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Abstract

We extend the notion of a potentially H-graphic sequence as fol-
lows. Let A and B be nonnegative integer sequences. The sequence
pair S = (A, B) is said to be bigraphic if there is some bipartite graph
G = (X ∪Y, E) such that A and B are the degrees of the vertices in X

and Y , respectively. If S is a bigraphic pair, let σ(S) denote the sum
of the terms in A.

Given a bigraphic pair S, and a fixed bipartite graph H , we say that
S is potentially H-bigraphic if there is some realization of S containing
H as a subgraph. We define σ(H, m, n) to be the minimum integer
k such that every bigraphic pair S = (A, B) with |A| = m, |B| = n

and σ(S) ≥ k is potentially H-bigraphic. In this paper, we determine
σ(Ks,t, m, n), σ(Pt, m, n) and σ(C2t, m, n).
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1. Introduction

Let S = (A,B) = (a1, . . . , am; b1, . . . , bn) be a pair of positive integer se-
quences. We say that S is a bigraphic pair if there exists some simple bi-
partite graph G with partite sets X = {x1, . . . , xm} and Y = {y1, . . . , yn}
such that the degree of xi is ai and the degree of yj is bj. In this case, we
say that G is a bigraphic realization of S. In this paper, as the bipartite
context is clear, we will simply call G a realization of S. One easy method to
determine if a given sequence pair is bigraphic is the Gale-Ryser condition
[3, 11]. Given a bipartite graph H and a bigraphic pair S, we say that S

is potentially H-bigraphic if there is some realization of S that contains H

as a subgraph. This is a weakening of the Zarankiewicz problem [12], which
is the bipartite analogue to determining the extremal function for arbitrary
subgraphs. This seemingly innocent variant to the classical Turán problem
has proven to be much more challenging over time. A good discussion of
the problem and its rich history can be found in [1].

Given a bigraphic sequence pair S = (A,B), let σ(S) denote the sum
of the terms in either A or B (which are necessarily equal). For a given
bipartite graph H, let σ(H,m, n) denote the minimum integer k such that
any bigraphic pair S = (A,B) with |A| = m, |B| = n and σ(S) ≥ k is
potentially H-bigraphic. This is a natural extension of the notion of a
potentially H-graphic sequence, which has been widely studied.

In this paper, we will determine σ(H,m, n) for several graphs H. In
Section 2, we determine σ(Ks,t,m, n), where Ks,t is the complete bipartite
graph with vertex sets of size s and t. In Section 3 we find σ(Pt,m, n), where
Pt is the path on t vertices. Finally, in Section 4, we use the two previous
results to determine σ(C2t,m, n) for even cycles C2t.

The following useful lemma is an extension of a result found in [4].

Lemma 1.1. Let S be a bigraphic pair with realization G = (X ∪ Y,E)
having partite sets X and Y . Let H = (X ′∪Y ′, E′) be a subgraph of G such

that X ′ and Y ′ are contained in X and Y , respectively. Then there exists a

realization G1 = (X ∪ Y,E1) of S containing H as a subgraph such that X ′

and Y ′ lie on the vertices of highest degree in X and Y , respectively.

Proof. Let G = G(X ∪ Y,E) be a realization of bigraphic sequence S

containing a graph H as a subgraph, such that {u, v} ⊂ X, (or {u, v} ⊂ Y ,)
u 6∈ V (H), v ∈ V (H), and degG(u) ≥ degG(v). Let T = NH(v)\NG(u, v) be
the neighbors of v in H that are not neighbors of u. Since |NG(u)| ≥ |NG(v)|,
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we have that

|NG(u) \ NG(u, v)| ≥ |NG(v) \ NG(u, v)| ≥ |T |,

thus there exists subset T ′ of NG(u) \ NG(u, v) of size |T |. Let G′ =
G′(X ∪ Y,E′) where

E′ = E \
(

E(u + T ′) ∪ E(v + T )
)

∪
(

E(u + T ) ∪ E(v + T ′)
)

.

Then G′ is a realization of S containing a copy of H with the vertex u in
place of the vertex v. The lemma follows.

Throughout this paper, we will assume each sequence in a given sequence
pair is nonincreasing. We will also often use exponential notation for a
degree sequece. That is, we will write (aα1

1
, . . . , aαr

r ; bβ1

1
, . . . , b

βs

s ) to denote
the sequence pair

(a1, . . . , a1, a2, . . . , a2, . . . , ar, . . . , ar; b1, . . . , b1, b2, . . . , b2, . . . , bs, . . . , bs)

in which ai and bj occur αi and βj times respectively.

2. Complete Bipartite Graphs

In this section, we determine σ(Ks,t,m, n). The problem of determining
when a graphic sequence contains a copy of Ks,t has been studied, and the
interested reader may wish to compare the corresponding results, found in
[8] and [9]. In the bipartite setting, determining σ(Ks,t,m, n) might be con-
sidered analagous to determining when a graphic sequence has a realization
containing a copy of Kt, as in [2, 4, 6], and [7].

Theorem 2.1. For all 1 ≤ s ≤ t, there exists m0 such that for n ≥ m ≥ m0

the following holds.

σ(Ks,t,m, n) = n(s − 1) + m(t − 1) − (t − 1)(s − 1) + 1.

Proof. We begin by exhibiting a bigraphic pair S with σ(S) = n(s− 1) +
m(t − 1) − (t − 1)(s − 1) which is not potentially Ks,t-bigraphic. Consider
the sequence pair

S = (ns−1, (t − 1)m−s+1;ms−1, (t − 1)m−s+1, (s − 1)n−m).
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This sequence is bigraphic, and neither partite set in any realization of S

has s vertices of degree t. Hence S is not potentially Ks,t-graphic.
Moving forward, let S be a bigraphic pair with σ(S) at least n(s− 1) +

m(t − 1) − (t − 1)(s − 1) + 1. Let G be a realization of S with partite sets
X and Y , with |X| = n and |Y | = m. Let Xt be the set of t highest degree
vertices of X, and Ys be the set of s highest degree vertices of Y . Assume
that G is a realization of S that maximizes the number of edges between Xt

and Ys. If the graph on Xt ∪ Ys is Ks,t we are done, so assume otherwise.
Let x and y be nonadjacent members of Xt and Ys, and let HX = Xt \ {x}
and HY = Ys \ {y}.

Let A denote N(y)\HX and let B denote N(x)\HY . Note that neither
A nor B is empty, as it is straightfoward to show that x and y have degrees
at least s and t, respectively.

Claim 2.2. Let a and b lie in A and B respectively. Then ab is an edge
of G.

Proof. Assume otherwise, and exchange the edges ya and xb for the
nonedges ab and xy. This preserves the degree sequence of G, but con-
tradicts our assumption that G had the maximum number of edges between
Xt and Ys among all realizations of S.

Claim 2.2 implies that the subgraph of G induced by A and B is a complete
bipartite graph.

Claim 2.3. For each b in B there exists a vertex hx in HX such that b is
not adjacent to hx. Similarily, for each a in A there exists a vertex hy in
HY such that a is not adjacent to hy.

Proof. We prove the first statement. The proof of the second is similar.
Assume the first statement is false. Then, as b is adjacent to x,

d(b) ≥ |HX | + |A| + 1 > d(y).

This contradicts the fact that y is one of the s highest degree vertices in Y .

Claim 2.3 immediately implies the following two claims.

Claim 2.4. Let b and hx be nonadjacent vertices in B and HX respectively.
Then for all a in A and all v in N(hx) \ (Ys ∪ B), av is an edge of G.

The analagous statement about nonadjacent a and hy in A and HY

respectively, is also true.
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Proof. Again, we prove just the first statement. Assume it is false, i.e.,
that there is some a ∈ A and some v ∈ N(hx)\(Yt∪B) that are not adjacent.
Then we could exchange the edges ay, bx and hxv for the nonedges hxb, av

and xy. This is, again, a contradiction to our choice of G.

This allows us to bound the number of vertices in A and B as follows.

Claim 2.5. Let A and B be as defined above. Then both A and B contain
at most

(s − 1)(t − 1)

vertices.

Proof. We prove |B| ≤ (s−1)(t−1). The proof for |A| is similar. Assume
that |B| > (s − 1)(t − 1). By Claim 2.3 and the pigeonhole principle there
must be some hx in HX that is nonadjacent to at least s vertices in B. Its
neighborhood is

N(hx) = [N(hx) \ (Ys ∪ B)] ∪ [N(hx) ∩ Ys] ∪ [N(hx) ∩ B],

so we have that

d(hx) ≤ |N(hx) \ (Ys ∪ B)| + s + (|B| − s) = |N(hx) \ (Ys ∪ B)| + |B|.

On the other hand, for any vertex a in A, Claim 2.4 and the comment
following Claim 2.2 implies that the neighborhood of a contains

[N(hx) \ (Ys ∪ B)] ∪ B ∪ {y},

so we have

(1) d(a) ≥ |N(hx) \ (Ys ∪ B)| + |B| + 1 > d(hx).

This contradicts the fact that hx is in Xt.

Claim 2.6. Let hx and hy be as given above. Then

d(hx) < 2s + |B| and d(hy) < 2t + |A|.

Proof. Assume d(hx) ≥ |B|+2s. Then by equation (1), we have for any a

in A that

d(a) ≥ [d(hx) − |(Ys ∪ B)|] + |B| + 1 > |B| + s > d(x).
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This contradicts the assumption that d(x) ≥ d(a). The proof for hy is
similar.

Now since both d(x) and d(hx) are bounded by 2s + |B|, and they are both
in Xt the number of edges in G that are incident to vertices of either Xt or
A is at most

(t − 2)m + (2s + |B|)(|A| + 2).

Similarly the number of edges incident to Ys or B is at most

(s − 2)n + (2t + |A|)(|B| + 2).

By Claim 2.5, this accounts for at most

(t − 2)m + (s − 2)n + (2s + (s − 1)(t − 1))((s − 1)(t − 1) + 2)

+ (2t + (s − 1)(t − 1))((s − 1)(t − 1) + 2),

which is less than (t− 2)m + (s− 2)n + 6s2t2, edges from G. Taking m and
n larger than 4s2t2 this is strictly less than σ(S).

Furthermore, A has at most |A|d(hx) neighbors, which by Claims 2.5
and 2.6, is at most

(2s + (s − 1)(t − 1)) (s − 1)(t − 1) < 3s2t2.

Each of these vertices which is outside of Ys has at most d(hy) < 2t +
(s − 1)(t − 1) neighbors. Thus at most 9s4t3 vertices in X have neighbors
outside of Ys which are adjacent to vertices of A. Assuming that m0 = 9s4t4,
together n > m0 > 9s4t3 and m > m0 > 9t4s3, ensure that there exists some
edge e = x′y′, with x′ ∈ X − Xt − A and y′ ∈ Y − Yt − B, and vertices a

and b in A and B respectively, such that x′b and y′a are not edges in G.
We can then exchange the edges ab and e for the non-edges x′a and y′b,
contradicting Claim 2.2, and completing the proof.

We note in the proof that the sets A and B induce a complete bipartite
graph. Hence at least one of A and B contains at most t − 1 vertices, and
if either contains more than t − 1 vertices, the other set contains at most
s− 1 vertices. This would be useful if one were interested in finding smaller
bounds on the n and m necessary to assure Theorem 2.1.
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3. Paths

Recall that Pt denotes the path on t vertices. In this section we determine
the quantity σ(Pt,m, n). In particular, we prove the following.

Theorem 3.1. For t ≥ 2 and integers n ≥ m ≥ t + 1,

σ(P2t+1,m, n) = σ(P2t+2,m, n) = n(t − 1) + m − (t − 1) + 1.

To see that both σ(P2t+1,m, n) and σ(P2t+2,m, n) are greater than n(t− 1)
+ m− (t−1), consider the sequence pair S = (m1, (t−1)n−1;nt−1, 1m−t+1).
This pair has σ(S) = n(t − 1) + m − (t − 1) and has a unique realization,
which contains no P2t+1.

The remainder of the section is dedicated to showing that a bigraphic
sequence with the above sum has a realization containing a P2t+1 and a
realization containing a P2t+2. The proof will be by induction on t. The
following lemma is sufficient to act as a basis for this induction, and is also
of interest for the sake of completeness.

Lemma 3.2. Let n ≥ m be integers. Then,

(i) σ(P3,m, n) = m + 1, and

(ii) σ(P4,m, n) = n + 1.

Proof. That σ(P3,m, n) ≥ m + 1 and σ(P4,m, n) ≥ n + 1 is obvious.
Equality for statement (i) follows from the fact that with degree sum m + 1
some vertex in any realization must have degree 2, and hence be the center
vertex of a P3. For statement (ii) observe that with degree sum n + 1, at
least one vertex in each partite set has degree 2 or more. Applying Lemma
1.1 with H = K1,1, there exists a realization in which these vertices are
adjacent, and hence lie in a P4.

The induction follows immediately from the following two lemmas.

Lemma 3.3. For t ≥ 2 and integers n ≥ m ≥ t + 1, if S is a bigraphic pair

with

σ(S) ≥ n(t − 1) + m − (t − 1) + 1,

and S is potentially P2t-bigraphic, then S is potentially P2t+1-bigraphic.
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Lemma 3.4. For t ≥ 2 and integers n ≥ m ≥ t + 1, if S is a bigraphic pair

with

σ(S) ≥ n(t − 1) + m − (t − 1) + 1,

and S is potentially P2t+1-bigraphic, then S is potentially P2t+2-bigraphic.

To finish the proof of Theorem 3.1 we thus prove Lemmas 3.3 and 3.4.

Proof of Lemma 3.3. Let S = (A,B) = (a1 . . . , an; b1, . . . , bm) be a bi-
graphic pair with σ(S) = n(t−1)+m− (t−1)+1, and let G = G(X ∪Y,E)
be a realization of S, with |X| = m and |Y | = n, that contains a P2t.
By Lemma 1.1 we may assume that the copy of P2t occurs on vertex sets
Xt := {x1, . . . , xt} and Yt := {y1, . . . , yt}. We must now show that some re-
alization G′ of S contains a P2t+1. We proceed by contradiction and assume
that no realization of S, including G, contains a P2t+1.

The following claim allows us to further assume that there is no C2t on
Xt ∪ Yt.

Claim 3.5. If the subgraph induced by Xt ∪ Yt contains a cycle C2t, then
S is potentially P2t+1-bigraphic.

Proof. Assume that the subgraph induced by Xt∪Yt contains a copy of C2t.
If there exists an edge with one endpoint in Xt∪Yt and one endpoint outside
of this set then we are done. Thus we may assume there exists no such edge.
Since m,n > t, there exists a pair of vertices x, y in V (G) − (Xt ∪ Yt), and
by assumption, each has degree at least 1. We may assume that xy is an
edge for x ∈ X − Xt and y ∈ Y − Yt and so for any edge x′y′ in the C2t,
x′

� y ∼ x � y′ ∼ x′ is an alternating cycle in G. Removing the edges of
this alternating cycle from G and putting the nonedges into G, we arrive at
another realization of the same degree sequence, which contains a P2t+1.

Let the P2t on Xt ∪ Yt be

v1, v2, . . . , v2t−1, v2t

where vertices with odd index are in Xt and those with even index are in
Yt. Clearly, neither of v1 and v2t can have neighbors outside of Xt ∪ Yt.
Moreover, where dX = deg(v1) and dY = deg(v2t), the following is also true.

(2) dX + dY ≤ t.
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Indeed if G contained both of the edges v1v2i and v2tv2i−1, for any i =
1, . . . , t, then it would contain the 2t-cycle

v1, v2, . . . , v2i−1, v2t, v2t−1, . . . , v2i, v1.

This would contradict Claim 3.5.

Now the number of edges in G is the number of edges incident to (Y −Yt)
∪ {v2t} or (X−Xt)∪{v1}, plus the number between Xt−{v1} and Yt−{v2t}.
This is at most

(m − (t − 1))dX + (n − (t − 1))dY + (t − 1)2.

Since n ≥ m, and dX ≥ 1, this is at most

n(dX + dY − 1) + m − (t − 1)(dX + dY ) + (t − 1)2.

Since n > t and dX + dY ≤ t, this is maximized when dX + dY = t, so is at
most

n(t − 1) + m − (t − 1).

This, however, is one less than σ(S), which is a contradiction.

Proof of Lemma 3.4. Let S be a bigraphic pair with σ(S) ≥ n(t − 1) +
m − (t − 1) + 1, and let G be a realization of S that contains a P2t+1.

We first consider the case in which the endpoints of the P2t+1 occur in
X. By Lemma 1.1 we may assume that the copy of P2t+1 occurs on vertex
sets Xt+1 := {x1, . . . , xt+1} and Yt := {y1, . . . , yt}. We show that G contains
a P2t+2. The proof is, again, by contradiction.

Let eX denote the number of vertices of Xt+1 that are the endpoint of
some P2t+1 on Xt+1 ∪ Yt. Let x be any such endpoint, and observe that

(3) eX ≥ deg(x) + 1.

Indeed, let x = v1, . . . , v2t+1 be a P2t+1 with x = v1 as an endpoint. For
every edge v1vi, the following is a P2t+1 having v2t+1 as an endpoint:

vi−1, vi−2, . . . , v1, vi, vi+1, vi+2, . . . , v2t+1.

As v2t+1 is also counted by eX , the inequality holds.



592 M. Ferrara, M. Jacobson, J. Schmitt and M. Siggers

Since each vertex of Xt+1 which is counted by eX has degree at most eX −1,
we can bound the number of edges in G by

n(t + 1 − eX) + (eX − 1)[m − (t + 1 − eX)]

= n(t − (eX − 1)) + m(eX − 1) − (eX − 1)(t − (eX − 1)).

Because n ≥ m and 1 ≤ eX − 1 ≤ t, this is maximized when eX − 1 = 1, so
is at most

n(t − 1) + m − (t − 1).

This is one less than σ(S), so completes the proof in the case that the
endpoints of the P2t+1 are in X.

When the endpoints of the P2t+1 are in Y , then analogous arguments
allow us to bound the number of edges in G by

(4) m(t − (eY − 1)) + n(eY − 1) − (eY − 1)(t − (eY − 1)),

where eY denotes the number of vertices in Yt+1 that are endpoints of a
P2t+1 on Xt ∪ Yt+1.

Claim 3.6. We have the following inequality,

1 ≤ eY − 1 < t.

Proof. It is trivial from the definition that 1 ≤ eY − 1 ≤ t. Assume now
that eY − 1 = t, so all vertices in Yt+1 are endpoints of a P2t+1. Then there
are no edges from Yt+1 to X − Xt, or else we have a P2t+2. So every vertex
of Yt+1 has degree at most t. Since by the degree sum, some vertex of Yt+1

must have degree at least t, there is some vertex y of Yt+1 that is adjacent
to every vertex in Xt. In particular, when

y = v1, v2, . . . , v2t+1

is the P2t+1 with y as endpoint, y is adjacent to v2t.

Now since m > t + 1, there is a vertex x0 ∈ X − Xt which must have
some edge. Let y0 in Y −Yt+1 be the other endpoint of this edge. If y0 ∼ v2t

then we have the P2t+2

v1, . . . , v2t, y0, x0.
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If y0 � v2t, then we have the alternating path

v1 ∼ v2t � y0 ∼ x0 � v1.

Removing the edges of this path from G and replacing them with the
nonedges, we get a new realization of the same degree sequence which has
the P2t+2

x0, v1, v2, . . . , v2t, y0.

This completes the proof of the claim.

With this claim we have that the (eY − 1)(t − (eY − 1)) of equation (4) is
minimized when eY − 1 = 1 and because m ≤ n, the positive terms are
maximized when eY − 1 = t − 1, thus it is bounded above by

m(t − (t − 1)) + n(t − 1) − (1)(t − (1)) = n(t − 1) + m − (t − 1).

Again, this is one less than σ(S), so is a contradiction.
This completes the proof of the Lemma 3.4 and therefore completes the

proof of Theorem 3.1.

4. Even Cycles

The minimum degree sum necessary to assure a graphic sequence has a
realization containing a copy of Ct was determined in [5], and [10]. Here,
we look at the similar problem of determining the minimum sum needed to
assure that a bigraphic pair has a realization containing a copy of C2t.

Theorem 4.1. Given t ≥ 2, and n ≥ m ≥ 2(t + 1),

σ(C2t,m, n) = n(t − 1) + m − (t − 1) + 1.

Proof. The case t = 2 follows from Theorem 2.1, so we assume that t > 2.
The fact that the given value is a lower bound for σ(C2t,m, n) is established
by the same bigraphic sequence given in Theorem 3.1. We now show that it
is also an upper bound.

Let S be a bigraphic pair with σ(S) ≥ n(t − 1) + m − (t − 1) + 1.
By Theorem 3.1 we get a realization G of S with a copy of P2t+2. By
Lemma 1.1 we may assume that this P2t+2 occurs on Xt+1 = {x1, . . . , xt+1}
and Yt+1 = {y1, . . . , yt+1}. The following claim allows us to assume that G

contains a C2t+2.
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Claim 4.2. Let P be a copy of P2t+2 in G. If the endpoints of P are not
adjacent, then S is potentially C2t-bigraphic.

Proof. Let x and y be the endpoints of P and y ′ and x′ be their respective
neighbors in P . If x′ is adjacent to y′ then we have a C2t and are done. Thus
we assume x′

� y′. Now if x � y then x � y ∼ x′
� y′ ∼ x is an alternating

cycle whose reversal yields a C2t in G. Thus we may assume that x and y

are adjacent.

We therefore make the assumption that G contains a C2t+2 on the vertices
v1, v2, . . . , v2t+2, where the vertices with even index are in X and those with
odd index are in Y .

The following claim allows us to assume that the C2t+2 is induced.

Claim 4.3. If G contains a cycle C of length 2t + 2 that is not induced,
then S is potentially C2t-bigraphic.

Proof. Assume that C contains a chord, wlog v1 ∼ v2j for some j, 2 ≤
j ≤ t. Then we have the P2t+2

v2, v3, . . . , v2j , v1, v2t+2, v2t+1, . . . , v2j+1

with endpoints v2 and v2j+1. By Claim 4.2, we may assume that these
endpoints are adjacent. The same argument applied to the chord v2v2j+1

shows that v3 and v2j+2 are adjacent as well. However, this implies that G

contains the C2t v3, v4, . . . , v2j , v1, v2t+2, v2t+1, . . . , v2j+2, v3. This proves the
claim.

Now let C refer to the induced copy of C2t+2 in G and consider its vertices
v1 and v6.

Claim 4.4. We may assume that v1 and v6 each have degree at least 3.

Proof. We show that there is some pair {vi, vi+5} with each vertex having
degree at least 3. This will suffice. By the degree sum of S, there are at
least t − 1 vertices in each of X and Y with degree at least 3. Thus by
Lemma 1.1 we may infer that at least t−1 vertices of each of V (C)∩X and
V (C) ∩ Y have degree at least 3. We consider now two cases.

When t = 3 there are at least two vertices in V (C)∩X that have degree
at least 3. Every vertex in V (C)∩Y is distance 5 from one of these vertices,
so since at least one of the vertices on V (C) ∩ Y has degree at least 3, we
are done.
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When t ≥ 4 there are at least three vertices in V (C)∩X that have degree at
least three. So there are at least three vertices in V (C) ∩ Y that distance 5
from one of these vertices. Since at most 2 vertices of V (C)∩Y have degree
less than 3 at least one of these 3 vertices has degree at least 3.

Now v1 has neighbor y in Y − V (C) and v6 has neighbor x in X − V (C). If
x ∼ y, then we have the C2t

v6, v7, . . . , v2t+2, v1, y, x, v6.

On the other hand, if x � y then we have the alternating path v1 ∼ y � x ∼
v6 � v1. Reversing this in G we arrive at a realization of the same degree
sequence that contains a non-induced C2t+2. By Claim 4.3, this suffices to
complete the proof.

5. Conclusion

This paper serves only as an initial investigation into the subject of poten-
tially H-bigraphic sequence pairs. Looking forward, it may be interesting to
consider other broad classes of bipartite graphs, particularly those graphs
H for which the standard potential number is known.
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