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Abstract

Let G = (V (G), E(G)) be a graph, and let k ≥ 1 be an integer.
A set S ⊆ V (G) is called a global offensive k-alliance if |N(v) ∩ S| ≥
|N(v)−S|+k for every v ∈ V (G)−S, where N(v) is the neighborhood
of v. The global offensive k-alliance number γk

o (G) is the minimum
cardinality of a global offensive k-alliance in G. We present different
bounds on γk

o
(G) in terms of order, maximum degree, independence

number, chromatic number and minimum degree.
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1. Terminolgy

Let G = (V,E) = (V (G), E(G)) be a finite and simple graph. The open

neighborhood of a vertex v ∈ V is NG(v) = N(v) = {u ∈ V | uv ∈ E}
and the closed neighborhood is NG[v] = N [v] = N(v) ∪ {v}. The degree of
v, denoted by dG(v), is |N(v)|. By n(G) = n, ∆(G) = ∆ and δ(G) = δ
we denote the order, the maximum degree and the minimum degree of the
graph G, respectively. If A ⊆ V (G), then G[A] is the graph induced by the
vertex set A. We denote by Kn the complete graph of order n, and by Kr,s

the complete bipartite graph with partite sets X and Y such that |X| = r
and |Y | = s. A set D ⊆ V (G) is a k-dominating set of G if every vertex
of V (G) − D has at least k ≥ 1 neighbors in D. The k-domination number

γk(G) is the cardinality of a minimum k-dominating set. The case k = 1
leads to the classical domination number γ(G) = γ1(G).

In [11], Kristiansen, Hedetniemi and Hedetniemi introduced several
types of alliances in graphs, including defensive and offensive alliances. We
are interested in a generalization of offensive alliances, namely global of-
fensive k-alliances, given by Shafique and Dutton [14, 15]. A set S of ver-
tices of a graph G is called a global offensive k-alliance if |N(v) ∩ S| ≥
|N(v) − S| + k for every v ∈ V (G) − S, where k ≥ 1 is an integer. The
global offensive k-alliance number γk

o (G) is the minimum cardinality of a
global offensive k-alliance in G. If S is a global k-offensive alliance of G
and |S| = γk

o (G), then we say that S is a γk
o (G)-set. A global offensive

1-alliance is a global offensive alliance and a global offensive 2-alliance is
a global strong offensive alliance. In [7], Fernau, Rodŕıguez and Sigar-
reta show that the problem of finding optimal global offensive k-alliances is
NP -complete.

If k ≥ 1 is an integer, then let Lk(G) = {x ∈ V (G) : dG(x) ≤ k − 1}.
Denote by α(G) the independence number, by χ(G) the chromatic number,

and by ω(G) the clique number of G, respectively. The corona graph G ◦K1

of a graph G is the graph constructed from a copy of G, where for each
vertex v ∈ V (G), a new vertex v′ and a pendant edge vv′ are added. Next
assume that G1 and G2 are two graphs with disjoint vertex sets. The union

G = G1 ∪G2 has V (G) = V (G1)∪V (G2) and E(G) = E(G1)∪E(G2). The
join G = G1 + G2 has V (G) = V (G1) ∪ V (G2) and

E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1) and v ∈ V (G2)}.
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2. Upper Bounds

We begin this section by giving an upper bound on the global offensive k
-alliance number for an r-partite graph G in terms of its order and |Lk(G)|.

Theorem 1. Let k ≥ 1 be an integer. If G is an r-partite graph, then

γk
o (G) ≤

(r − 1)n(G) + |Lk(G)|

r
.

Proof. Clearly, the set Lk(G) is contained in every γk
o (G)-set. In the

case that |Lk(G)| = |V (G)|, we are finished. In the remaining case that
|Lk(G)| < |V (G)|, let V1, V2, . . . , Vr be a partition of the r-partite graph
G − Lk(G) such that |V1| ≥ |V2| ≥ · · · ≥ |Vr|, where Vi = ∅ is possible
for i ≥ 2. Then every vertex of V1 has degree at least k in G, and all its
neighbors are in V (G) − V1. Thus V (G) − V1 is a global offensive k-alliance
of G. Since

|V1| ≥
|V1| + |V2| + · · · + |Vr|

r
=

n(G) − |Lk(G)|

r
,

we obtain

γk
o (G) ≤ n(G) − |V1| ≤ n(G) −

n(G) − |Lk(G)|

r
=

(r − 1)n(G) + |Lk(G)|

r
,

and the proof is complete.

The case k = r = 2 in Theorem 1 leads to the next result.

Corollary 2 (Chellali [4]). If G is a bipartite graph, then

γ2
o(G) ≤

n(G) + |L2(G)|

2
.

Observation 3. If k ≥ 1 is an integer, then γk
o (G) ≥ γk(G) for any

graph G.

Proof. If S is any γk
o (G)-set, then every vertex of V (G) − S has at least

k neighbors in S. Thus S is a k-dominating set of G and so γk(G) ≤ |S| =
γk

o (G).

Using Theorem 1 for r = 2 and Observation 3, we obtain the known theorem
by Blidia, Chellali and Volkmann [2].
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Corollary 4 (Blidia, Chellali, Volkmann [2] 2006). Let k be a positive

integer. If G is a bipartite graph, then

γk(G) ≤
n(G) + |Lk(G)|

2
.

Since every graph G is χ(G)-partite and n(G) ≤ χ(G)α(G), we obtain also
the following corollaries from Theorem 1.

Corollary 5. If G is a graph and k a positve integer, then

γk
o (G) ≤

(χ(G) − 1)n(G) + |Lk(G)|

χ(G)
.

Corollary 6. Let k ≥ 1 be an integer. If G is a graph with δ(G) ≥ k, then

γk
o (G) ≤ (χ(G) − 1)α(G).

Theorem 7 (Brooks [3] 1941). If G is a connected graph different from the

complete graph and from a cycle of odd length, then χ(G) ≤ ∆(G).

Combining Brooks’ Theorem and Corollary 6, we can prove the following
result.

Theorem 8. Let k ≥ 1 be an integer, and let G be a connected graph with

δ(G) ≥ k. Then

γk
o (G) ≤ (∆(G) − 1)α(G)(1)

if and only if G is neither isomorphic to the complete graphs Kk+1 or Kk+2

nor to a cycle of odd length when 1 ≤ k ≤ 2.

Proof. If G is the complete graph Kn, then ∆(G) = δ(G) = n−1 ≥ k ≥ 1
and α(G) = 1. Since γk

o (Kk+1) = k and γk
o (Kk+2) = k + 1, inequality (1)

is not true for these two complete graphs. However, in the remaining case
that n ≥ k + 3, we observe that γk

o (G) ≤ n− 2, and we arrive at the desired
bound

γk
o (G) ≤ n − 2 = ∆(G) − 1 = (∆(G) − 1)α(G).
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Assume next that 1 ≤ k ≤ 2. If G is a cycle of odd length, then ∆(G) = 2,
γ1

o (G) = γ2
o(G) = dn(G)/2e and α(G) = bn(G)/2c and thus (1) is not valid

in these cases.

For all other graphs inequality (1) follows directly from Brooks’ Theorem
and Corollary 6.

Lemma 9 (Hansberg, Meierling, Volkmann [10]). Let k ≥ 1 be an integer.

If G is a connected graph with δ(G) ≤ k − 1 and ∆(G) ≤ k, then

kα(G) ≥ n(G).

Theorem 10. Let k ≥ 1 be an integer. If G is a connected r-partite graph

with ∆(G) ≥ k, then

γk
o (G) ≤

α(G)

r
((r − 1)r + k − 1).

Proof. Assume that k = 1. Since G is connected and ∆(G) ≥ 1, we note
that |L1(G)| = 0. Applying Theorem 1, and using the fact that rα(G) ≥
n(G), we receive the desired inequality immediately.

Assume next that k ≥ 2. Since G is connected and G − Lk(G) is not
empty, every component Q of G[Lk(G)] fufills δ(Q) ≤ k−2 and ∆(Q) ≤ k−1.
Hence Lemma 9 implies (k − 1)α(Q) ≥ n(Q). If Q1, Q2, . . . , Qt are the
components of G[Lk(G)], we therefore deduce that

α(G) ≥ α(G[Lk(G)]) =
t

∑

i=1

α(Qi) ≥
|Lk(G)|

k − 1
.

Combining n(G) ≤ rα(G) with Theorem 1, we receive the desired inequality
as follows:

γk
o (G) ≤

(r − 1)n(G) + |Lk(G)|

r

≤
(r − 1)rα(G) + (k − 1)α(G)

r

=
α(G)

r
((r − 1)r + k − 1).

The case r = 2 in Theorem 10 leads to the next result.
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Corollary 11. Let k ≥ 1 be an integer. If G is a connected bipartite graph

with ∆(G) ≥ k, then

γk
o (G) ≤

(k + 1)α(G)

2
.

Using Observation 3, we obtain the following known bounds on the 2-
domination number.

Corollary 12 (Fujisawa, Hansberg, Kubo, Saito, Sugita, Volkmann [9]
2008). If G is a connected bipartite graph of order at least 3, then

γ2(G) ≤
3α(G)

2
.

Corollary 13 (Blidia, Chellali, Favaron [1] 2005). If T is a tree of order

at least 3, then

γ2(T ) ≤
3α(T )

2
.

Theorem 14 (Favaron, Hansberg, Volkmann [6] 2008). Let G be a graph.

If r ≥ 1 is an integer, then there is a partition V (G) = V1 ∪ V2 ∪ · · · ∪ Vr of

V (G) such that

|NG(u) ∩ Vi| ≤
dG(u)

r
(2)

for each i ∈ {1, 2, . . . , r} and each u ∈ Vi.

Theorem 15. Let k ≥ 1 be an integer. If G is a graph of order n with

minimum degree δ ≥ k, then

γk
o (G) ≤

k + 1

k + 2
n,(3)

and the bound given in (3) is best possible.

Proof. Choose r = k + 2 in Theorem 14, and let V1, V2, . . . , Vr be a
partition of V (G) as in Theorem 14 such that |V1| ≥ |V2| ≥ · · · ≥ |Vr|. If
D = V2∪V3∪· · ·∪Vr, then it follows from (2) and the hypothesis that δ ≥ k
for each v ∈ V1 = V (G) − D that

|NG(v) ∩ D| ≥

⌈

k + 1

k + 2
dG(v)

⌉

≥

⌊

dG(v)

k + 2

⌋

+ k

≥ |NG(v) ∩ V1| + k = |NG(v) − D| + k.
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Thus D is a global offensive k-alliance of G such that |D| ≤ (k+1)n/(k+2),
and (3) is proved.

Let H be a connected graph, and let Gk = H ◦ Kk+1. Then it is easy
to see that γk

o (Gk) = (k + 1)n(Gk)/(k + 2), and therefore (3) is the best
possible.

Corollary 16 (Favaron, Fricke, Goddard, Hedetniemi, Hedetniemi, Kris-
tiansen, Laskar, Skaggs [5] 2004). Let G be graph of order n and minimum

degree δ.

If δ ≥ 1, then γ1
o (G) ≤ 2n/3.

If δ ≥ 2, then γ2
o (G) ≤ 3n/4.

In the case that δ ≥ k + 2, we obtain the following bound, improving the
bound of Theorem 15.

Theorem 17. Let k ≥ 2 be an integer, and let G be a graph of order n with

minimum degree δ ≥ k + 2. Then

γk
o (G) ≤

k

k + 1
n.(4)

Proof. Choose r = k + 1 in Theorem 14, and let V1, V2, . . . , Vr be a
partition of V (G) as in Theorem 14 such that |V1| ≥ |V2| ≥ · · · ≥ |Vr|. If
D = V2 ∪V3 ∪ · · · ∪Vr, then it follows from (2) and the hypothesis δ ≥ k +2
for each v ∈ V1 = V (G) − D that

|NG(v) ∩ D| ≥

⌈

k

k + 1
dG(v)

⌉

≥

⌊

dG(v)

k + 1

⌋

+ k

≥ |NG(v) ∩ V1| + k = |NG(v) − D| + k.

Thus D is a global offensive k-alliance of G such that |D| ≤ kn/(k +1), and
(4) is proved.

Theorem 18. Let k ≥ 1 be an integer, and let G be a connected non-

complete graph such that δ(G) ≥ k and γk
o (G) = (∆(G) − 1)α(G). Then

∆(G) ≤ k + 2, ∆(G) − δ(G) ≤ 1 and if k ≥ 2, then δ(G) ≤ k + 1.

Proof. Because of χ(G)α(G) ≥ n(G), Corollary 5 and the hypothesis
imply that

(∆(G) − 1)α(G) = γk
o (G) ≤

(χ(G) − 1)n(G)

χ(G)
≤ (χ(G) − 1)α(G).
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Since G is neither a complete graph nor a cycle of odd length, it follows
from Brooks’ Theorem that ∆(G) = χ(G), χ(G)α(G) = n(G) and

γk
o (G) =

(χ(G) − 1)n(G)

χ(G)
=

(∆(G) − 1)n(G)

∆(G)
.(5)

If we suppose on the contrary that ∆(G) ≥ k + 3, then it follows from (5)
and Theorem 15 that

∆(G) − 1

∆(G)
n(G) = γk

o (G) ≤
k + 1

k + 2
n(G) ≤

∆(G) − 2

∆(G) − 1
n(G).

This contradiction shows that ∆(G) ≤ k + 2.

If we suppose on the contrary that ∆(G) − δ(G) ≥ 2, then we deduce
that δ(G) = k and ∆(G) = k + 2 = χ(G). Since χ(G)α(G) = n(G), there
exists a partition of V (G) in χ = χ(G) colour classes U1, U2, . . . , Uχ such
that |U1| = |U2| = · · · = |Uχ| = α(G). Let v be a vertex of minimum degree
δ(G) = k, and assume, without loss of generality, that v ∈ U1. As dG(v) = k
and χ(G) = k + 2, there exists a colour class Uj with 2 ≤ j ≤ χ such that
v is not adjacent to any vertex in Uj. Therefore Uj ∪ {v} is an independent
set. This is a contradiction to the fact that |Uj | = α(G), and the desired
inequality ∆(G) − δ(G) ≤ 1 is proved.

Next assume that k ≥ 2, and suppose on the contrary that δ(G) ≥ k+2.
Then k ≤ ∆(G) − 2 and (5) and Theorem 17 lead to the contradiction

∆(G) − 1

∆(G)
n(G) = γk

o (G) ≤
k

k + 1
n(G) ≤

∆(G) − 2

∆(G) − 1
n(G).

Thus δ(G) ≤ k ≤ δ(G) + 1 when k ≥ 2, and the proof of Theorem 18 is
complete.

Example 19. 1. Let H1,H2, . . . ,Ht be t ≥ 2 copies of the complete graph
Kk+1, and let ui, vi ∈ E(Hi) for 1 ≤ i ≤ t. Define the graph G as the disjoint
union H1∪H2 ∪ · · · ∪Ht together with the edge set {v1u2, v2u3, . . . , vt−1ut}.
Then it is easy to verify that ∆(G) = k+1, δ(G) = k, α(G) = t, γk

o (G) = tk
and thus γk

o (G) = (∆(G) − 1)α(G).

2. Let F1 and F2 be 2 copies of the complete graph Kk+1 with the
vertex sets V (F1) = {x1, x2, . . . , xk+1} and V (F2) = {y1, y2, . . . , yk+1}. De-
fine the graph H as the disjoint union F1 ∪ F2 together wit the edge set
{x1y1, x2y2, . . . , xkyk}. If H1,H2, . . . ,Ht are t ≥ 2 copies of H, then let
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u2i−1 and u2i be the vertices of degree k in Hi for all i ∈ {1, 2, . . . , t}. De-
fine the graph G as the disjoint union H1 ∪ H2 ∪ · · · ∪ Ht together with the
edge set {u2u3, u4u5, . . . , u2tu1}. Then G is a (k + 1)-regular graph with
α(G) = 2t, γk

o (G) = 2kt and thus γk
o (G) = (∆(G) − 1)α(G).

3. Let k ≥ 2, and let F1 and F2 be 2 copies of the complete graph
Kk such that V (F1) = {x1, x2, . . . , xk} and V (F2) = {y1, y2, . . . , yk}. De-
fine the graph H as the disjoint union F1 ∪ F2 together wit the edge set
{x1y1, x2y2, . . . , xk−1yk−1}. If H1,H2, . . . ,Ht are t ≥ 2 copies of H, then let
u2i−1 and u2i be the vertices of degree k−1 in Hi for all i ∈ {1, 2, . . . , t}. De-
fine the graph G as the disjoint union H1∪H2∪· · ·∪Ht together with the edge
set {u2u3, u4u5, . . . , u2tu1}. Then G is a k-regular graph with α(G) = 2t,
γk

o (G) = 2(k − 1)t and thus γk
o (G) = (∆(G) − 1)α(G).

4. Let H1 and H2 be 2 copies of the complete graph Kk+2, and let
x ∈ E(H1) and y ∈ E(H2). Define the graph G′ as the disjoint union
H1 ∪ H2 together with the edge xy. Then ∆(G′) = k + 2, δ(G′) = k + 1,
α(G′) = 2, γk

o (G′) = 2(k + 1) and thus γk
o (G′) = (∆(G′) − 1)α(G′).

These four examples show that ∆ = k + 1 and δ = k, ∆ = δ = k + 1,
∆ = δ = k as well as ∆ = k + 2 and δ = k + 1 in Theorem 18 are possible.

Theorem 20. If G is a graph and k an integer such that 1 ≤ k ≤ δ(G)−1,
then

γk+1
o (G) ≤

γk
o (G) + n(G)

2
.

Proof. Let S be a γk
o (G)-set, and let A be the set of isolated vertices

in the subgraph induced by the vertex set V (G) − S. Then the subgraph
induced by V (G)− (S ∪A) contains no isolated vertices. If D is a minimum
dominating set of G[V (G)− (S ∪A)], then the well-known inequality of Ore
[12] implies

|D| ≤
|V (G) − (S ∪ A)|

2
≤

|V (G) − S|

2
=

n(G) − γk
o (G)

2
.

Since δ(G) ≥ k + 1, every vertex of A has at least k + 1 neighbors in S, and
therefore D ∪ S is a global offensive (k + 1)-alliance of G. Thus we obtain
the desired bound as follows:

γk+1
o (G) ≤ |S ∪ D| ≤ γk

o (G) +
n(G) − γk

o (G)

2
=

γk
o (G) + n(G)

2
.
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The graphs G of even order and without isolated vertices with γ(G) = n/2
have been characterized independently by Payan and Xuong [13] and Fink,
Jacobson, Kinch and Roberts [8].

Theorem 21 (Payan, Xuong [13] 1982 and Fink, Jacobson, Kinch, Roberts
[8] 1985). Let G be a graph of even order n without isolated vertices. Then

γ(G) = n/2 if and only if each component of G is either a cycle C4 or the

corona of a connected graph.

A graph is P4-free if and only if it contains no induced subgraph isomorphic
to the path P4 of order four. A graph is (K4−e)-free if and only if it contains
no induced subgraph isomorphic to the graph K4−e, where e is an arbitrary
edge of the complete graph K4. The graph G denotes the complement of the
graph G. Next we give a characterization of some special graphs attaining
equality in Theorem 20.

Theorem 22. Let G be a connected P4-free graph such that G is (K4 − e)-
free. If k is an integer with 1 ≤ k ≤ δ(G) − 1, then γk+1

o (G) = (γk
o (G) +

n(G))/2 if and only if

1. G = Kk+3 or

2. G = H ∪ 2K1,1 such that n(H) = k + 2 and all components of H are

isomorphic to K1,1, to K3,3, to K3,4 or to K4,4 or

3. G = (Q1∪Q2)+F , where Q1, Q2 and F are three pairwise disjoint graphs

such that 1 ≤ |V (F )| ≤ k +1, α(F ) ≤ 2, and Q1 and Q2 are cliques with

|V (Q1)| = |V (Q2)| = k + 3 − |V (F )| such that

|V (F )| ≤ 2 or

α(F ) = 1 and |V (F )| = k + 1 or

α(F ) = 2 and F = Kk+1 − M , where M is a matching of F or

α(F ) = 2 and F = Kk − M , where M is a perfect matching of F or

α(F ) = 2 and |V (F )| = k + 1 − t for 0 ≤ t ≤ k − 2 with k ≥ 3t + 3
and all components of F are isomorphic to Kt+2,t+2, to Kt+2,t+3 or to

Kt+3,t+3.

Proof. Assume that γk+1
o (G) = (γk

o (G) + n(G))/2. Following the same

notation as used in the proof of Theorem 20, we obtain |D| = |V (G)−S|
2 , and

we observe that S ∪ D is a γk+1
o (G)-set. It follows that G[V (G) − S] has

no isolated vertices and so by Theorem 21, each component of G[V (G)−S]
is either a cycle C4 or the corona of some connected graph. Using the
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hypothesis that G is P4-free, we deduce that each component of G[V (G)−S]
is isomorphic to K2 or to C4. Since G is (K4 − e)-free, there remain exactly
the three cases that G[V (G) − S] is isomorphic to K2, to C4 or to 2K2.

Case 1. First assume that G[V (G) − S] = K2. Suppose that G has an
independent set Q of size at least two. Then the hypothesis δ(G) ≥ k + 1
implies that V (G) − Q is a global offensive (k + 1)-alliance of G of size
n − |Q| < |S ∪ D| = n − 1, a contradiction. Therefore α(G) = 1 and thus
G = Kk+3.

Case 2. Second assume that G[V (G)−S] is a cycle C4 = x0x1x2x3x0. In
the following the indices of the vertices xi are taken modulo 4. Recall that
S∪D is a γk+1

o (G)-set, and D contains two vertices of the cycle C4. Clearly,
since S is a γk

o (G)-set, every vertex of the cycle C4 has degree at least k +4.
Suppose that dG(xi) ≥ k + 5 for an i ∈ {0, 1, 2, 3}. Then {xi+2} ∪ S is a
global offensive (k + 1)-alliance of G of size |S| + 1 < |S ∪ D| = |S| + 2,
a contradiction. Thus dG(xi) = k + 4 for every i ∈ {0, 1, 2, 3}. Now if Q
is an α(G)-set, then |Q| ≤ 2, for otherwise the hypothesis δ(G) ≥ k + 1
implies that V (G) − Q is a global offensive (k + 1)-alliance of G of size
|V (G) − Q| < |S ∪ D| = n(G) − 2, a contradiction too. Since there are two
non-adjacent vertices on the cycle C4 and G is P4-free, it follows that every
vertex of S has at least three neighbors on the cycle C4.

Subcase 2.1. Assume that α(G[S]) = 1. Then the subgraph induced by
S is complete and |S| ≥ k + 2. If |S| = k + 2, then we observe that every
vertex of S has exactly four neighbours on the cycle C4. Thus, in each case,
we deduce that dG(y) ≥ k + 5 for every y ∈ S. But then for any subset W
of S of size three, the set V (G) − W is a global offensive (k + 1)-alliance of
G of size less than |S ∪ D| , a contradiction.

Subcase 2.2. Assume that α(G[S]) = 2. Suppose that there exists a
vertex w ∈ S with at least k+1 neighbors in S. Then, since |N(w)∩V (C4)| ≥
3, say {x0, x1, x2} ⊆ N(w)∩V (C4), we observe that (S−{w})∪{x0, x2} is a
global offensive (k+1)-alliance of G of size |S|+1 < |S ∪ D|, a contradiction.
Thus every vertex of S has at most k neighbors in S.

Let S = X ∪Y such that every vertex of X has exactly three and every
vertex of Y exactly 4 neighbors on C4. We shall show that X = ∅. If X 6= ∅,
then let Sxi

⊆ X be the set of vertices such that each vertex of Sxi
is not

adjacent to xi+2 for i ∈ {0, 1, 2, 3}. Because of α(G) = 2, we observe that
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the set Sxi
∪ {xi} induces a complete graph for each i ∈ {0, 1, 2, 3}. In

additon, since G is P4-free it is straightforward to verify that all vertices of
X ∪ C4 are adjacent to all vertices of Y and that Sxi

∪ Sxi+1
∪ {xi, xi+1}

induces a complete graph for each i ∈ {0, 1, 2, 3}. Now assume, without
loss of generality, that Sx0

6= ∅, and let w ∈ Sx0
. On the one hand we

have seen above that dG(w) ≤ k + 3. On the other hand, we observe that
dG(w) = dG(x0). But since dG(x0) = k + 4, we have a contradiction.

Hence we have shown that X = ∅, and this leads to |S| = k + 2. If we
define H = G[S], then ω(H) = 2, δ(H) ≥ 1 and ∆(H) ≤ 4. Since H is also
P4-free, H does not contain an induced cycle of odd length. Using ω(H) = 2,
we deduce that H is a bipartite graph. Now let Hi be a component of H. If
Hi is not a complete bipartite graph, then Hi contains a P4, a contradiction.
Thus the components of H consists of K1,1, K1,2, K1,3, K1,4, K2,2, K2,3, K2,4,
K3,3, K3,4 or K4,4.

If K1,2 is a component of H, then V (G) − V (K1,2) is a global offensive
(k + 1)-alliance of G of size n − 3, a contradiction.

If K1,3 is a component of H with a leaf u, then (V (G)− V (K1,3))∪{u}
is a global offensive (k + 1)-alliance of G of size n − 3, a contradiction.

If K1,4 is a component of H and u, v are two leaves of this star, then
(V (G) − V (K1,3)) ∪ {u, v} is a global offensive (k + 1)-alliance of G of size
n − 3, a contradiction.

If K2,2 is a component of H, then V (G) − V (K2,2) is a global offensive
(k + 1)-alliance of G of size n − 4, a contradiction.

Next let K2,3 be a component of H with the bipartition {v1, v2, v3} and
{u1, u2}. Then V (G)−{u1, v1, v2} is a global offensive (k + 1)-alliance of G
of size n − 3, a contradiction.

Finally, let K2,4 be a component of H with the bipartition {v1, v2, v3, v4}
and {u1, u2}. Then V (G) − {u1, v1, v2} is a global offensive (k + 1)-alliance
of G of size n − 3, a contradiction.

Case 3. Third assume that G[V (G)−S] = 2K2. Let 2K2 = J1 ∪J2 = J
such that V (J1) = {u1, u2} and V (J2) = {u3, u4}. If α(G) ≥ 3, then we
obtain the contradiction γk+1

o (G) ≤ n − 3. Thus α(G) = 2. Since S is
a γk

o (G)-set, every vertex of J has degree at least k + 2. Suppose that
dG(u1) ≥ k + 3 and dG(u2) ≥ k + 3. Then {u3} ∪ S is a global offensive
(k+1)-alliance of G of size |S|+1 < |S ∪ D| = |S|+2, a contradiction. Thus
J1 contains at least one vertex of degree k + 2, and for reason of symmetry,
also J2 contains a vertex of degree k + 2. Since α(G) = 2, every vertex of
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S has at least two neighbors in J1 or in J2. Now let x ∈ S. If x has two
neighbors in Ji and one neighbor in J3−i for i = 1, 2, then the hypothesis
that G is P4-free implies that x is adjacent to each vertex of J . Consequently,
S can be partioned in three subsets S1, S2 and A such that all vertices of S1

are adjacent to all vertices of J1 and there is no edge between S1 and J2, all
vertices of S2 are adjacent to all vertices of J2 and there is no edge between
S2 and J1, all vertices of A are adjacent to all vertices of J . Since G is P4-free,
it follows that there is no edge between S1 and S2, and that all vertices of Si

are adjacent to all vertices of A for i = 1, 2. Furthermore, α(G) = 2 shows
that G[S1] and G[S2] are cliques. Altogether we see that dG(ui) = k + 2
for each i ∈ {1, 2, 3, 4} and therefore |S1| + |A| = |S2| + |A| = k + 1. It
follows that |S1| = |S2| and |S| + |A| = 2k + 2. Since G is connected, we
deduce that |A| ≥ 1 and so 1 ≤ |A| ≤ k + 1. If we define F = G[A] and
Qi = G[Si ∪ V (Ji)] for i = 1, 2, then we derive the desired structure, since
α(G[A]) ≤ 2.

Assume that |V (F )| ≥ 3 and α(F ) = 1. If x1, x2, x3 are three arbitrary
vertices in F , then let S0 = V (G) − {x1, x2, x3}. If dG(xi) ≥ k + 5 for each
i = 1, 2, 3, then S0 is a global offensive (k+1)-alliance of G, a contradiction.
Otherwise, we have n− 1 = dG(xi) ≤ k + 4 for at least one i ∈ {1, 2, 3} and
so n ≤ k + 5 and thus |V (F )| = k + 1.

Assume next that |V (F )| ≥ 3 and α(F ) = 2. As we have seen in Case
2, all components of F are complete bipartite graphs.

Subcase 3.1. Assume that K1,1 is the greatest component of F . Let u and
v be the two vertices of the complete bipartite graph K1,1. If n ≥ k+7, then
let w be a further vertex in F , and it is easy to verify that V (G)−{u, v, w} is a
global offensive (k+1)-alliance of G of size n−3, a contradiction. If n = k+6
and there exists a vertex w in F of degree k + 5, then V (G) − {u, v, w} is a
global offensive (k + 1)-alliance of G of size n − 3, a contradiction.

Subcase 3.2. Assume that |V (F )| = k + 1 − t for 0 ≤ t ≤ k − 2 and F
contains a component Kp,q with 1 ≤ p ≤ q and p+q ≥ 3. Let {v1, v2, . . . , vq}
and {u1, u2, . . . , up} be a partition of Kp,q.

If K1,s ⊆ F with s ≥ t + 4, then δ(G) ≤ k, a contradiction to δ(G) ≥
k + 1. Thus q ≤ t + 3.

If q ≤ t + 1 or q = t + 2 and p ≤ t + 1, then it is easy to see that
V (G) −{u1, v1, v2} is a global offensive (k + 1)-alliance of G of size n− 3, a
contradiction.
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Conversely, if G = Kk+3, then obviously γk
o (G) = k + 1, γk+1

o (G) = k + 2
and so γk+1

o (G) = (γk
o (G) + n(G))/2.

Now let G = H ∪ 2K1,1 such that n(H) = k + 2 and the components
of H are complete bipartite graphs K1,1, K3,3, K3,4 or K4,4. Thus k + 1 ≤
dG(z) ≤ k + 4 for every z ∈ V (G), and G contains a cycle C on four
vertices, where each vertex of C has degree k + 4. Clearly, V (H) is a global
offensive k-alliance of G and so γk

o (G) ≤ n(G)−4. If D is a γk
o (G)-set of size

|D| ≤ n(G) − 5, then, since α(G) = 2, the induced subgraph G[V (G) − D]
contains a vertex x of degree at least two. This leads to the contradiction
|NG(x) ∩ D| ≤ k + 1 < |NG(x) − D| + k. Hence we have shown that
γk

o (G) = n(G) − 4.

Now let us prove that γk+1
o (G) = n(G)−2. Clearly, γk+1

o (G) ≥ γk
o (G) ≥

n(G) − 4. Let D be a γk+1
o (G)-set. First, assume that γk+1

o (G) = n(G)− 4.
Then, since n(G) = k+6 and α(G) = 2, the induced subgraph G[V (G)−D]
is isomorphic to 2K1,1, say ab and cd, and every vertex of V (G) − D is
adjacent to all vertices of D. Since dG(x) = k + 3 for every x ∈ {a, b, c, d} it
follows that a, b, c, d lie in one component C4 of H, a contradiction. Second,
assume that γk+1

o (G) = n(G) − 3. Since every vertex has degree at most
k + 4, no vertex of V (G) − D has two neighbors in V (G) − D. Moreover,
since α(G) = 2, G[V (G)−D] is formed by two adjacent vertices x, y plus an
isolated vertex w. Since w has degree at least two in G, the vertices w, x, y
lie in one component in H and so belong to K3,3, K3,4 or K4,4. Thus each of
x and y has at least two non-neighbors in D and hence |N(x) ∩ D| ≤ k + 1,
a contradiction to the fact D is a γk+1

o (G)-set. Thus |D| ≥ n(G) − 2 and
the equality follows from the fact that V (G) minus any two non-adjacent
vertices of C is a global offensive (k +1)-alliance of G. Therefore γk+1

o (G) =
n(G) − 2 = (γk

o (G) + n(G))/2.

Finally, let G = (Q1 ∪ Q2) + F , where Q1, Q2 and F are three pairwise
disjoint graphs such that 1 ≤ |V (F )| ≤ k + 1, α(F ) ≤ 2, and Q1 and Q2 are
cliques with |V (Q1)| = |V (Q2)| = k + 3 − |V (F )| such that |V (F )| ≤ 2 or

α(F ) = 1 and |V (F )| = k + 1 or

α(F ) = 2 and F = Kk+1 − M , where M is matching of F or

α(F ) = 2 and F = Kk − M , where M is a perfect matching of F or

α(F ) = 2 and |V (F )| = k + 1 − t for 0 ≤ t ≤ k − 2 with k ≥ 3t + 3 and all
components of F are isomorphic to Kt+2,t+2, to Kt+2,t+3 or to Kt+3,t+3.

Let D be a global offensive (k + 1)-alliance of G. Since each vertex of
Qi has degree k + 2, the set V (G) − D contains at most one vertex of Qi

for every i = 1, 2. Moreover, if (V (G) − D) ∩ V (Qi) 6= ∅, then V (F ) ⊆ D.
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Now suppose that γk+1
o (G) ≤ n − 3, and assume, without loss of generality,

that V (G) − D = {u, v, w}. Then as noted above V (Q1) ∪ V (Q2) ⊆ D, and
hence the vertices u, v, w belong to V (F ). It follows that |V (F )| ≥ 3.

Obviously, we obtain a contradiction when α(F ) = 1 and |V (F )| = k+1.
Assume next that α(F ) = 2. This implies that at least two vertices of

V (G) − D are adjacent in G.
First assume that F = Kk − M , where M is a perfect matching of F .

Note that every vertex of V (F ) has degree k+4. Since M is perfect, {u, v, w}
induces either a path P3 or a clique K3 with center vertex, say v, in G. But
then v has a non-neighbor in D for which it is matched in M, and so v has
exaclty k + 2 neighbors in D against two in V (G) − D, a contradiction.

Second assume that F = Kk+1−M , where M is a matching of F . Note
that n = k + 5 and |D| = k + 2. As above, {u, v, w} induces either a path
P3 or a clique K3 with center vertex, say v, in G. But then v has at most
k + 2 neighbors in D against two in V (G) − D, a contradiction.

Assume now that α(F ) = 2 and |V (F )| = k+1−t for 0 ≤ t ≤ k−2 with
k ≥ 3t+3 and all components of F are isomorphic to Kt+2,t+2, to Kt+2,t+3 or
to Kt+3,t+3. Note that in this case n = k+5+t and so |D| = n−3 = k+2+t.
Assume, without loss of generality, that u and v are adjacent in G. This
leads to |NG(u) ∩ D| ≤ (k + 5 + t) − (t + 2 + 2) = k + 1, a contradiction to
the assumption that D is a global offensive (k + 1)-alliance of G.

Altogether, we have shown that γk+1
o (G) = n− 2. Finally, it is a simple

matter to obtain γk
o (G) = n − 4, and the proof of Theorem 22 is complete.

3. Lower Bounds

Our aim in this section is to give lower bounds on the global offensive k-
alliance number of a graph in terms of its order n, minimum degree δ and
maximum degree ∆.

Theorem 23. Let k be a positive integer. If G is a graph of order n,

minimum degree δ and maximum degree ∆, then

γk
o (G) ≥

n(δ + k)

2∆ + δ + k
.(6)

Proof. If S is any γk
o (G)-set, then

∆γk
o (G) = ∆|S| ≥

∑

v∈S

dG(v) ≥
∑

v∈V (G)−S

dG(v) + k

2
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≥ |V (G) − S|
δ + k

2
= (n − γk

o (G))
δ + k

2
.

This leads to

γk
o (G)(2∆ + δ + k) ≥ n(δ + k),

and (6) is proved.

Theorem 24. Let k ≥ 1 be an integer, and let G be a graph of order n,

minimum degree δ and maximum degree ∆. If δ is even and k odd or δ odd

and k even, then

γk
o (G) ≥

n(δ + k + 1)

2∆ + δ + k + 1
.(7)

Proof. If S is any γk
o (G)-set, then

∆γk
o (G) = ∆|S| ≥

∑

v∈S

dG(v)

≥
∑

v∈V (G)−S, dG(v)=δ

dG(v) + k + 1

2
+

∑

v∈V (G)−S, dG(v)>δ

dG(v) + k

2

≥ |V (G) − S|
δ + k + 1

2
= (n − γk

o (G))
δ + k + 1

2
.

This leads to

γk
o (G)(2∆ + δ + k + 1) ≥ n(δ + k + 1),

and (7) is proved.

Example 25. Let G be a k-regular bipartite graph of order n with the
partite sets X and Y . Then

γk
0 (G) = |X| = |Y | =

n

2
=

n(δ + k)

2∆ + δ + k

and

γk−1
0 (G) = |X| = |Y | =

n

2
=

n(δ + (k − 1) + 1)

2∆ + δ + (k − 1) + 1

for k ≥ 2. This family of graphs demonstrate that the bounds in Theorems
23 and 24 are best possible.
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