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Abstract

Let us call a graph G (H ; k) vertex stable if it contains a subgraph
H after removing any of its k vertices. In this paper we are interested
in finding the (Kn,n+1; 1) (respectively (Kn,n; 1)) vertex stable graphs
with minimum size.
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1. Introduction

We deal with simple graphs without loops and multiple edges. As usual
V (G) and E(G) denote the vertex set and the edge set of G, respectively.
|G|, e(G) are the order and the size of G, respectively, whereas degG(v)
is the degree of v ∈ V (G). Let (B,W ;E) be a complete bipartite graph
with vertex bipartition sets defined as follows: B = {x1, x2, . . . , xm}, W =
{y1, y2, . . . , yn} and the edge set E = {xiyj, i = 1, 2, . . . ,m, j = 1, 2, . . . , n}.
For simplicity of notation we will write Km,n.

By Cn we denote the cycle of order n, by Pn a path of order n. By Kr

we denote the complete graph on r vertices and by Kp,1 the star on 1 + p
vertices. By G − e we shall denote the graph without the edge e and by
G− v the graph G without the vertex v ∈ V (G) and with all edges incident
to v deleted as well.
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In [2] G.Y. Katona and P. Frankl were interested in finding minimum size of
an r-uniform hypergraph such that after removing any k hyperedges there
is still a hamiltonian chain in the hypergraph. To find a lower bound of
minimum size of the above mentioned r-uniform hypergraphs the authors of
[2] define the (P4, k) edge stable graph as the graph in which after removing
any k edges there is still P4 and they ask about minimum size of the (P4, k)
edge stable graph. It was natural to try to relate minimum size of the (P4, k)
edge stable graph. In [3] G.Y. Katona and I. Horváth address the problem
of minimum size of (Pn, k) edge stable graphs. In [1] a similar problem is
considered but in a vertex version based on the following definition:

Definition 1. Let us call a graph (H; k) vertex stable if it contains a con-
nected subgraph H ever after removing any of its k vertices. By Q(H; k) we
will denote minimum size of the (H; k) vertex stable graph.

For convenience of the reader, we repeat the relevant material from [1] with-
out proofs, thus making our exposition self-contained.

Theorem 1. Q(C3; k) = 3k + 3.

Theorem 2. Q(C4; k) = 4k + 4.

Theorem 3. Q(Cn; k) ≤ kn + n, (n ≥ 3).

Theorem 4.

Q(K4; k) =

{

6 for k = 0;
5k + 5 for k ≥ 1.

For a sufficiently large k, there exists an upper bound:

Theorem 5. There is an integer k(s) such that Q(Ks, k) ≤ (2s − 3)(k + 1)
for k > k(s).

Theorem 6. For every k ∈ N there exists s(k) such that Q(Ks, k) =
(s+k

2

)

for every s ≥ s(k).

It is worth pointing out that [1] was the first paper concerning vertex stable
graphs with minimum size. Moreover, the main aim of [1] was to give only
minimum size of (H, k) vertex stable graphs, however, it was also shown that
Ks+k is the only (Ks, k) stable graph with minimum size for s ≥ 2k2+5k+2.
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It is natural to ask about the characterization of all (H; k) vertex stable
graphs with minimum size for a fixed graph H. This is the purpose of the
paper for H = Kn,n+1, H = Kn,n+1 and k = 1.

For simplicity we will write (H; k) stable instead of (H; k) vertex stable.
Observe that if we find a graph G which is an (H; k) stable graph with
minimum size then adding isolated vertices we still have an (H; k) stable
graph with the same size. In this paper we will concentrate on (H; k) stable
graph with minimum size and without isolated vertices. (Observe that for
H 6= K1 there always exists an (H; k) stable graph without isolated vertices.)
From now on we make this assumption and we will not repeat it in any
theorem or its proof.

The proofs in this paper are based on the facts given below (see [1]).

Proposition 1. If G is an (H; k) stable graph with minimum size, then

every vertex as well as every edge of G belongs to some subgraph of G iso-

morphic to H.

2. Q(Km,n; 1)

Without loss of generality we may assume in Km,n that m ≥ n in Km,n, and
from now on we always make this assumption. Let us define Km,n + w as a
graph G = (V1, E1) where V1 := B ∪W ∪ {w} and E1 := E ∪ {xiw, yjw} for
i = 1, 2, . . . ,m, j = 1, 2, . . . , n and Km,n + (w1, w2) as a graph H = (V2, E2)
where V2 := B∪W∪{w1, w2} and E2 := E∪{xiw1, yjw2} for i = 1, 2, . . . ,m,
j = 1, 2, . . . , n.

Proposition 2. Q(Km,n; 1) ≤ nm + n + m.

Proof. It is enough to consider the graph Km,n +(w1, w2) or Km,n +w.

The above mentioned graphs will play an important role in this paper.
Observe that Proposition 2 follows from the evident inequality Q(H; 1) ≤
e(H) + |H|.

Proposition 3. Q(Km,n; 1) ≥ nm + m.

Proof. Let G be a (Km,n; 1) stable graph with e(G) = Q(Km,n; 1). It is
evident that there exists v such that degG(v) ≥ m.

From the inequalities mn ≤ e(G−v) ≤ e(G)−m we conclude Q(Km,n; 1)
≥ nm + m.
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For n = 1 the bipartite graph Km,n is a star which was considered in [1] as
a case of the following Theorem:

Theorem 7. For m ≥ 3 Q(Km,1; k) = mk + m.

(Q(K1,1; 1) will be given in Theorem 8, Q(K2,1; 1) will be given in Theo-
rem 9.)

Now we will present the main results of this paper.

Theorem 8. Q(K2,1; 1) = 4 and K2,2 as well as 2K2,1 are the only (K2,1; 1)
stable graphs with minimum size. For n ≥ 2, Q(Kn+1,n; 1) = (n + 1)2 and

Kn+1,n+1 is the unique (Kn+1,n; 1) stable graph with minimum size.

Proof. It is understood that Kn+1,n+1 is a (Kn+1,n; 1) stable graph so
Q(Kn+1,n; 1) ≤ (n + 1)2. From Proposition 3 it follows that

Q(Kn+1,n; 1) ≥ (n + 1)2.

Hence e(G) = (n + 1)2.

Now we will show that K2,2 and 2K2,1 are the only (K2,1; 1) stable graphs
with minimum size and that for n ≥ 2, Kn+1,n+1 is the unique (Kn+1,n; 1)
stable graph with minimum size.

Let G be a (Kn+1,n; 1) stable graph with e(G) = Q(Kn+1,n;; 1). It is
clear that |G| ≥ 2(n + 1). The proof falls naturally into 2 cases.

Case 1. |G| = 2(n + 1).

We first prove that degG(v) ≥ n+1 for every v ∈ V (G). From Proposition 1
we have degG(v) ≥ n. Suppose indirectly that for some v0 ∈ V (G) we have
degG(v0) = n. Let v1 ∈ NG(v0). Deleting v1 we get deg(G−v1)(v0) ≤ n − 1
which together with |G − v1| = 2n + 1 contradicts the fact that Kn+1,n is
isomorphic to some subgraph of G − v1.

We have just proved that G = Kn+1,n+1 is the unique (Kn+1,n; 1) stable
graph of order 2(n + 1) with minimum size.

Case 2. |G| ≥ 2n + 3.

Note that there is always a subgraph isomorphic to Kn+1,n in G and there
are two vertices not belonging to this Kn+1,n.

Subcase 2a. There are two nonadjacent vertices not belonging to the
same subgraph Kn+1,n of G.
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One may estimate for n ≥ 2 that e(G) ≥ n(n+1)+n+n ≥ n(n+1)+n+2 >
(n + 1)2 to get a contradiction. It is easily seen that for n = 1, 2K2,1 is the
unique (K2,1; 1) stable graph with minimum size.

Subcase 2b. Any two vertices not belonging to the same subgraph Kn,n+1

of G are adjacent.
For n ≥ 3 one may estimate:

e(G) ≥ n(n + 1) + 2(n − 1) + 1 ≥ n(n + 1) + n + 2 > (n + 1)2 to ob-
tain a contradiction. We leave it to the reader to verify that trying to
construct for n = 1, 2 of (Kn+1,n; 1) stable graph of order at least 2n + 3
with minimum size we obtain a contradiction with the definition of (H, k)
stable graph.

Therefore, there is no (Kn+1,n; 1) stable graph of order at least 2n + 3
with minimum size.

Theorem 9. Q(Kn,n; 1) = n2 + 2n for n ≥ 2. Moreover, K2,2 + w, K2,2 +
(w1, w2) and 2K2,2 are the only (K2,2; 1) stable graphs with minimum size.

For n ≥ 3, Kn,n +w and Kn,n +(w1, w2) are the only (Kn,n; 1) stable graphs

with minimum size.

Proof. It is evident that Q(K1,1; 1) = 2 and 2K2 is the unique (K1,1; 1)
stable graph with minimum size. We may suppose that n ≥ 2.

By Proposition 2, Q(Kn,n; 1) ≤ n2+2n. We will prove that Q(Kn,n; 1) ≥
n2 + 2n. The proof will be divided into 2 cases. In both of the cases we will
first prove that the inequality Q(Kn,n, 1) ≥ n2+2n and as a conclusion from
this part of the proof we will consider the existence of the unique (Kn,n; 1)
stable graph with minimum size.

Let G be a (Kn,n; 1) stable graph with minimum size.
From Proposition 1 degG(u) ≥ n holds for every u ∈ V (G).

Case 1. |G| = 2n + 1.
The same reasoning which was used to prove Case 1 of Theorem 8 gives us
degG(v) ≥ n + 1 for every v ∈ V (G).

Subcase 1a. There is v1 ∈ V (G) such that degG(v1) = n + 1.
Let NG(v1) := {w1, w2, . . . , wn+1}. We will show that the degree of some
vertex belonging to NG(v1) is at least 2n. Let us delete from G a vertex
wj ∈ NG(v1), j ∈ {1, 2, . . . , n + 1}. Kn,n must be isomorphic to some
subgraph of G − wj and moreover, it must have bipartition sets as follows:



578 A. Dudek and M. Zwonek

{w1, . . . , wn+1}\{wj} and V (G)\{w1, . . . , wn+1} := {v1, . . . , vn}. Observe
that every vertex from {w1, . . . , wn+1} must be adjacent to every vertex
from {v1, . . . , vn}. Let us now delete from G a vertex v2. Of course, Kn,n is
a subgraph of G−v2 which means that for some vertex from {w1, . . . , wn+1},
say wi, we have degG−v2(wi) ≥ n + n = 2n.

Hence e(G) =

∑

v∈V (G)
degG(v)

2 ≥ 2n(n+1)+2n

2 = n2 + 2n.

Subcase 1b. For every v ∈ V (G) degG(v) ≥ n + 2.

We have: e(G) =

∑

v∈V (G)
degG(v)

2 ≥ (2n+1)(n+2)
2 > n2 + 2n, a contradiction.

Therefore: e(G) = n2 + 2n.

Note that we have actually proved more: if G is a (Kn,n; 1) stable graph of
order 2n+1 with minimum size, then all vertices of G, except one vertex of
degree 2n, have their degree equal to n+1. Otherwise we have e(G) > n2+2n
in Subcase 1a, a contradiction.

It follows immediately that Kn,n+w is the unique (Kn,n; 1) stable graph
of order 2n + 1 with minimum size which finishes the proof in this case.

Case 2. |G| ≥ 2n + 2.

To avoid repetition let us denote Kn,n = (B,W,E) where B = {x1, x2, . . . ,
xk, . . . , xn} and W = {y1, y2, . . . , ys, . . . , yn}.

Subcase 2a. |G| ≥ 2n + 3.

Observe that G must contain at least three vertices v1, v2, v3 not belonging
to the same subgraph Kn,n.

Hence: e(G) ≥ n2 + 3n − 3 ≥ n2 + 2n for n > 2.

One may easily prove that for n = 2 e(G) ≥ 4 holds and the graph 2K2,2 is
the unique (K2,2; 1) stable graph with minimum size.

One may also verify that for n = 3 there is no (K3,3; 1) stable graph in
this subcase. Observe that for n > 3 we have e(G) > n2 + 2n so there is no
(Kn,n; 1) stable graph of order at least 2n + 3 with minimum size.

Subcase 2b. |G| = 2n + 2.
Note that there is always a subgraph isomorphic to Kn,n in G and there are
two vertices not belonging to this Kn,n. We will consider two subcases.

Subcase 2b.1. There are two nonadjacent vertices not belonging to the
same subgraph Kn,n of G, say u1, u2.

Then e(G) ≥ n2 + 2n. Hence we have e(G) = n2 + 2n.
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From Proposition 1 and the fact that in E(G) there are n2 edges of Kn,n

and only 2n additional edges we obtain degG(u1) = degG(u2) = n. We will
show that every vertex of Kn,n is adjacent either to u1 or to u2. Suppose
the contrary, then there is xi ∈ B, say x1,(we could consider a vertex from
W by symmetry) such that x1u1, x1u2 /∈ E(G). It is clear that there is
yi ∈ NG(x1), say y1, such that y1u1 ∈ E(G). Deleting y1 from G we get
dG−y1(x1) < n and dG−y1(u1) < n. Therefore Kn,n cannot be isomorphic to
any subgraph of G − y1, a contradiction.

Now we will show that every vertex of Kn,n is adjacent to exactly one
vertex u1 or u2. If there is xi, i = 1, 2, . . . , n, say x2, such that x2u1 ∈ E(G)
and x2u2 ∈ E(G), then there must be at least one vertex from (B\{x2})∪W
which is not adjacent to u1 and u2, a contradiction.

We may suppose that u1x1, u1x2, . . . , u1xk, u2xk+1, u2xn, u2y1, u2y2, . . . ,
u2ys, u1ys+1, . . . , u1yn ∈ E(G). Observe that u2 has its neighbours in both
sets B and W . Deleting x1 we have |NG−x1(u2)| = n where NG−x1(u2) =
{xk+1, xn, y1, . . . , ys}. Therefore NG−x1(u2) and {x2, . . . , xk, ys+1, . . . , yn, u2}
should create a bipartition set of some subgraph isomorphic to Kn,n in G−x1

which is impossible, a contradiction.

The proof above gives that Kn,n +(u1, u2) is the unique (Kn,n; 1) stable
graph of order 2n + 2 with minimum size in this subcase.

Subcase 2b.2. Any two vertices not belonging to the same subgraph
(Kn,n) of G are adjacent.

Let Kn,n = (B,W,E) where B = {x1, x2, . . . , xn} and W = {y1, y2, . . . ,
yn}. Let u1, u2 be vertices of G not belonging to the defined Kn,n. Suppose
on the contrary that e(G) ≤ n2 + 2n − 1. From Proposition 1 and the fact
that in E(G) there are n2 edges of Kn,n and only 2n − 1 additional edges
we obtain degG(u1) = degG(u2) = n. One may deduce that there is at least
one vertex from B, say x1, (by symmetry we may also assume the existence
a vertex from W) such that x1u1 /∈ E(G) and x1u2 /∈ E(G). Observe
that there exist a vertex from NG(x1), say y1, such that y1u1 ∈ E(G) or
y1u2 ∈ E(G), say y1u1 ∈ E(G). After deleting y1 we have degG−y1(u1) < n
and degG−y1(x1) < n. It means that Kn,n is not isomorphic to any subgraph
of G − y1, a contradiction.

Hence we have e(G) ≥ n2 + 2n and in consequence e(G) = n2 + 2n.

Now we will take under consideration the existence of the unique (Kn,n; 1)
stable graph with minimum size. Suppose that G is a (Kn,n; 1) stable graph
of order 2n + 2 with minimum size equal to n2 + 2n.
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Observe that there are only two possibilities, namely, both vertices u1, u2

have their degree equal to n or one of the vertices has its degree equal to n
and the other to n + 1.

Suppose first that degG(u1) = degG(u2) = n. It is obvious that there
exists a vertex from W , say y1 ∈ W , (it could be by symmetry xi ∈ B)
such that: y1u1 ∈ E(G) or y1u2 ∈ E(G), say y1u1 ∈ E(G). After deleting
y1 we have degG−y1(u1) < n so u1 /∈ V (Kn,n) in G − y1. It is evident that
also u2 /∈ V (Kn,n) in G − y1. So Kn,n is not isomorphic to any subgraph of
G − y1, a contradiction.

By symmetry we may assume now that degG(u1) = n+1 and degG(u2) =
n. It is obvious that there exists a vertex of Kn,n which is not adjacent
neither to u1 nor to u2 (by symmetry we may also assume a vertex from W
or B). Hence it is enough to consider two cases:

There is no xi ∈ B such that xiu2 ∈ E(G).

Observe that there is exactly one vertex in W ∪ B, say z, such that zu1 /∈
E(G) and zu2 /∈ E(G). Therefore degG(z) = degG(u2) = n and all other
vertices have their degree equal to n + 1. Hence we have a situation from
Subcase 2b.1, a contradiction.

There is xi ∈ B such that xiu2 ∈ E(G), say x1.

Deleting x1 we get: degG−x1(y1) < n and degG−x1(u2) < n so Kn,n is no
isomorphic to any subgraph of G − x1, a contradiction.

Note that in Subcase 2b.2 there is no (Kn,n; 1) stable graph of order 2n +
2 with minimum size. Therefore the unique (Kn,n; 1) stable graph with
minimum size of order 2n + 2 in Subcase 2b is Kn,n + (u1, u2).

Conjecture 1. For m 6= 1 and |m−n| 6= 1 we have Q(Km,n, 1) = mn+m+n.
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