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Abstract

An arc decomposition of the complete digraph DK, into ¢ iso-
morphic subdigraphs is generalized to the case where the numerical
divisibility condition is not satisfied. Two sets of nearly ¢th parts are
constructively proved to be nonempty. These are the floor tth class
(DK,, — R)/t and the ceiling tth class (DK, + S)/t, where R and S
comprise (possibly copies of) arcs whose number is the smallest pos-
sible. The existence of cyclically 1-generated decompositions of DK,
into cycles én,l and into paths ]3" is characterized.
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1. INTRODUCTION

Let ¢t be an integer, t > 2. We focus our considerations on decompositions
into t isomorphic parts. One of the most significant results in the graph
decomposition theory is that a tth part of (or one tth of) the complete
digraph exists whenever the size of the digraph is divisible by ¢. In case
t = 2 parts are halves and they are called self-complementary digraphs; their
existence is proved by Read [15]. The relevant result for any ¢ is proved in
Harary et al. [8]. However, the related problem of characterizing tth parts
remains open if the order of the complete digraph is large enough.

Given the complete digraph DK, on n vertices (with n(n — 1) arcs),
the numerical divisibility condition ¢|n(n — 1) is also known [8] to ensure
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that self-converse tth parts of DK, exist. Our first aim is to extend this
classical result to the case where parts are to be self-converse oriented graphs.
Secondly, if the numerical divisibility condition is not satisfied, we consider
tth parts of a corresponding nearly complete digraph obtained from DK,
either by adding a surplus S or by deleting a remainder R. Then S comprises
copies of arcs and R is a subset of arcs, both S and R are to have cardinalities
as small as possible, |R| = n(n — 1) mod ¢ and |S| = (¢t — |R|) mod ¢. Thus
R is a set and S is possibly a multiset. Following Skupieni [16], the classes of
such tth parts are denoted by [DK,, /t|s := (DK, +S)/t and |DK, /t|Rr :=
(DK,, — R)/t, and are called the ceiling tth class and the floor tth class,
respectively. Call elements of those classes (also if S = 0 = R) to be near-
tth parts of DK,; more precisely, these are ceiling-S tth parts and floor-R
tth parts, respectively.

The proof of theorem on divisibility of DK,, by t in Harary et al. [§]
gives the following result.

Proposition 1. DK,,/2 contains a self-converse oriented graph, e.g. the
transitive tournament T,,.

Fort=3<mn, R=0= S unless n =2 (mod 3) and then |S| =1, |R| = 2
and there are five configurations of R, which we call admissible, three of
them being self-converse. In [11, 12] we have proved the following three
theorems on third parts.

Theorem 2 [11]. For each n > 3 and any admissible and self-converse
R, the floor third class |DK,,/3|r contains a self-converse oriented graph
unless either n = 3 or possibly n = 8 and R induces a path Ps.

A computer has not found such a member in case where n = 8 and R
induces Ps.

Theorem 3 [11]. If ke N, n=3k—1#5, and t = 3, then |S| =1 and
the ceiling third class [DK,, /3]s contains a self-converse oriented graph.

Theorem 4 [12]. For n =5, there is no ceiling third part of the complete
digraph DKs which could be a self-converse oriented graph.

The main result of the paper provides a complete solution to the related
existence problem for ¢ > 4. It turns out that the problem we solve is not
mentioned among unsolved problems listed in Harary and Robinson [7].
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Theorem 5. For every n > 2 and every t > 2 there exist a remainder R
and surplus S (both of the smallest possible cardinality) such that both the
floor class | DK, /t|r and the ceiling class [DK,/t|s contain self-converse
digraphs. If neither n =5 andt = 3 in case of the ceiling class norn =t =3
then the digraphs can be required to be self-converse oriented graphs.

2. NOTATION AND TERMINOLOGY

We use standard notation and terminology of graph theory [4, 5] unless
otherwise stated.

Digraphs are loopless and without multiple arcs. Multidigraphs may
have multiple arcs, loops being forbidden. A digraph without 2-cycle DKo
(= C}) is called an oriented graph.

The ordered pair (vq,v2) of vertices v1 and vy (or the symbol v; — v3)
denotes the arc which goes from the tail v1 to the head vo. The converse of
a multidigraph is obtained by reversal of each arc. A multidigraph is called
self-converse if it is isomorphic to its converse.

The symbol U when applied to multidigraphs stands for the wvertez-
disjoint union. Moreover, given a digraph D, the symbol D + A’ denotes
the spanning supermultidigraph of D with the arc set A(D)U A’, where A’
is a set of (possibly copies of) arcs and A’ N A(D) = . Similarly, D — A’
denotes the spanning subdigraph obtained from D by removal of A’, where
A’ is to be a subset of A(D). We write D+ A’ =D+ a if A’ = {a} and a
is an arc.

By a decomposition of a multidigraph D we mean a family of arc-disjoint
submultidigraphs of D which include all arcs of D. Those substructures are
called elements of a decomposition. By an H-decomposition we mean a
decomposition of D into ¢ elements all isomorphic to H; then we write H|D
or t|D. The isomorphism class of those ¢ pairwise isomorphic elements of a
decomposition is called a tth part of D.

There are two non-self-converse digraphs of size two each, namely,

PY = ({v1,v2,v3}, {(v1,v2), (v3,v2)}), a gutter,
Ph = ({U17U27U3}7{(02,U1), (vz,vg)}), a roof.

Note that DK3/3 comprises three digraphs, none of which is a self-converse
oriented graph.

(1) DK3/3 = {Cy, PV, P'}.
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A decomposition of D is called to be 1-generated if there is a permutation ~y
of V(D) which generates the decomposition from any single decomposition
element H in the sense that, for j = 0, ..., ¢t — 1, the image of H under
the jth iteration (y)/ of v, denoted by (y)?H, is one of ¢ decomposition
parts, where (7)? = id. Call v to be a placement-generating permutation for
H. If, moreover, v is a cyclic permutation then the decomposition is called
cyclically 1-generated (cf. cyclic decomposition in Chartrand and Lesniak
[5], see also Bosék [4] for the equivalent notion of a decomposition according
to a cyclic group).

Proposition 6. Fach decomposition of the complete digraph DK, into two
isomorphic halves is 1-generated.

Proof. Note that these halves are self-complementary digraphs. The result
follows from the known characterization of complementing permutations for
those halves, cf. Bosdk [4, Ch. 14]. ]

Given a self-converse multidigraph D on n vertices, we use the symbol ¢
(= ¢n) to denote a conversing permutation, that is, a permutation of V(D)
such that ¢D is the converse multidigraph of D.

3. CycLic DECOMPOSITIONS INTO n PARTS

Bermond and Faber prove [3] that the complete digraph DK, is decom-
posable into cycles én,l of length n» — 1. It can be noted that én,l—
decomposition of DK, presented in [3] as well as in [1], is not 1-generated.
We are going to improve this result by characterizing cyclically 1-generated
decompositions of DK, into (n— 1)-cycles. Namely, a cyclically 1-generated
én_l—decomposition exists precisely if n is odd. Additionally, a cyclically
1-generated decomposition of DK, into hamiltonian paths for even n follows
from the widely known construction presented in Berge [2, p. 232] and also
in Lucas [10, Ch. 6] (who attributes this result to Walecki) by passing on
from K, to DK,. It is worth noting that just this cyclically 1-generated
ﬁn-decomposition of DK, is presented in [10, Remark on p. 176] in terms
of designing a set of single file walks for n children so that each child once is
the first, once the last, and no ordered pair of neighbours in a file is repeated
among the files in the set. We prove that this decomposition exists precisely
if n is even (Theorem 7). In either case cyclically 1-generated decomposition
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plays a crucial role in the proof of the main result since those decompositions
enable a recursive construction in proofs of Lemma 8 and Theorem 5.

Let V(DK,,) = Zj, the cyclic group of order n. Let Wy be a sequence
of (possibly repeating) vertices of the digraph DK, say Wy = <x1,x9,
..., z>. In what follows we use the convention that Wy refers to the walk
whose subsequence of vertices is Wy. Moreover, the symbol <Wjy> stands
for the graph induced by the arc set of the walk Wj.

Definition 1. Assume that n > 3. Define the vertex sequence, which
depends on the parity of n and is denoted by Wy(n) or Wy, as follows.

(i) For odd n > 3, Wy = <0, "Tf?’, e "TH, 0>, which represents a cycle
in which "T_l is the only vertex which is omitted. If n = 3 then Wy :=
<0,2,0>. If n > 5, we assume that the cycle Wy comprises the following
arcs, where k stands for an integer:

(2) ko— 53—k, 0<k<232
(3) Sk = kA1, 0<k<ngl
(4) 34k - n—1-k, 0<k<nl,
(5) n—1-k — 24k 0< k<22
and also two arcs 242 —0, |22 | — [ 32HL |

<0,1,4,3,0>, n=>5,

<0,3,1,2,7,6,8,5,0>, n=09,
Hence Wy =

<0,2,1,5,6,4,0>, n="1,

<0,4,1,3,2,8,9,7,10,6,0>, n = 11.

Figure 1 (n =7, 9) shows the difference between cases n = 1,3 (mod 4).

(ii) For even n > 4, Wy =< 0,1,n — 1, ..., § >, which represents a
hamiltonian path of DK . It is assumed that the path includes the following
arcs:

(6) (7)

k — n—-k — k+1, 1§k§"7_2,

and the initial arc 0 — 1, see Figure 2 wherein n = 8.
Define the length of the arc (i, j) to be (j — ) mod n.
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485
Figure 2. n =8
Theorem 7. For n > 4, the cyclic permutation vo := [0,1,2, ..., n — 1]

1s a placement-generating permutation for the self-converse oriented graph
<Wy> in DK, that is, DK,, has a cyclically 1-generated <Wy>-decompo-
sition into n parts which are either the cycle Chy or path P, according asn
is odd or even. Moreover, if a 1-generated én_l—decomposition [1-generated
P, -decomposition] of DK, exists then n is odd [n is even).

Proof. Using the list of arcs of Wy in Definition 1 one can see that arcs of
Wo have mutually distinct lengths. Namely, if n > 4 is odd and <Wjy> =
Ch_1, the lengths are n=3 _ 2k for arcs listed in (2), %52 — 2k in (4), and
similarly 2$2+-2k for arcs in (3), and "+3 +2k in (5), for i mcreasmg k starting
at k= 0. TWO additional arcs 23+ —>0 |2t ] — |2zt have lengths 21,

"TH, respectively. Analogously, if n is even and <Wy> = P,, the lengths

are even, n — 2k, for arcs with label (6) and odd, 2k + 1, with label (7),
where k =1,2,..., "772 The initial arc 0 — 1 has length 1.

Note that a noncyclic permutation of n vertices cannot generate n ele-
ments of a decomposition because then there is an edge which has less than
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n different images under iterations of the permutation. Suppose that a cyclic
permutation generates a decomposition of DK, into n subdigraphs. It is
easy to see that an (n — 1)-cycle if n is even, as well as a path on n vertices
for odd n, with all their arcs of different lengths do not exist. Namely, oth-
erwise the sum of lengths would be 0 modulo n for the cycle (i.e., for even
n) and non-zero for the path (i.e., for odd n). However, just the opposite

is true. Namely, the sum of lengths is s = ?:_111' = ﬂn2;1) and therefore
s# 0 (mod n) if n is even but s = 0 (mod n) if n is odd. ]

Note that none of third parts of DK3 is a self-converse oriented graph, cf.
(1), and therefore the case n = 3 is excluded in Theorem 7.

4. DECOMPOSITIONS INTO t PARTS

Harary et al. [8] prove that if the numerical divisibility condition ¢|n(n—1) is
satisfied then the complete digraph DK, is decomposable into ¢ isomorphic
self-converse parts. If t|n or ¢t|(n—1), we extend this result to the case where
parts are to be self-converse oriented graphs and a decomposition is to be
1-generated.

Lemma 8. For everyn > 2, if t|n ort|(n—1) then there exists a 1-generated
decomposition of the complete digraph DK, into t isomorphic self-converse
parts which are oriented graphs unless n =t = 3.

Proof. For t = 2 and t = 3, Lemma is proved in [12] and [11], respec-
tively. Namely, if t = 2, one of halves of DK, with any n is the transitive
tournament (see Propositions 1 and 6). For ¢t =3 and n =3t or n = 3t + 1,
decompositions of DK, constructed in [11] can be seen to be 1-generated.
More precisely, oriented graphs D; for ¢ = 4,6,7,9 constructed in the proof
of Lemma 1.1 in [11] as well as an oriented graph D,, in the proof of Theo-
rem 1 in [11] are required third parts of a decomposition, existence of which
is a part of the assertion of Theorem 2. If ¢ = n (> 3), the result follows
immediately from the above Theorem 7.

Consider the case n = kt, k € N, and ¢t > 4. We proceed by induction
on k. Theorem 7 can be viewed as the first step for kK = 1, namely, the self-
converse oriented graph <Wy> € DK/t and the vertex set V(<Wy>) =
{0, 1, ..., t—1}. Assume now that Lemma is true for k—1, that is, for a fixed
admissible self-converse oriented graph D,,_y € DK,,_;/t where V(D,_4) =
{t, t +1,...,n—1}. We construct a self-converse oriented graph D,, €
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DK, /t. Let V(D,,) = V(Dy,—) UV (<Wy>). The construction of D,, takes
the advantage of the structure of <Wy>. Namely, one can easily find a
conversing permutation ¢; of <Wy> in DKy, which moves the vertex 0 into
[£] (cf. Definition 1). Then we define D,, to be the following digraph.

Dy = <Wy>U Dy + {(O,z’), (z %D t<i<n-— 1}.

One can see that D,, is a self-converse oriented graph with conversing permu-
tation ¢, = (¥t, Pn—t) := Pt Pn—t, Where ¢,_; is a conversing permutation
of D,—. Moreover, D,, € DK, /t with placement-generating permutation
Yn = (Y0, Yn—t), where 7y, is a placement-generating permutation of D,,_,
in DK, (see Theorem 7 for ~y).

In the case n = kt + 1, k € N, note first that the self-converse oriented
graph D}, | = <Wo> U [t] + {(0,1), (¢, [£])}, where [t] := K with V(K;) =
{t}, is the tth part of DK;; with placement-generating permutation ;41 =
(70, (t)) and conversing permutation ¢;4+1 = (¢, (t)). For n = kt + 1 where
t >4 and k > 2, we construct a self-converse oriented graph D), € DK, /t
analogously to the case above, using in the induction step digraphs Dj_
and D,,_;_1. [ ]

In [13] we have proved the following result on decompositions of the complete
digraph into nonhamiltonian paths, which is useful in proving Theorem 5.

Theorem 9 [13]|. For any n > 3, the complete digraph DK, is decompos-
able into paths of arbitrarily prescribed lengths (< n — 2) provided that the
lengths sum up to the size n(n — 1) of DK,,.

Now we are ready to prove the main result of the paper.

Proof of Theorem 5. If t < 3, Theorem is true by Proposition 1 for ¢t = 2
and by (1) and Theorems 2, 3, 4 for t = 3. It is so, too, if ¢ = n, by Theorem
7. The result is easily seen for n < 3 and ¢t > 3. In particular, S can be
chosen so that just ]33 (the only possible candidate) is the ceiling-S tth part
of DK3 for t =4, 5.

Consider the case t > n > 4. Note that |n(n —1)/t] < n — 2 whence,
in case of the floor class, the result is true by Theorem 9, elements of a
decomposition as well as <R> are oriented paths. In case of the ceiling
class, if t =n+ 1 then [n(n —1)/t] =n —1, |S| = n — 1 and, by Theorem
7, the result is true. For ¢t > n + 2, [n(n — 1)/t] < n — 2 and analogously
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the result is true by Theorem 9, i.e., elements of a decomposition and <S>
are paths of prescribed lengths.

It remains to consider the case 4 < ¢t < n. Let r = nmod¢. Then
r<n-—tand (n(n—1) modt) = (r(r —1) mod t). Applying similar induc-
tion as in the proof of Lemma 8 one can easily construct required near-tth
parts of DK,. Namely, in the induction step we use self converse oriented
graphs D, (see proof of Lemma 8 for a construction) and D,,_; (construction
follows from the case ¢ > n > 2 above and by induction) which are ¢th and
corresponding near-tth parts of DK; and DK,,_;, respectively. [ |

5. CONCLUDING REMARKS

Note that the above relatively short proof of the main result is based on
Theorem 9 (the proof of which is nontrivial) and on characterizations of
special cyclically 1-generated decompositions, see Theorem 7.

It is an open problem to determine all possible cyclically 1-generated
nth parts of DK,,, which are self-converse oriented graphs. Similar problem
concerns tth parts as considered in Lemma 8 above.

Another open problem is related to the notion of a ¢th universal floor
part, say I, of DK,. The meaning of ‘universal’ is that packings of ¢
copies of F' into DK, should leave remainders R of all possible shapes. The
open problem is motivated by a conjecture of the second author, stated sev-
eral years ago (see [17]), that universal floor parts of complete (undirected)
graphs exist. Supporting results in [18, 9] cover infinitely many pairs (n,t).
Moreover, Plantholt’s deep theorem [14] on the chromatic index is equiva-
lent to the truth of the conjecture for t = n — 1 with n being odd. On the
other hand, there is no universal third part of DK5, see [6].

Acknowledgement

The research was supported by the Ministry of Science and Information
Society Technologies of the Republic of Poland, Grant No. 1 PO3A 037 27.

REFERENCES

[1] B. Alspach, H. Gavlas, M. Sajna and H. Verrall, Cycle decopositions IV: com-
plete directed graphs and fized length directed cycles, J. Combin. Theory (A)
103 (2003) 165-208.

[2] C. Berge, Graphs and Hypergraphs (North-Holland, 1973).



572

3]

13]
[14]
[15]
16]
17)

[18]

M. MESZKA AND Z. SKUPIEN

J.C. Bermond and V. Faber, Decomposition of the complete directed graph into
k-circuits, J. Combin. Theory (B) 21 (1976) 146-155.

J. Bosdk, Decompositions of Graphs (Dordrecht, Kluwer, 1990, [Slovak:]
Bratislava, Veda, 1986).

G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman & Hall, 1996).

A. Fortuna and Z. Skupien, On nearly third parts of complete digraphs and
complete 2-graphs, manuscript.

F. Harary and R.W. Robinson, Isomorphic factorizations X: Unsolved prob-
lems, J. Graph Theory 9 (1985) 67-86.

F. Harary, R.W. Robinson and N.C. Wormald, Isomorphic factorisation V:
Directed graphs, Mathematika 25 (1978) 279-285.

A. Kedzior and Z. Skupien, Universal sizth parts of a complete graph exist,
manuscript.

E. Lucas, Récréations Mathématiques, vol. IT (Paris, Gauthier-Villars, 1883).

M. Meszka and Z. Skupien, Self-converse and oriented graphs among the third
parts of nearly complete digraphs, Combinatorica 18 (1998) 413-424.

M. Meszka and Z. Skupieri, On some third parts of nearly complete digraphs,
Discrete Math. 212 (2000) 129-139.

M. Meszka and Z. Skupieni, Decompositions of a complete multidigraph into
nonhamiltonian paths, J. Graph Theory 51 (2006) 82-91.

M. Plantholt, The chromatic index of graphs with a spanning star, J. Graph
Theory 5 (1981) 45-53.

R.C. Read, On the number of self-complementary graphs and digraphs, J. Lon-
don Math. Soc. 38 (1963) 99-104.

Z. Skupien, The complete graph t-packings and t-coverings, Graphs Combin.
9 (1993) 353-363.

Z. Skupien, Clique parts independent of remainders, Discuss. Math. Graph
Theory 22 (2002) 361.

Z. Skupien, Universal fractional parts of a complete graph, manuscript.

Received 8 May 2008
Revised 22 September 2008
Accepted 13 October 2008


http://www.tcpdf.org

