere except in the columns corresponding to x and
y where it takes the value 1. Suppose Mx,y is the matroid represented by
the matrix Ax,y. Then Mx,y is said to be obtained from M by splitting away
the pair x, y. Various properties concerning the splitting matroid have been
studied in [2, 7, 9, 10, 11].

Azadi [1] further extended the operation of element splitting with re-
spect to the pair of edges in graphs to binary matroids as follows: Let A be
a matrix over GF (2) that represents the matroid M. Suppose that x and
y are distinct elements of M. Let A′

x,y be the matrix that is obtained by
adjoining an extra row to A with this row being zero everywhere except in
the columns corresponding to x and y where it takes the value 1 and then
adjoining an extra column (corresponding to a) with this column being zero
everywhere except in the last row where it takes the value 1. Suppose M ′

x,y

is the matroid represented by the matrix A′

x,y. Then M ′

x,y is said to be
obtained from M by element splitting the pair of elements x and y.

Alternatively, the element splitting operation can be defined in terms of
circuits of binary matroids [1] as follows:

Let M = (S, C) be a binary matroid, {x, y} ⊆ S, and a /∈ S. Let

C0 = {C ∈ C : x, y ∈ C or x, y /∈ C},

C1 = set of minimal members of {C1 ∪ C2 : C1, C2 ∈ C, C1 ∩ C2 = φ and
x ∈ C1, y ∈ C2 such that C1 ∪ C2 does not contain any member of C0}, and

C2 = {C ∪ {a} : C ∈ C and contains exactly one of x and y}.

Let C′ = C0 ∪ C1 ∪ C2. Then M ′

x,y = (S ∪ {a}, C ′).

If x and y are non-adjacent edges of a graph G, then M(G)x,y may not
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be graphic. Shikare and Waphare [11] characterized graphic matroids whose
splitting matroids are also graphic in the following theorem.

Theorem 1.1 [11]. The splitting operation, by any pair of elements, on a

graphic matroid yields a graphic matroid if and only if the circuit matroid

of the corresponding graph has no minor isomorphic to the circuit matroid

of any of the following four graphs.
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The element splitting operation on a graphic matroid may not yield a graphic
matroid. In this paper, we obtain the forbidden-minor characterization for
graphic matroids whose element splitting matroid is graphic. The main
result in this paper is the following theorem.

Theorem 1.2. The element splitting operation, by any pair of elements,

on a graphic matroid yields a graphic matroid if and only if it has no minor

isomorphic to M(K4), where K4 is the complete graph on 4 vertices.

2. The Element Splitting Operation and its Properties

In this section we provide necessary lemmas. We assume that M is a binary
matroid and x, y are distinct elements of M.

Lemma 2.1. Let x and y be elements of a binary matroid M and let r(M)
denote the rank of M. Then, using the notations introduced in Section 1,

(i) Mx,y = M ′

x,y \ {a};

(ii) M = M ′

x,y/{a};

(iii) r(M ′

x,y) = r(M) + 1;

(iv) every cocircuit of M is a cocircuit of the matroid M ′

x,y;
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(v) if {x, y} is a cocircuit of M then {a} and {x, y} are cocircuits of M ′

x,y;

(vi) if {x, y} does not contain a cocircuit, then {x, y, a} is a cocircuit of

M ′

x,y;

(vii) M ′

x,y \ x/y ∼= M \ x;

(viii) if M is graphic and x, y are adjacent edges in a corresponding graph,

then M ′

x,y is graphic;

(ix) M ′

x,y is not eulerian.

Proof. (i), (ii), (iii), (v), (vi), (vii) and (viii) are straightforward. The
proof of (iv) follows from Lemma 2.4.1 of [4]. If A′

x,y represents the matroid
M ′

x,y, then the number of one’s in the last row of A′

x,y is odd. Hence M ′

x,y

is not eulerian. This proves (ix).

The following result is well known.

Lemma 2.2 [6]. A binary matroid is graphic if and only if it has no minor

isomorphic to F7, F
∗

7
,M∗(K5), or M∗(K3,3).

Notation. For convenience, let F = {F7, F ∗

7
, M∗(K5), M∗(K3,3)}.

Lemma 2.3. Let M be a graphic matroid and let x, y ∈ E(M) such that

M ′

x,y is not graphic. Then there is a minor N of M such that no two elements

of N are in series and N ′

x,y \ {a}/{x} ∼= F or N ′

x,y \ {a}/{x, y} ∼= F or

N ′

x,y
∼= F or N ′

x,y/{x}
∼= F or N ′

x,y/{y}
∼= F or N ′

x,y/{x, y} ∼= F for some

F ∈ F .

Proof. Since M ′

x,y is not graphic, M ′

x,y \ T1/T2
∼= F for some T1, T2 ⊆

E(M ′

x,y). Let T ′

i = Ti − {a, x, y} for i = 1, 2. Then T ′

i ⊆ E(M) for each i.
Let N = M \T ′

1
/T ′

2
. Then N ′

x,y = M ′

x,y \T ′

1
/T ′

2
. Let T ′′

i = Ti−T ′

i for i = 1, 2.
Then N ′

x,y \ T ′′

1
/T ′′

2
∼= F. If a ∈ T ′′

2
, then F is a minor of M ′

x,y/a and hence,
by Lemma 2.1(i), F is a minor of M, which is a contradiction. Suppose
a ∈ T ′′

1
. By Lemma 2.1(i), Mx,y = M ′

x,y \ a. Hence F is a minor of Mx,y. It
follows from Theorem 2.3 of [11] that N does not contain a 2-cocircuit and
further, Nx,y/x ∼= F or Nx,y/{x, y} ∼= F. This implies that N ′

x,y \{a}/x
∼= F

or N ′

x,y \ {a}/{x, y} ∼= F. Suppose that a /∈ T ′′

1
∪ T ′′

2
. Hence a /∈ T1 ∪ T2. If

T ′′

1
∪ T ′′

2
= φ, then N ′

x,y
∼= F. If T ′′

2
= φ, then Nx,y \ x ∼= F or Nx,y \ y ∼= F

or N ′

x,y \ {x, y} ∼= F. In the first case, a forms a 2-cocircuit with x or y
whichever is remained, and in later case, a is a coloop. It is a contradiction.
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Hence T ′′

2
6= φ. If T ′′

1
6= φ then, by Lemma 2.1(vi), F is minor of M, which

is a contradiction. Hence T ′′

1
= φ. Hence N ′

x,y/x
∼= F or N ′

x,y/y
∼= F or

N ′

x,y/{x, y} ∼= F.

Assume that N contains a 2-cocircuit Q. By Lemma 2.1(iv), Q is 2-
cocircuit in N ′

x,y. Since F is 3-connected, it does not contain a 2-cocircuit.
It follows that N ′

x,y is not isomorphic to F. Hence N ′

x,y \ {a}/x ∼= F or
N ′

x,y\{a}/{x, y} ∼= F or N ′

x,y/{x}
∼= F or N ′

x,y/{y}
∼= F or N ′

x,y/{x, y} ∼= F.
If Q ∩ {x, y} = φ, then it is retained in all these cases and thus F has a
2-cocircuit, which is a contradiction. If Q = {x, y}, a contradiction follows
from Lemma 2.1(v). Hence Q contains exactly one of x, y. Suppose that
x ∈ Q. Then N ′

x,y/y 6∼= F. Let x1 be the other element of Q. Let L = N/x1.
Then L is a minor of M in which no pair of elements is in series. Further,
L′

x,y = N ′

x,y/x1
∼= N ′

x,y/x. Thus we have L′

x,y\{a}
∼= F or L′

x,y\{a}/y
∼= F or

L′

x,y
∼= F or L′

x,y/y
∼= F. Since Lx,y

∼= L′

x,y\{a}, and x, y are in series in Lx,y,
it follows that L′

x,y \ {a} 6∼= F and also L′

x,y \ {a}/y
∼= L′

x,y \ {a}/x. If y ∈ Q,
then N ′

x,y/x 6∼= F. Also, L′

x,y
∼= N ′

x,y/y. In this case we get L′

x,y \ {a}/x
∼= F

or L′

x,y
∼= F or L′

x,y/x
∼= F.

Definition 2.4. Let M be a graphic matroid in which no two elements are
in series and let F ∈ F . We say that M is minimal with respect to F if
there exist two elements x and y of M such that M ′

x,y \ {a}/{x} ∼= F or
M ′

x,y \ {a}/{x, y} ∼= F or M ′

x,y
∼= F or M ′

x,y/{x}
∼= F or M ′

x,y/{x, y} ∼= F.

Corollary 2.5. Let M be a graphic matroid. For any x, y ∈ E(M), the

matroid M ′

x,y is graphic if and only if M has no minor isomorphic to a

minimal matroid with respect to any F ∈ F .

Proof. If M ′

x,y is not graphic for some x, y, then by Lemma 2.3, M has
a minor N in which no two elements are in series and N ′

x,y \ {a}/{x} ∼= F
or N ′

x,y \ {a}/{x, y} ∼= F or N ′

x,y
∼= F or N ′

x,y/{x}
∼= F or N ′

x,y/{y}
∼= F

or N ′

x,y/{x, y} ∼= F for some F ∈ F . If N ′

x,y/y
∼= F but N ′

x,y/x 6∼= F,
then interchange roles of x and y. Conversely, suppose that M has a minor
N isomorphic to a minimal matroid with respect to some F ∈ F . Then
N ′

x,y \ {a} or N ′

x,y/{x} or N ′

x,y/{x, y} or N ′

x,y
∼= F, for some x, y ∈ E(M).

Then M ′

x,y has a minor isomorphic to F and hence it is not graphic.

Lemma 2.6. Let M be a graphic matroid corresponding to a graph G. If

M is minimal with respect to some F ∈ F , then



Forbidden-Minor Characterization for the Class of ... 635

(i) M has neither loops nor coloops;

(ii) x and y are non-adjacent edges of G and the minimum degree of G is

at least 3;

(iii) x and y cannot be parallel in G;

(iv) every pair of parallel edges of G must contain either x or y;

(v) if M ′

x,y or M ′

x,y/{x}
∼= F ∗

7
or M∗(K5), then G is simple;

(vi) if M ′

x,y/{x}
∼= F7 or M∗(K3,3), then G is simple or has exactly one

pair of parallel edges and one of these two edges must be y, and further

there is no 3-circuit in G containing both x and y;

(vii) if M ′

x,y/{x, y} ∼= F then G is simple and there is no 3-circuit or 4-
circuit in G containing both x and y.

Proof. (i) On the contrary, suppose M has a loop, say z. If z is different
from x and y, then it is a loop in M ′

x,y and hence in F, a contradiction. If
z is one of the two elements x and y, say x, then M ′

x,y \ {a}/{x}
∼= M \ {x}

and M ′

x,y \ {a}/{x, y} ∼= M \ {x}/{y}. This implies that F is a minor of M,
a contradiction. Also, M ′

x,y contains a 2-circuit, so it cannot be isomorphic
to F. Further M ′

x,y/{x} and M ′

x,y/{x, y} contains a loop, a contradiction.
Thus, M cannot have loops.

Suppose that M has a coloop, say w. If w is different from x and y
then it is preserved in M ′

x,y and hence in F, a contradiction. If w is one
of the two elements x and y, say x, then {y, a} is a 2-cocircuit or {y} is a
coloop of M ′

x,y. Now, in M ′

x,y\{a}/{x}, y becomes a coloop, a contradiction.
Also, M ′

x,y \ {a}/{x, y} ∼= M/{x} \ {y}. This means that F is a minor of
M, a contradiction. In M ′

x,y, {x} remains a coloop and hence M ′

x,y cannot
be isomorphic to F. Moreover, in M ′

x,y/{x}, {y, a} remains a 2-cocircuit
or {y} remains a cocircuit and in F, a contradiction. Also, M ′

x,y/{x, y} ∼=
M ′

x,y \{x}/{y}
∼= M \{x}, that is F is a minor of M, a contradiction. Hence

M cannot have coloops.

(ii) Follows from Lemma 2.1(viii) and Lemma 2.3.
(iii) If x and y are parallel in G, then x and y remain parallel in M ′

x,y.
So, we get a loop in M ′

x,y \ {a}/{x}, M ′

x,y/{x} and a 2-circuit in M ′

x,y, a
contradiction. Also, M ′

x,y \{a}/{x, y} = Mx,y/{x, y} = M \{x, y}, a contra-
diction. Now, M ′

x,y/{x, y} = M ′

x,y/y \x ∼= M \x, a contradiction to Lemma
2.1(vii). Hence these matroids are not isomorphic to F, a contradiction.

(iv) Suppose that the edges x1 and x2 are in a parallel class of G that
does not contain x or y, then x1 and x2 remain in parallel in each of the ma-
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troids M ′

x,y \ {a}/{x}, M ′

x,y \ {a}/{x, y}, M ′

x,y, M ′

x,y/{x} and M ′

x,y/{x, y},
a contradiction. If x1 and x2 are in a parallel class containing x or y, then
we get a loop in M ′

x,y \ {a}/{x}, M ′

x,y \ {a}/{x, y}, M ′

x,y/{x}, M ′

x,y/{x, y}
and a 2-circuit in M ′

x,y. Hence these matroids are not isomorphic to F, a
contradiction.

(v) As F ∗

7
and M∗(K5) are bipartite, if G contains a pair of parallel

edges then by (iv) above, it must contain x or y. So, we get a 3-circuit in
M ′

x,y containing a. Therefore M ′

x,y 6∼= F ∗

7
or M∗(K5). Also, we get a 2-circuit

in M ′

x,y/{x} and M ′

x,y/{x, y}, a contradiction.

(vi) Suppose that G is not simple. Then by (iv) above, each pair of
parallel edges must contain x or y. If {x, x1} is a 2-circuit for some edge x1

of G, then {x, x1, a} is a 3-circuit in M ′

x,y and hence, {x1, a} is a 2-circuit in
M ′

x,y/{x}, a contradiction. Hence G has exactly one pair of parallel edges
and one of these two edges must be y.

(vii) If G contains a pair of parallel edges, it must contain x or y,
say x. Then M ′

x,y contains a 3-circuit containing x and a. Consequently,
M ′

x,y/{x, y} contains a 2-circuit and hence it is in F, a contradiction. Now,
if G contains 3 or a 4-circuit containing both x and y, then M ′

x,y/{x, y}
contains a loop or 2-circuit respectively and hence it is in F, a contradiction.

3. The Element Splitting operation on Graphic Matroids

In this section, we obtain the minimal matroids corresponding to each of the
four matroids F7, F

∗

7
,M∗(K3,3) and M∗(K5) and use them to give a proof

of Theorem 1.2.

In the following lemma, we characterize minimal matroids corresponding
to the matroid F7.
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Lemma 3.1. Let M be a graphic matroid. Then M is minimal with respect

to the matroid F7 if and only if M is isomorphic to one of the three circuit

matroids M(G1), M(G2) and M(G3), where G1, G2 and G3 are the graphs

of Figure 4.

Proof. Firstly, we consider the graph G3 and prove that M ′(G3)x,y/
{x} ∼= F7.

Let matrices A and A′

x,y represent the matroids M(G3) and M ′(G3)x,y

respectively. Then
1 2 3 4 5 x y

A =





1 0 0 1 0 1 0
0 1 0 1 1 0 1
0 0 1 1 1 1 1



 .

So, we have 1 2 3 4 5 x y a

A′

x,y =









1 0 0 1 0 1 0 0
0 1 0 1 1 0 1 0
0 0 1 1 1 1 1 0
0 0 0 0 0 1 1 1









.

Therefore 1 2 3 4 5 y a

A′

x,y/{x} =





1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 1 1 0 1



 .

Hence M ′(G3)x,y/{x} ∼= F7.
One can check similarly that M ′(G1)x,y \ {a}/{x} ∼= F7; M ′(G2)x,y \

{a}/{x, y} ∼= F7. Thus the matroids M(G1), M(G2) and M(G3) are minimal
with respect to F7.

Conversely, let M be a minimal matroid with respect to F7. Let G be
a graph corresponding to M. Let the edges x and y of G are such that
M ′(G)x,y \ {a}/{x} ∼= F7 or M ′(G)x,y \ {a}/{x, y} ∼= F7 or M ′(G)x,y

∼= F7

or M ′(G)x,y/{x} ∼= F7 or M ′(G)x,y/{x, y} ∼= F7.
By Lemma 2.1(i), M(G)x,y/{x} ∼= F7. If M ′(G)x,y \{a}/{x} ∼= F7, then

by Lemma 3.1 of [11], G is isomorphic to the graph G1 of Figure 4. Similarly,
if M ′(G)x,y \ {a}/{x, y} ∼= F7, then by Lemma 3.1 of [11], G is isomorphic
to the graph G2 of Figure 4. Further, M ′(G)x,y 6∼= F7 because M ′

x,y is not
eulerian by Lemma 2.1(x).
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Suppose that M ′(G)x,y/{x} ∼= F7. Since r(F7) = 3, r(M ′(G)x,y) = 4. Fur-
ther |E(M ′(G)x,y)| = 8. Consequently, r(M(G)) = 3 and |E(M(G))| = 7.
Thus, G is a graph with 4 vertices and 7 edges. This implies that G is non-
simple. Also, by Lemma 2.6(vi), G has exactly one pair of parallel edges.
Hence G can be obtained from a simple graph with 4 vertices and 6 edges by
adding an edge in parallel. Since the complete graph K4 is the only simple
graph with 4 vertices and 6 edges (see [5]), G must be isomorphic to the
graph G3 of Figure 4.

Suppose that M ′(G)x,y/{x, y} ∼= F7. Then r(M ′(G)x,y) = 5 and
|E(M ′(G)x,y)| = 9. This implies that r(M(G)) = 4 and |E(M(G))| = 8.
Thus, G is a graph with 5 vertices and 8 edges. Hence, by Lemma 2.6(ii),
G has degree sequence (4,3,3,3,3). By Lemma 2.6(vii), G is simple and does
not have a 3-circuit or a 4-circuit containing both x and y. There is only
one simple graph with 5 vertices and 8 edges (see [5]) as shown in Figure 5.
In this graph, any two edges are either in a 3-circuit or in a 4-circuit. Hence
we discard this graph.
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We characterize minimal matroids corresponding to the matroid F ∗

7
in the

following lemma.

Lemma 3.2. Let M be a graphic matroid. Then M is minimal with respect

to the matroid F ∗

7
if and only if M is isomorphic to one of the two circuit

matroids M(G4) and M(G5), where G4 and G5 are the graphs of Figure 6.

s s

ss

s

s s

ss

%
%%\

\\

�
�

�
�

�
� #

#
#

#c
c

c
cx

y

z

e1

e2

e3

w

e4

1 23 4

x

y

G4 G5

Figure 6



Forbidden-Minor Characterization for the Class of ... 639

Proof. Observe that M ′(G4)x,y \ {a}/{x} ∼= F ∗

7
and M ′(G5)x,y

∼= F ∗

7
.

Therefore M(G4) and M(G5) are minimal with respect to F ∗

7
.

Conversely, let M(G) be a minimal graph with respect to F ∗

7
and let

x and y be edges of G such that M ′(G)x,y \ {a}/{x} ∼= F ∗

7
or M ′(G)x,y \

{a}/{x, y} ∼= F ∗

7
or M ′(G)x,y

∼= F ∗

7
or M ′(G)x,y/{x} ∼= F ∗

7
or

M ′(G)x,y/{x, y} ∼= F ∗

7
. If M ′(G)x,y \ {a}/{x} ∼= F ∗

7
, then by Lemma 2.1(i),

M(G)x,y/{x} ∼= F ∗

7
. Hence, by Lemma 3.2 of [11], G is isomorphic to

the graph G4 of Figure 6. Similarly, if M ′(G)x,y \ {a}/{x, y} ∼= F ∗

7
, then

M(G)x,y/{x, y} ∼= F ∗

7
. By Lemma 3.2 of [11], there is no minimal graphic

matroid such that M(G)x,y/{x, y} ∼= F ∗

7
. In each of the remaining three

cases, G is simple by Lemma 2.6(v).
Suppose that M ′(G)x,y

∼= F ∗

7
. Then r(M(G)) = r(M ′(G)x,y) − 1 = 3.

Further, |E(M)| = 7. Since r(F ∗

7
) = 4, r(M(G)) = 3. Consequently, G is

a simple graph with 4 vertices and 6 edges. Hence G is isomorphic to K4,
which is the graph G5 of Figure 6. Suppose that M ′(G)x,y/{x} ∼= F ∗

7
. Then

r(M(G)) = 4 and |E(M(G))| = 7. Hence G is a graph with 5 vertices and
7 edges and has a vertex of degree less than 3, a contradiction to Lemma
2.6(ii). Finally, if M ′(G)x,y/{x, y} ∼= F ∗

7
, then G has 6 vertices and 8 edges

and hence a vertex of degree less than 3, a contradiction.

The minimal matroids corresponding to the matroid M ∗(K3,3) are charac-
terized as follows.

Lemma 3.3. Let M be a graphic matroid. Then M is minimal with re-

spect to the matroid M ∗(K3,3) if and only if M is isomorphic to one of

the five circuit matroids M(G6),M(G7),M(G8),M(G9) and M(G10), where

G6, G7, G8, G9 and G10 are the graphs of Figure 7.
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Proof. Observe that M ′(G6)x,y\{a}/{x} ∼= M∗(K3,3); M ′(G7)x,y\{a}/{x}
∼= M∗(K3,3); M ′(G8)x,y \ {a}/{x, y} ∼= M∗(K3,3); M ′(G9)x,y \ {a}/{x, y} ∼=
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M∗(K3,3) and M ′(G10)x,y/{x} ∼= M∗(K3,3). This implies that M(G6),
M(G7), M(G8), M(G9) and M(G10) are minimal matroids with respect
to the matroid M ∗(K3,3).

Conversely, let M(G) be a minimal matroid with respect to M ∗(K3,3).
Let x and y be edges of G such that M ′(G)x,y \ {a}/{x} ∼= M∗(K3,3) or
M ′(G)x,y \ {a}/{x, y} ∼= M∗(K3,3) or M ′(G)x,y

∼= M∗(K3,3) or M ′(G)x,y/
{x} ∼= M∗(K3,3) or M ′(G)x,y/{x, y} ∼= M∗(K3,3). If M ′(G)x,y \ {a}/{x} ∼=
M∗(K3,3), then by Lemma 2.1(i), M(G)x,y/{x} ∼= M∗(K3,3). Hence, by
Lemma 3.3 of [11], G is isomorphic to one of the two graphs G6 and G7

of Figure 7. If M ′(G)x,y \ {a}/{x, y} ∼= M∗(K3,3), then by Lemma 2.1(i),
M(G)x,y/{x, y} ∼= M∗(K3,3). Hence by Lemma 3.3 of [11], G is isomorphic
to one of the two graphs G8 and G9 of Figure 7. M ′

x,y is not eulerian, by
Lemma 2.1(x). Therefore M ′(G)x,y 6∼= M∗(K3,3).
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Suppose that M ′(G)x,y/{x} ∼= M∗(K3,3). Then r(M(G)) = 4 and
|E(M(G))| = 9. Consequently, G is a graph with 5 vertices and 9 edges.
Suppose that G is simple. By [5], any simple graph with 5 vertices and 9
edges is isomorphic to the graph of Figure 8. Suppose G is isomorphic to
this graph. Then G has two edge-disjoint 3-cocircuits. Out of which, by
Lemma 2.1(iv), at least one 3-cocircuit is preserved in M ′(G)x,y/{x} and
hence it is preserved in M ∗(K3,3), a contradiction. Thus G is non-simple.
By Lemma 2.6(vi), G has exactly one pair of parallel edges. Since the de-
gree of a vertex in G is at least 3, the degree sequence of G is (6,3,3,3,3),
(5,4,3,3,3) or (4,4,4,3,3). Therefore G can be obtained from a simple graph
with 5 vertices and 8 edges by adding an edge in parallel. There are in all
2 non-isomorphic simple graphs with 5 vertices and 8 edges (see [5]). So,
there are in all 3 possibilities for G as shown in Figure 9.

If G is isomorphic to one of the two graphs (i) and (ii) of Figure 9, then it
has two edge-disjoint 3-cocircuits, and hence at least one of them is survived
in M ′(G)x,y/{x} ∼= M∗(K3,3), a contradiction. Hence G is isomorphic to
third graph which is nothing but the graph G10 of Figure 7.
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Figure 9

(i)

Finally, suppose that M ′(G)x,y/{x, y} ∼= M∗(K3,3). Since r(M ∗(K3,3)) =
4, r(M ′(G)x,y) = 6. This shows that r(M(G)) = 5 and |E(M(G))| = 10.
Consequently, G is a graph with 6 vertices and 10 edges with minimum
degree at least 3. So, the degree sequence of G is (4,4,3,3,3,3) or (5,3,3,3,3,3).
By Lemma 2.6(vii), G is simple. There are in all 4 non-isomorphic simple
graphs with 6 vertices and 10 edges having the said degree sequences as
shown in Figure 10 (see [5]). By Lemma 2.6(vii), G does not have a 3-
circuit or a 4-circuit containing both x and y. As there are no 3-cocircuits
and 5-cocircuits in M ∗(K3,3), every such cocircuit in G contains x or y.
Suppose G is the graph (i) or graph (ii) of Figure 10. Then there is only one
choice for x, y, as shown in the figure. For these choices M ′(G)x,y/{x, y} is
not Eulerian, a contradiction. If G is the graph (iii) or graph (iv) of Figure
10, then we get a 3-cocircuit or a 5-cocircuit in M ′(G)x,y/{x, y} and hence
it is in M ∗(K3,3), a contradiction.
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Finally, we characterize minimal matroids corresponding to the matroid
M∗(K5) in the following lemma.

Lemma 3.4. Let M be a graphic matroid. Then M is minimal with respect

to the matroid M ∗(K5) if and only if M is isomorphic to one of the three

circuit matroids M(G11), M(G12) and M(G13), where G11, G12 and G13

are the graphs of Figure 11.
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Proof. Observe that M ′(G11)x,y \ {a}/{x} ∼= M∗(K5);M
′(G12)x,y \ {a}/

{x} ∼= M∗(K5) and M ′(G13)x,y
∼= M∗(K5). Therefore M(G11), M(G12) and

M(G13) are minimal matroids with respect to the matroid M ∗(K5).

Conversely, let M(G) be a minimal matroid with respect to M ∗(K5)
and let x and y be edges of G such that M ′(G)x,y \ {a}/{x} ∼= M∗(K5) or
M ′(G)x,y\{a}/{x, y} ∼= M∗(K5) or M ′(G)x,y

∼= M∗(K5) or M ′(G)x,y/{x} ∼=
M∗(K5) or M ′(G)x,y/{x, y} ∼= M∗(K5). If M ′(G)x,y \ {a}/{x} ∼= M∗(K5),
then by Lemma 2.1(i), M(G)x,y/{x} ∼= M∗(K5). Therefore, by Lemma 3.4
of [11], G is isomorphic to one of the two graphs G11 and G12 of Figure 11.
If M ′(G)x,y \ {a}/{x, y} ∼= M∗(K5), then M(G)x,y/{x, y} ∼= M∗(K5). By
Lemma 3.4 of [11], there is no minimal graphic matroid M(G) such that
M(G)x,y/{x, y} ∼= M∗(K5). By Lemma 2.6(v), G is simple in the remain-
ing three cases. Suppose that M ′(G)x,y

∼= M∗(K5). Then r(M(G)) = 5
and |E(M(G))| = 9. Hence, G is a graph with 6 vertices and 9 edges hav-
ing degree sequence (3,3,3,3,3,3). There are only two such non-isomorphic
simple graphs, (see [5]) as shown in Figure 12. In graph (i) of Figure 12,
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for every choice of non-adjacent edges x, y, there is a 4-circuit containing
exactly one of x and y. Such circuit becomes a 5-circuit in M ′

x,y, a contra-
diction. Hence, the circuit matroid of this graph is not minimal with respect
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to M∗(K5). Hence G is isomorphic to graph (ii) of Figure 12 which is in fact
the graph G13 of Figure 11.

Suppose that M ′(G)x,y/{x} ∼= M∗(K5). Then G has 7 vertices and 10
edges. Hence G has a vertex of degree less than 3, a contradiction. Suppose
that M ′(G)x,y/{x, y} ∼= M∗(K5). Then G is a graph with 8 vertices and 11
edges. Hence G has a vertex of degree less than 3, a contradiction.

Now, we prove Theorem 1.2.

Proof of Theorem 1.2. Let M be a graphic matroid and let G be a graph
such that M = M(G). On combining Corollary 2.5 and Lemmas 3.1, 3.2,
3.3 and 3.4, it follows that M ′(G)x,y is graphic for every pair {x, y} of edges
of G if and only if M(G) has no minor isomorphic to any of the matroids
M(Gi), i = 1, 2, . . . , 13, where the graphs Gi are as shown in Figures 4, 6,
7 and 11. However, we have M(G5) ∼= M(G1) \ {e2, e3} ∼= M(G2)/{z} \
{e1, e2} ∼= M(G3) \ {5} ∼= M(G4)/{w} \ {e1} ∼= M(G6)/{e6} \ {w, e1, e2} ∼=
M(G7)/{z} \ {y, e4, e5} ∼= M(G8)/{z, e2} \ {e1, e3, e5} ∼= M(G9)/{x, e1} \
{w, e4, e5} ∼= M(G10)/{3}\{5, 7} ∼= M(G11)/{x, e4, e5}\{w, e1} ∼= M(G12)/
{v, z, e3} \ {x, e1} ∼= M(G13)/{1, 5} \ {x}. Thus, M ′(G)x,y is graphic if and
only if M(G) has no minor isomorphic to the matroid M(G5). Observe that
the graph G5 is isomorphic to the complete graph K4. This completes the
proof of the theorem.

References

[1] G. Azadi, Generalized splitting operation for binary matroids and related re-
sults (Ph.D. Thesis, University of Pune, 2001).

[2] Y.M. Borse, M.M. Shikare and Kiran Dalvi, Excluded-Minor characterization

for the class of Cographic Splitting Matroids, Ars Combin., to appear.

[3] H. Fleischner, Eulerian Graphs and Related Topics, Part 1, Vol. 1 (North
Holland, Amsterdam, 1990).

[4] A. Habib, Some new operations on matroids and related results (Ph.D. Thesis,
University of Pune, 2005).

[5] F. Harary, Graph Theory (Addison-Wesley, Reading, 1969).

[6] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).

[7] T.T. Raghunathan, M.M. Shikare and B.N. Waphare, Splitting in a binary

matroid, Discrete Math. 184 (1998) 267–271.

[8] A. Recski, Matroid Theory and Its Applications (Springer Verlag, Berlin,
1989).



644 K. Dalvi, Y.M. Borse and M.M. Shikare

[9] M.M. Shikare and G. Azadi, Determination of the bases of a splitting matroid,
European J. Combin. 24 (2003) 45–52.

[10] M.M. Shikare, Splitting lemma for binary matroids, Southeast Asian Bull.
Math. 32 (2007) 151–159.

[11] M.M. Shikare and B.N. Waphare, Excluded-Minors for the class of graphic

splitting matroids, Ars Combin., to appear.

[12] P.J. Slater, A classification of 4-connected graphs, J. Combin. Theory 17 (1974)
281–298.

[13] W.T. Tutte, A theory of 3-connected graphs, Indag. Math. 23 (1961) 441–455.

[14] D.J.A. Welsh, Matroid Theory (Academic Press, London, 1976).

Received 15 October 2008
Revised 17 December 2008

Accepted 17 December 2008

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

