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Abstract

In this paper we show upper bounds for the sum and the product of
the lower domination parameters and the chromatic index of a graph.
We also present some families of graphs for which these upper bounds
are achieved. Next, we give a lower bound for the sum of the upper
domination parameters and the chromatic index. This lower bound
is a function of the number of vertices of a graph and a new graph
parameter which is defined here. In this case we also characterize
graphs for which a respective equality holds.
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1. Introduction

All graphs considered in this paper are finite, undirected, without loops and
multiple edges. Let G = (V,E) be a graph with the vertex set V and the
edge set E. Then we use the convention V = V (G) and E = E(G). The
open neighborhood of a vertex v ∈ V (G) in G is denoted N(v) and defined
by N(v) = {u ∈ V (G) : vu ∈ E(G)} and the closed neighborhood of v is
N [v] = N(v) ∪ {v}. For a set S of vertices the open neighborhood N(S) is
defined as the union of open nighborhoods N(v) of vertices v ∈ S, the closed
nighborhood is N [S] = N(S) ∪ S, and G[S] is the subgraph of G induced
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by the vertices of S. The degree dG(v) = d(v) of a vertex v is the number
of edges incident to v in G; clearly, this is equal to |N(v)|. The maximum
degree, the minimum degree and the number of vertices of a graph G are
denoted by ∆(G), δ(G) and n(G), respectively. When there is no confusion
we can use the the abbreviations ∆(G) = ∆, δ(G) = δ and n(G) = n. A
corona H ◦ K1 is the graph formed from H by adding a new vertex v ′ for
each v ∈ V (H) and the edge vv′. Two edges e 6= f are adjacent if they
have a vertex in common. A set of edges is independent if no two of its
elements are adjacent. An independent set M of edges is called a matching.
The edge independence number β(G) is the size of the greatest matching in
G. For any vertex v ∈ V (G) of degree ∆, let βv(G) = β(G − N [v]) and let
β∆(G) = max{βv(G) : d(v) = ∆}. A path between two vertices x and y
is called a x − y path. The distance dG(x, y) or d(x, y) in G of two vertices
x, y is the length of a shortest x − y path in G. Two vertices u, v of G are
adjacent if there is an edge e = uv of G. A set of pairwise non-adjacent
vertices is said to be independent. The independence number α(G) is the
size of the greatest independent set of vertices in G. A set S ⊆ V (G) is a
dominating set in G if N [S] = V (G). The domination number γ(G) is the
minimum cardinality of a dominating set in G, and the upper domination
number Γ(G) is the maximum cardinality of a minimal dominating set in G.
The independent domination number of G, denoted by i(G), is the minimum
cardinality of a maximal independent set in G. A set S ⊆ V (G) is said to
be irredundant of G if for any vertex x ∈ S is N [x] − N [S − {x}] 6= ∅.
The irredundance number ir(G) is the minimum cardinality taken over all
maximal irredundant sets of vertices of G. The upper irredundance number
of G, denoted by IR(G), is the maximum cardinality of an irredundant set
of G. The lower domination parameters of a graph G are ir(G), γ(G), i(G)
and the upper domination parameters are α(G), Γ(G), IR(G). It is known
[4] that for any graph G, ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ(G) ≤ IR(G).

The following results describe graphs for which the lower or upper dom-
ination parameters are equal.

Theorem 1.1 [3]. If G is a graph containing no induced subgraph isomor-
phic to either K1,3 or the A − L graph, then ir(G) = γ(G) = i(G).

Theorem 1.2 [2]. For any bipartite graph G, α(G) = Γ(G) = IR(G).

A set S ⊆ V (G) is a packing set of G if N [x]∩N [y] = ∅ for all pairs of distinct
vertices x, y ∈ S. The packing number ρ(G) is the maximum cardinality of
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a packing set in G. Observe that every packing set is independent.

Figure 1. A-L graph.

An edge colouring of a graph G is a mapping c : E(G) −→ {1, 2, . . . , k}
such that c(e) 6= c(f) for all pairs of adjacent edges; numbers 1, 2, . . . , k are
called colours. The chromatic index χ′(G) is the smallest number of colours
necessary to an edge colouring of a graph G.

The famous Vizing theorem [8] states values of the chromatic index.

Theorem 1.3. Every graph G satisfies

∆ ≤ χ′(G) ≤ ∆ + 1.(1)

This theorem divides the finite graphs into two classes according to their
chromatic index: graphs satisfying χ′(G) = ∆ are called class 1, those with
χ′(G) = ∆ + 1 are class 2. For instance, bipartite graphs belong to class 1.

Theorem 1.4 (König) [6]. Every bipartite graph G satisfies χ′(G) = ∆.

In this paper we give some bounds for the sum or the product of the domi-
nation parameters and the chromatic index. Moreover, we describe families
of graphs for which these bounds are achieved. We use here integer bounds
for any real number x. By bxc we denote the greatest integer less than or
equal to x, and dxe is the smallest integer more than or equal to x. The
following facts are obvious.

Fact 1.1. Let k be an integer and x be a real number. Then k < x if and
only if k ≤ dxe − 1.

Fact 1.2. Let x and r be real numbers. If x − r = bxc then 0 ≤ r < 1.
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2. The lower domination parameters

In this section are shown some upper bounds for the sum and the product
of µ(G) and χ′(G), where µ = ir, γ or i. Next, we characterize classes of
graphs for which appropriate equalities hold. The similar problems for the
chromatic number are considered in [1], where there are the following results
among others.

Theorem 2.1. For any graph G,

µ(G) ≤ n − ∆ − β∆(G).(2)

Theorem 2.2. For every graph G,

i(G) ≤ n − δρ(G).(3)

Now, we consider the sum of the lower domination parameters and the
chromatic index of graphs. From (1) and (2) the following results arise.

Corollary 2.1. For any graph G,

µ(G) + χ′(G) ≤ n + 1 − β∆(G).(4)

Corollary 2.2. Let G be a class 1 graph. Then

µ(G) + χ′(G) ≤ n − β∆(G).(5)

Next, we study which graphs fulfil (4) or (5) with equality, for µ = i:

i(G) + χ′(G) = n + 1 − β∆(G)(6)

and

i(G) + χ′(G) = n − β∆(G).(7)

It follows from (1) and (2) that if (6) holds then G is a class 2 graph. It is
clear that (6) is satisfied for every K2k+1. However for G = C2k+1 from (6)
we obtain that k = 1, 2 or 3. Thus, we have a solution of (6) for complete
graphs and cycles.
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Proposition 2.1. Let G = Kn or Cn. Then G satisfies (6) if and only if
G = K2k+1, C5 or C7.

The proof of the next statement is similar.

Proposition 2.2. Let G = Kn or Cn. Then G satisfies (7) if and only if
G = K2k, C4, C9, C11 or C13.

Observe that in (6) and (7) for Proposition 2.1 and Proposition 2.2, respec-
tively, we can replace i by µ, where µ = ir, γ, i.

Now, let p ≥ 4 be an integer and H be a graph with |V (H)| = p and
∆(H) ≤ p − 3. Next, we define a graph G as G = Kp ∪ (H ◦ K1), where
V (Kp) ∩ V (H) = ∅. Note that ∆(H ◦ K1) ≤ p− 2 thus χ′(H ◦ K1) ≤ p− 1,
and β∆(G) = p; moreover, we can show i(G) = p + 1. If p is odd we have
i(G) + χ′(G) = n + 1 − β∆(G) = 2p + 1 and (6) holds. For even values of
p we obtain i(G) + χ′(G) = n − β∆(G) = 2p and (7) is satisfied. For the
above family of graphs is γ = i, so in (6) and (7) we can replace i by µ,
where µ = γ, i.

We can also find upper bounds for the product of the lower domina-
tion parameters and the chromatic index of a graph G. These bounds are
functions of n, β∆(G) or ρ(G). When there is no confusion we can use the
abbreviations µ(G) = µ, i(G) = i, χ′(G) = χ′, β∆(G) = β and ρ(G) = ρ.

Now, we consider the product µχ′ for class 1 graphs.

Theorem 2.3. Let G be a class 1 graph. Then

µ(G)χ′(G) ≤
⌊

(n − β∆(G))2

4

⌋

,

where µ = ir, γ, i.

Proof. Let G be a graph for which χ′ = ∆. Now, it remains to repeat the
appropriate part of the proof of Theorem 4 from [1]. It is needed for solving
some problems of the present paper. From the assumption χ′ = ∆ and
Theorem 2.1, by putting t = (n−β)/2−∆, we obtain µχ′ ≤ (n−∆−β)∆ =
((n− β)/2 + t)((n− β)/2− t) = ((n− β)/2)2 − t2 ≤ ((n− β)/2)2, and since
(n−∆−β)∆ is an integer, it follows µχ′ ≤ (n−∆−β)∆ ≤ b(n−β)2/4c.
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Now it is studied the equality µχ′ = b(n − β)2/4c. It is enough to research
this equality for µ(G) = i(G), i.e.,

i(G)χ′(G) =

⌊

(n − β∆(G))2

4

⌋

.(8)

For class 1 graphs some necessary conditions for (8) are given.

Proposition 2.3. Let G be a class 1 graph. If (8) holds, then i(G) = ∆+j
and n − β∆(G) = 2∆ + j, where j = −1, 0, 1.

Proof. From (8) and χ′ = ∆ it follows that i = n − ∆ − β (see the proof
of Theorem 2.3). Putting in (8) n − β = i + ∆ we obtain the equality
i∆ = b(i + ∆)2/4c, which is equivalent to 0 ≤ (i + ∆)2/4 − i∆ < 1, i.e.,
0 ≤ (i − ∆)2 < 4. It implies the equality i = ∆ + j, j = −1, 0, 1. Hence we
have n − β = i + ∆ = 2∆ + j. It completes the proof.

Now, we present a family of paths for which (8) is satisfied. We use here
the above proposition.

Proposition 2.4. Let G = Pn be the path on n vertices. Then (8) holds if
and only if n = 1, 2, 3, 4, 5, 7.

Proof. If (8) holds then from Proposition 2.3 we can deduce i = dn/3e =
1, 2, 3 and hence n = 1, 2, . . . , 9. Among these values only n = 1, 2, 3, 4, 5, 7
satisfy the equality (8). Moreover, observe that for any path ir = γ = i.

Theorem 2.3 gives the upper bound for the product µ(G)χ′(G), where G is
a class 1 graph. Is there a similar bound for any graph G?

Let t = (n− β + 1)/2 − (∆ + 1). It is clear µχ′ ≤ (n−∆− β)(∆ + 1) =
((n−β +1)/2+ t)((n−β +1)/2− t) = (n−β +1)2/4− t2 ≤ (n−β +1)2/4.
Thus, we obtain a required bound.

Proposition 2.5. For any graph G

µ(G)χ′(G) ≤
⌊

(n − β∆(G) + 1)2

4

⌋

,

where µ = ir, γ, i.
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Now, it is studied the equality

i(G)χ′(G) =

⌊

(n − β∆(G) + 1)2

4

⌋

.(9)

For any graph some necessary conditions for (9) are given.

Proposition 2.6. If (9) holds, then G is a class 2 graph.

Proof. It is obvious that (9) and the inequalities preceding Proposition
2.5 imply i(G) = n − ∆ − β and χ′ = ∆ + 1.

The next statement we can prove analogously to Proposition 2.3.

Proposition 2.7. If (9) holds, then n − β∆(G) + 1 = 2∆ + j, where
j = 1, 2, 3.

Next, we resolve the equation (9) in the family of odd cycles. If G = C2k+1

satisfies (9) then by Proposition 2.7 is n−β+1 = 2k+1−b(2k−2)/2c+1 =
k + 3 = 5, 6 or 7, therefore G = C5, C7 or C9. We can check that only C5

and C7 are solutions of (9). It follows from Theorem 1.1 that for any cycle
Cn we have ir(Cn) = γ(Cn) = i(Cn). Thus, we can formulate the following
statement.

Proposition 2.8. Let µ = ir, γ or i. Then the equality

µ(Cn)χ′(Cn) =

⌊

(n − β∆(Cn) + 1)2

4

⌋

holds if and only if n = 5, 7.

Now assume that G is a regular graph. For this one from (3) we obtain:

Corollary 2.3. For every regular graph G,

µ(G) ≤ n − ∆ρ(G),(10)

where µ = ir, γ, i.

Following [1], we define t = ρ(∆ + 1) − (n + ρ)/2. Combining (10) with the
Vizing theorem we can find an upper bound for the product µχ′ : µχ′ ≤
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(n − ∆ρ)(∆ + 1) = (((n + ρ)/2)2 − t2)/ρ ≤ (n + ρ)2/4ρ. Therefore we have
the following statement.

Proposition 2.9. For every regular graph G,

µ(G)χ′(G) ≤
⌊

(n + ρ(G))2

4ρ(G)

⌋

,(11)

where µ = ir, γ, i.

We show that the bound in (11) is not sharp. To this effect we research the
following equality:

i(G)χ′(G) =

⌊

(n + ρ(G))2

4ρ(G)

⌋

.(12)

We prove that there is no a regular graph G for which (12) holds. For this
result we need the following fact.

Proposition 2.10. Let G be a regular graph. If (12) holds, then

(a) i(G) = n − ∆ρ(G)

and

(b) G is of class 2 and thus ∆ ≥ 2.

Proof. The above statement is a consequence of (10) and the remark
before Proposition 2.9.

We are now in a position to prove the following result.

Theorem 2.4. There does not exist any regular graph G such that (12)
holds.

Proof. Suppose that there exists a regular graph G for which (12) is
satisfied. Hence, by notice before Proposition 2.9 we obtain (n + ρ)2/4ρ −
t2/ρ = b(n+ρ)2/4ρc. By using Fact 1.2 and putting t = ρ(∆+1)−(n+ρ)/2
we obtain the following sequence of equivalent inequalities 0 ≤ t2/ρ < 1 ⇐⇒
−1 <

√
ρ(∆+1)−(n+ρ)/2

√
ρ < 1 ⇐⇒ 2ρ∆+ρ−n < 2

√
ρ and n−2ρ∆−ρ <

2
√

ρ.
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It follows from Fact 1.1 that 2ρ∆ + ρ − n ≤ d2√ρe − 1 and n − 2ρ∆ − ρ ≤
d2√ρe − 1, i.e.,

2ρ∆ + ρ − (d2√ρe − 1) ≤ n ≤ 2ρ∆ + ρ + (d2√ρe − 1).(13)

Let A ⊆ V (G) be a packing set of the maximum cardinality, i.e., |A| =
ρ(G) = ρ, and V (G) = N [A]∪B, where N [A]∩B = ∅. Notice that for each
v ∈ B there exists an edge e = vw such that w ∈ N(A). Really, otherwise
we would obtain a packing set of cardinality greater than ρ, a contradiction.
Let l be the number of all edges e = vw such that v ∈ B and w ∈ N(A).

In connection with (13) let us consider the following cases.

Case 1. Let n = 2ρ∆ + ρ − j, where j = 1, . . . , d2√ρe − 1. It follows
from Proposition 2.11 that i(G) = n − ρ∆ = ρ∆ + ρ − j. In this case
|B| = n−ρ(∆+1) = ρ∆−j. We show that the set B is nonempty. Suppose
that B = ∅, i.e., for a certain j, j = 1, . . . , d2√ρe−1, the equality ρ∆−j = 0
is satisfied. Hence ρ∆ ≤ d2√ρe − 1 and by Fact 1.1 we have ρ∆ < 2

√
ρ.

From here we have
√

ρ∆ < 2, therefore ∆ = 0 or 1, because ρ ≥ 1. But
∆ ≥ 2 by Proposition 2.10, thus B is nonempty.

Case 1.1. B is independent. Then

l = (ρ∆ − j)∆ = ρ∆2 − j∆.(14)

Denote G1 = G − A and calculate the sum of degrees in G1 of vertices
u ∈ N(A). On the one hand

∑

u∈N(A) dG1
(u) = ρ∆(∆−1) = ρ∆2−ρ∆, and

on the other hand
∑

u∈N(A) dG1
(u) = l + 2|D|, where D is the set of edges

e = xy such that x, y ∈ N(A). Therefore, we can deduce l ≤ ρ∆2 − ρ∆.
Suppose that l = ρ∆2 − ρ∆. Then the set N(A) would be independent and
G would be a graph of class 1 and exactly a bipartite graph G = G(V1, V2)
with V1 = A ∪ B, V2 = N(A), a contradiction. Therefore, we have

l < ρ∆2 − ρ∆.(15)

From (14) and (15) we can deduce that there exists an integer p, p > 0,
such that ρ∆2 − ρ∆ − p = ρ∆2 − j∆. Hence we obtain (j − ρ)∆ = p, thus
j − ρ > 0, and all the more d2√ρe − 1 − ρ > 0 =⇒ ρ + 1 ≤ d2√ρe − 1.
From here using Fact 1.1 we obtain ρ + 1 < 2

√
ρ =⇒ (

√
ρ − 1)2 < 0, a

contradiction.
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Case 1.2. B is dependent, i.e. in B there exist vertices, which are ad-
jacent. Let M be an independent dominating set in the induced subgraph
G[B]. Observe that |M | ≤ |B| − 1 = ρ∆ − j − 1 and A ∪ M is an inde-
pendent dominating set in G. Since i(G) is the minimum cardinality of an
independent dominating set in G, we have i(G) = ρ + ρ∆ − j ≤ |A ∪ M | =
|A| + |M | ≤ ρ + ρ∆ − j − 1, a contradiction.

Case 2. Let n = 2ρ∆+ρ+ j, where j = 0, 1, . . . , d2√ρe−1. In this case
i(G) = n − ρ∆ = ρ∆ + ρ + j and |B| = n − ρ(∆ + 1) = ρ∆ + j. It is clear
that B 6= ∅. Really, it follows from |B| = ρ∆ + j = 0 that ∆ = 0, which
contradicts ∆ ≥ 2.

Case 2.1. B is independent. Then l = (ρ∆ + j)∆ = ρ∆2 + j∆ and
l ≤ ρ∆2 − ρ∆. If ∆ > 0 then on the one hand l ≥ ρ∆2 and on the other
hand l < ρ∆2. For ∆ = 0 we obtain a contradiction.

Case 2.2. B is dependent. Let M be an independent dominating set in
G[B]. We have i(G) = ρ + ρ∆ + j ≤ |A∪M | = |A|+ |M | ≤ ρ + ρ∆ + j − 1,
a contradiction. This completes the proof of the theorem.

By Theorem 2.4 we have improved the upper bound in (11).

Corollary 2.4. For every regular graph G,

µ(G)χ′(G) ≤
⌊

(n + ρ(G))2

4ρ(G)

⌋

− 1,

where µ = ir, γ, i.

It is easy to see that the above bound is sharp. Really, for G = C7 we have
µ(G)χ′(G) = b(n + ρ(G))2/4ρ(G)c − 1 = 9.

3. The upper domination parameters

A set D is called a vertex covering set of G if every edge of G has at least
one end vertex in D. The vertex covering number α0(G) is the smallest size
of a vertex covering set of G. The well-known result of Gallai [4] establishes
the relationship between the independence number and the vertex covering
number.
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Theorem 3.1. For any graph G,

α(G) + α0(G) = n.(16)

The edge independence number and the vertex covering number are dual
parameters of a graph. The classical König theorem [7] concerns the above
parameters for bipartite graphs.

Theorem 3.2. For any bipartite graph G,

α0(G) = β(G).(17)

In this section we give a lower bound for the sum of the upper domination
parameters and the chromatic index. To this effect we define a new graph
parameter which is expressed in terms: the vertex covering number and
the maximum degree. For any vertex v ∈ V (G) of degree ∆, we define:
αv

0(G) = α0(G − N [v]) and α∆
0 (G) = min{αv

0(G) : d(v) = ∆}. The new
parameter α∆

0 (G) and β∆(G) are dual.

In this section we show a lower bound for the sum of µ(G) and χ′(G),
where µ = α,Γ, IR; this bound is a function of n and α∆

0 (G).

At first we bound µ(G) by means of an independent set of vertices.

Theorem 3.3. Let I ⊆ V (G) be an independent set of a graph G and let
R = G − N [I]. Then for µ = α,Γ, IR we have

µ(G) ≥ n − |N(I)| − α0(R).(18)

Proof. By (16) we have µ(G) ≥ α(G) ≥ |I|+α(R) = |I|+n(R)−α0(R) =
|I| + n(G) − |N [I]| − α0(R) = n(G) − |N(I)| − α0(R).

Now we put I = {v}, where v is a vertex of degree ∆ such that αv
0(G) =

α∆
0 (G). Then from (18) we obtain:

Corollary 3.1. For any graph G,

µ(G) ≥ n − ∆ − α∆
0 (G),(19)

where µ = α,Γ, IR.

The following result is an immediate consequence of (1) and (19).
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Corollary 3.2. For any graph G,

µ(G) + χ′(G) ≥ n − α∆
0 (G),(20)

where µ = α,Γ, IR.

Now it is studied the equality in (20):

µ(G) + χ′(G) = n − α∆
0 (G).(21)

It is easy to check that for G = Cn,Kn is α(G) = Γ(G) = IR(G) and (21)
holds for even values of n. Observe that if G satisfies (21) for µ = α then
G is a graph of class 1. In this paper we research the equality (21) for
bipartite graphs and in particular for trees. For bipartite graphs we have
µ = α = Γ = IR by Theorem 1.2.

Let G be a connected bipartite graph, and pick a vertex v ∈ V (G). For
any w ∈ V (G) the distance d(v, w) is odd or even. This defines the unique
bipartition of V (G) : V (G) = A∪B. Therefore, we can denote G = G(A,B),
where |A| ≤ |B|.

The following result describes a family of bipartite graphs for which (21)
holds.

Theorem 3.4. Let G = G(A,B) be a connected bipartite graph such that
|A| ≤ |B| and α(G) = |B|. If there exists a vertex v ∈ B for which d(v) = ∆,
then (21) holds.

Proof. Denote |A| = p and |B| = q. From the assumption and Theorem 1.2
we deduce that µ(G) = α(G) = q and by (20) we obtain q+∆ ≥ p+q−α∆

0 (G)
and from here

α∆
0 (G) ≥ p − ∆.(22)

Let v ∈ B be a vertex of maximum degree ∆. From (17) we have α∆
0 (G) ≤

αv
0(G) = βv(G) ≤ p − ∆ and according to (22) we conclude that α∆

0 (G) =
p − ∆ which leads to the equality (21).
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