DECOMPOSITIONS OF NEARLY COMPLETE DIGRAPHS INTO t ISOMORPHIC PARTS

Mariusz Meszka and Zdziseaw Skupień
Faculty of Applied Mathematics
AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: meszka@agh.edu.pl, skupien@agh.edu.pl

Abstract

An arc decomposition of the complete digraph $\mathcal{D} K_{n}$ into t isomorphic subdigraphs is generalized to the case where the numerical divisibility condition is not satisfied. Two sets of nearly t th parts are constructively proved to be nonempty. These are the floor t th class $\left(\mathcal{D} K_{n}-R\right) / t$ and the ceiling t th class $\left(\mathcal{D} K_{n}+S\right) / t$, where R and S comprise (possibly copies of) arcs whose number is the smallest possible. The existence of cyclically 1 -generated decompositions of $\mathcal{D} K_{n}$ into cycles \vec{C}_{n-1} and into paths \vec{P}_{n} is characterized.

Keywords: decomposition, cyclically 1-generated, remainder, surplus, universal part.
2000 Mathematics Subject Classification: 05C70, 05C20.

1. Introduction

Let t be an integer, $t \geq 2$. We focus our considerations on decompositions into t isomorphic parts. One of the most significant results in the graph decomposition theory is that a t th part of (or one t th of) the complete digraph exists whenever the size of the digraph is divisible by t. In case $t=2$ parts are halves and they are called self-complementary digraphs; their existence is proved by Read [15]. The relevant result for any t is proved in Harary et al. [8]. However, the related problem of characterizing t th parts remains open if the order of the complete digraph is large enough.

Given the complete digraph $\mathcal{D} K_{n}$ on n vertices (with $n(n-1)$ arcs), the numerical divisibility condition $t \mid n(n-1)$ is also known [8] to ensure
that self-converse t th parts of $\mathcal{D} K_{n}$ exist. Our first aim is to extend this classical result to the case where parts are to be self-converse oriented graphs. Secondly, if the numerical divisibility condition is not satisfied, we consider t th parts of a corresponding nearly complete digraph obtained from $\mathcal{D} K_{n}$ either by adding a surplus S or by deleting a remainder R. Then S comprises copies of arcs and R is a subset of arcs, both S and R are to have cardinalities as small as possible, $|R|=n(n-1) \bmod t$ and $|S|=(t-|R|) \bmod t$. Thus R is a set and S is possibly a multiset. Following Skupien [16], the classes of such t th parts are denoted by $\left\lceil\mathcal{D} K_{n} / t\right\rceil_{S}:=\left(\mathcal{D} K_{n}+S\right) / t$ and $\left\lfloor\mathcal{D} K_{n} / t\right\rfloor_{R}:=$ $\left(\mathcal{D} K_{n}-R\right) / t$, and are called the ceiling tth class and the floor tth class, respectively. Call elements of those classes (also if $S=\emptyset=R$) to be neartth parts of $\mathcal{D} K_{n}$; more precisely, these are ceiling-S tth parts and floor- R tth parts, respectively.

The proof of theorem on divisibility of $\mathcal{D} K_{n}$ by t in Harary et al. [8] gives the following result.

Proposition 1. $\mathcal{D} K_{n} / 2$ contains a self-converse oriented graph, e.g. the transitive tournament T_{n}.

For $t=3 \leq n, R=\emptyset=S$ unless $n \equiv 2(\bmod 3)$ and then $|S|=1,|R|=2$ and there are five configurations of R, which we call admissible, three of them being self-converse. In $[11,12]$ we have proved the following three theorems on third parts.

Theorem 2 [11]. For each $n \geq 3$ and any admissible and self-converse R, the floor third class $\left\lfloor\mathcal{D} K_{n} / 3\right\rfloor_{R}$ contains a self-converse oriented graph unless either $n=3$ or possibly $n=8$ and R induces a path $\overrightarrow{P_{3}}$.

A computer has not found such a member in case where $n=8$ and R induces $\overrightarrow{P_{3}}$.

Theorem 3 [11]. If $k \in \mathbb{N}, n=3 k-1 \neq 5$, and $t=3$, then $|S|=1$ and the ceiling third class $\left\lceil\mathcal{D} K_{n} / 3\right\rceil_{S}$ contains a self-converse oriented graph.

Theorem 4 [12]. For $n=5$, there is no ceiling third part of the complete digraph $\mathcal{D} K_{5}$ which could be a self-converse oriented graph.

The main result of the paper provides a complete solution to the related existence problem for $t \geq 4$. It turns out that the problem we solve is not mentioned among unsolved problems listed in Harary and Robinson [7].

Theorem 5. For every $n \geq 2$ and every $t \geq 2$ there exist a remainder R and surplus S (both of the smallest possible cardinality) such that both the floor class $\left\lfloor\mathcal{D} K_{n} / t\right\rfloor_{R}$ and the ceiling class $\left\lceil\mathcal{D} K_{n} / t\right\rceil_{S}$ contain self-converse digraphs. If neither $n=5$ and $t=3$ in case of the ceiling class nor $n=t=3$ then the digraphs can be required to be self-converse oriented graphs.

2. Notation and Terminology

We use standard notation and terminology of graph theory [4, 5] unless otherwise stated.

Digraphs are loopless and without multiple arcs. Multidigraphs may have multiple arcs, loops being forbidden. A digraph without 2-cycle $\mathcal{D} K_{2}$ $\left(=\vec{C}_{2}\right)$ is called an oriented graph.

The ordered pair (v_{1}, v_{2}) of vertices v_{1} and v_{2} (or the symbol $v_{1} \rightarrow v_{2}$) denotes the arc which goes from the tail v_{1} to the head v_{2}. The converse of a multidigraph is obtained by reversal of each arc. A multidigraph is called self-converse if it is isomorphic to its converse.

The symbol \cup when applied to multidigraphs stands for the vertexdisjoint union. Moreover, given a digraph D, the symbol $D+A^{\prime}$ denotes the spanning supermultidigraph of D with the arc set $A(D) \cup A^{\prime}$, where A^{\prime} is a set of (possibly copies of) arcs and $A^{\prime} \cap A(D)=\emptyset$. Similarly, $D-A^{\prime}$ denotes the spanning subdigraph obtained from D by removal of A^{\prime}, where A^{\prime} is to be a subset of $A(D)$. We write $D \pm A^{\prime}=D \pm a$ if $A^{\prime}=\{a\}$ and a is an arc.

By a decomposition of a multidigraph D we mean a family of arc-disjoint submultidigraphs of D which include all arcs of D. Those substructures are called elements of a decomposition. By an H-decomposition we mean a decomposition of D into t elements all isomorphic to H; then we write $H \mid D$ or $t \mid D$. The isomorphism class of those t pairwise isomorphic elements of a decomposition is called a tth part of D.

There are two non-self-converse digraphs of size two each, namely,

$$
\begin{aligned}
& P^{\vee}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{\left(v_{1}, v_{2}\right),\left(v_{3}, v_{2}\right)\right\}\right), \text { a gutter, } \\
& P^{\wedge}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{\left(v_{2}, v_{1}\right),\left(v_{2}, v_{3}\right)\right\}\right), \text { a roof. }
\end{aligned}
$$

Note that $\mathcal{D} K_{3} / 3$ comprises three digraphs, none of which is a self-converse oriented graph.

$$
\begin{equation*}
\mathcal{D} K_{3} / 3=\left\{\vec{C}_{2}, P^{\vee}, P^{\wedge}\right\} . \tag{1}
\end{equation*}
$$

A decomposition of D is called to be 1-generated if there is a permutation γ of $V(D)$ which generates the decomposition from any single decomposition element H in the sense that, for $j=0, \ldots, t-1$, the image of H under the j th iteration $(\gamma)^{j}$ of γ, denoted by $(\gamma)^{j} H$, is one of t decomposition parts, where $(\gamma)^{0}=\mathrm{id}$. Call γ to be a placement-generating permutation for H. If, moreover, γ is a cyclic permutation then the decomposition is called cyclically 1-generated (cf. cyclic decomposition in Chartrand and Lesniak [5], see also Bosák [4] for the equivalent notion of a decomposition according to a cyclic group).

Proposition 6. Each decomposition of the complete digraph $\mathcal{D} K_{n}$ into two isomorphic halves is 1-generated.

Proof. Note that these halves are self-complementary digraphs. The result follows from the known characterization of complementing permutations for those halves, cf. Bosák [4, Ch. 14].

Given a self-converse multidigraph D on n vertices, we use the symbol φ $\left(=\varphi_{n}\right)$ to denote a conversing permutation, that is, a permutation of $V(D)$ such that φD is the converse multidigraph of D.

3. Cyclic Decompositions Into n Parts

Bermond and Faber prove [3] that the complete digraph $\mathcal{D} K_{n}$ is decomposable into cycles \vec{C}_{n-1} of length $n-1$. It can be noted that $\vec{C}_{n-1^{-}}$ decomposition of $\mathcal{D} K_{n}$, presented in [3] as well as in [1], is not 1-generated. We are going to improve this result by characterizing cyclically 1-generated decompositions of $\mathcal{D} K_{n}$ into ($n-1$)-cycles. Namely, a cyclically 1-generated \vec{C}_{n-1}-decomposition exists precisely if n is odd. Additionally, a cyclically 1-generated decomposition of $\mathcal{D} K_{n}$ into hamiltonian paths for even n follows from the widely known construction presented in Berge [2, p. 232] and also in Lucas [10, Ch. 6] (who attributes this result to Walecki) by passing on from K_{n} to $\mathcal{D} K_{n}$. It is worth noting that just this cyclically 1-generated \vec{P}_{n}-decomposition of $\mathcal{D} K_{n}$ is presented in [10, Remark on p. 176] in terms of designing a set of single file walks for n children so that each child once is the first, once the last, and no ordered pair of neighbours in a file is repeated among the files in the set. We prove that this decomposition exists precisely if n is even (Theorem 7). In either case cyclically 1-generated decomposition
plays a crucial role in the proof of the main result since those decompositions enable a recursive construction in proofs of Lemma 8 and Theorem 5.

Let $V\left(\mathcal{D} K_{n}\right)=\mathbb{Z}_{n}$, the cyclic group of order n. Let W_{0} be a sequence of (possibly repeating) vertices of the digraph $\mathcal{D} K_{n}$, say $W_{0}=<x_{1}, x_{2}$, $\ldots, x_{k}>$. In what follows we use the convention that W_{0} refers to the walk whose subsequence of vertices is W_{0}. Moreover, the symbol $\left\langle W_{0}\right\rangle$ stands for the graph induced by the arc set of the walk W_{0}.

Definition 1. Assume that $n \geq 3$. Define the vertex sequence, which depends on the parity of n and is denoted by $W_{0}(n)$ or W_{0}, as follows.
(i) For odd $\left.n \geq 3, W_{0}=<0, \frac{n-3}{2}, \ldots, \frac{n+1}{2}, 0\right\rangle$, which represents a cycle in which $\frac{n-1}{2}$ is the only vertex which is omitted. If $n=3$ then $W_{0}:=$ $<0,2,0\rangle$. If $n \geq 5$, we assume that the cycle W_{0} comprises the following arcs, where k stands for an integer:

$$
\begin{array}{rlrl}
k \rightarrow & \frac{n-3}{2}-k, & & 0 \leq k \leq \frac{n-5}{4}, \\
& \frac{n-3}{2}-k \rightarrow k+1, & & 0 \leq k \leq \frac{n-7}{4}, \\
\frac{n+3}{2}+k \rightarrow & n-1-k, & & 0 \leq k \leq \frac{n-7}{4}, \\
n-1-k \rightarrow \frac{n+1}{2}+k, & 0 & 0 & \leq \frac{n-5}{4}, \tag{5}
\end{array}
$$

and also two arcs $\frac{n+1}{2} \rightarrow 0,\left\lfloor\frac{n-1}{4}\right\rfloor \rightarrow\left\lfloor\frac{3 n+1}{4}\right\rfloor$.

Hence

$$
W_{0}= \begin{cases}<0,1,4,3,0>, & n=5 \\ <0,3,1,2,7,6,8,5,0>, & n=9 \\ <0,2,1,5,6,4,0>, & n=7 \\ <0,4,1,3,2,8,9,7,10,6,0> & n=11\end{cases}
$$

Figure $1(n=7,9)$ shows the difference between cases $n \equiv 1,3(\bmod 4)$.
(ii) For even $n \geq 4, W_{0}=<0,1, n-1, \ldots, \frac{n}{2}>$, which represents a hamiltonian path of $\mathcal{D} K_{n}$. It is assumed that the path includes the following arcs:

$$
k \xrightarrow{(6)} n-k \xrightarrow{(7)} k+1, \quad 1 \leq k \leq \frac{n-2}{2},
$$

and the initial arc $0 \rightarrow 1$, see Figure 2 wherein $n=8$.
Define the length of the arc (i, j) to be $(j-i) \bmod n$.

Figure 1. $n=7,9$

Figure 2. $n=8$
Theorem 7. For $n \geq 4$, the cyclic permutation $\gamma_{0}:=[0,1,2, \ldots, n-1]$ is a placement-generating permutation for the self-converse oriented graph $<W_{0}>$ in $\mathcal{D} K_{n}$, that is, $\mathcal{D} K_{n}$ has a cyclically 1-generated $<W_{0}>$-decomposition into n parts which are either the cycle \vec{C}_{n-1} or path \vec{P}_{n} according as n is odd or even. Moreover, if a 1-generated \vec{C}_{n-1}-decomposition [1-generated \vec{P}_{n}-decomposition] of $\mathcal{D} K_{n}$ exists then n is odd $[n$ is even $]$.

Proof. Using the list of arcs of W_{0} in Definition 1 one can see that arcs of W_{0} have mutually distinct lengths. Namely, if $n \geq 4$ is odd and $\left.<W_{0}\right\rangle=$ \vec{C}_{n-1}, the lengths are $\frac{n-3}{2}-2 k$ for arcs listed in (2), $\frac{n-5}{2}-2 k$ in (4), and similarly $\frac{n+5}{2}+2 k$ for arcs in (3), and $\frac{n+3}{2}+2 k$ in (5), for increasing k starting at $k=0$. Two additional arcs $\frac{n+1}{2} \rightarrow 0,\left\lfloor\frac{n-1}{4}\right\rfloor \rightarrow\left\lfloor\frac{3 n+1}{4}\right\rfloor$ have lengths $\frac{n-1}{2}$, $\frac{n+1}{2}$, respectively. Analogously, if n is even and $\left\langle W_{0}\right\rangle=\vec{P}_{n}$, the lengths are even, $n-2 k$, for arcs with label (6) and odd, $2 k+1$, with label (7), where $k=1,2, \ldots, \frac{n-2}{2}$. The initial arc $0 \rightarrow 1$ has length 1 .

Note that a noncyclic permutation of n vertices cannot generate n elements of a decomposition because then there is an edge which has less than
n different images under iterations of the permutation. Suppose that a cyclic permutation generates a decomposition of $\mathcal{D} K_{n}$ into n subdigraphs. It is easy to see that an $(n-1)$-cycle if n is even, as well as a path on n vertices for odd n, with all their arcs of different lengths do not exist. Namely, otherwise the sum of lengths would be 0 modulo n for the cycle (i.e., for even n) and non-zero for the path (i.e., for odd n). However, just the opposite is true. Namely, the sum of lengths is $s=\sum_{i=1}^{n-1} i=\frac{n(n-1)}{2}$ and therefore $s \not \equiv 0(\bmod n)$ if n is even but $s \equiv 0(\bmod n)$ if n is odd.
Note that none of third parts of $\mathcal{D} K_{3}$ is a self-converse oriented graph, cf. (1), and therefore the case $n=3$ is excluded in Theorem 7 .

4. Decompositions Into t Parts

Harary et al. [8] prove that if the numerical divisibility condition $t \mid n(n-1)$ is satisfied then the complete digraph $\mathcal{D} K_{n}$ is decomposable into t isomorphic self-converse parts. If $t \mid n$ or $t \mid(n-1)$, we extend this result to the case where parts are to be self-converse oriented graphs and a decomposition is to be 1 -generated.

Lemma 8. For every $n \geq 2$, if $t \mid n$ or $t \mid(n-1)$ then there exists a 1-generated decomposition of the complete digraph $\mathcal{D} K_{n}$ into t isomorphic self-converse parts which are oriented graphs unless $n=t=3$.

Proof. For $t=2$ and $t=3$, Lemma is proved in [12] and [11], respectively. Namely, if $t=2$, one of halves of $\mathcal{D} K_{n}$ with any n is the transitive tournament (see Propositions 1 and 6). For $t=3$ and $n=3 t$ or $n=3 t+1$, decompositions of $\mathcal{D} K_{n}$ constructed in [11] can be seen to be 1-generated. More precisely, oriented graphs D_{i} for $i=4,6,7,9$ constructed in the proof of Lemma 1.1 in [11] as well as an oriented graph D_{n} in the proof of Theorem 1 in [11] are required third parts of a decomposition, existence of which is a part of the assertion of Theorem 2. If $t=n(>3)$, the result follows immediately from the above Theorem 7.

Consider the case $n=k t, k \in \mathbb{N}$, and $t \geq 4$. We proceed by induction on k. Theorem 7 can be viewed as the first step for $k=1$, namely, the selfconverse oriented graph $\left\langle W_{0}\right\rangle \in \mathcal{D} K_{t} / t$ and the vertex set $\left.V\left(<W_{0}\right\rangle\right)=$ $\{0,1, \ldots, t-1\}$. Assume now that Lemma is true for $k-1$, that is, for a fixed admissible self-converse oriented graph $D_{n-t} \in \mathcal{D} K_{n-t} / t$ where $V\left(D_{n-t}\right)=$ $\{t, t+1, \ldots, n-1\}$. We construct a self-converse oriented graph $D_{n} \in$
$\mathcal{D} K_{n} / t$. Let $\left.V\left(D_{n}\right)=V\left(D_{n-t}\right) \cup V\left(<W_{0}\right\rangle\right)$. The construction of D_{n} takes the advantage of the structure of $\left\langle W_{0}\right\rangle$. Namely, one can easily find a conversing permutation φ_{t} of $\left\langle W_{0}\right\rangle$ in $\mathcal{D} K_{t}$, which moves the vertex 0 into $\left\lceil\frac{t}{2}\right\rceil$ (cf. Definition 1). Then we define D_{n} to be the following digraph.

$$
D_{n}=\left\langle W_{0}>\cup D_{n-t}+\left\{(0, i),\left(i,\left\lceil\frac{t}{2}\right\rceil\right): t \leq i \leq n-1\right\} .\right.
$$

One can see that D_{n} is a self-converse oriented graph with conversing permutation $\varphi_{n}=\left(\varphi_{t}, \varphi_{n-t}\right):=\varphi_{t} \varphi_{n-t}$, where φ_{n-t} is a conversing permutation of D_{n-t}. Moreover, $D_{n} \in \mathcal{D} K_{n} / t$ with placement-generating permutation $\gamma_{n}=\left(\gamma_{0}, \gamma_{n-t}\right)$, where γ_{n-t} is a placement-generating permutation of D_{n-t} in $\mathcal{D} K_{n-t}$ (see Theorem 7 for γ_{0}).

In the case $n=k t+1, k \in \mathbb{N}$, note first that the self-converse oriented graph $D_{t+1}^{\prime}=\left\langle W_{0}\right\rangle \cup[t]+\left\{(0, t),\left(t,\left\lceil\frac{t}{2}\right\rceil\right)\right\}$, where $[t]:=K_{1}$ with $V\left(K_{1}\right)=$ $\{t\}$, is the t th part of $\mathcal{D} K_{t+1}$ with placement-generating permutation $\gamma_{t+1}=$ $\left(\gamma_{0},(t)\right)$ and conversing permutation $\varphi_{t+1}=\left(\varphi_{t},(t)\right)$. For $n=k t+1$ where $t \geq 4$ and $k \geq 2$, we construct a self-converse oriented graph $D_{n}^{\prime} \in \mathcal{D} K_{n} / t$ analogously to the case above, using in the induction step digraphs D_{t+1}^{\prime} and D_{n-t-1}.
In [13] we have proved the following result on decompositions of the complete digraph into nonhamiltonian paths, which is useful in proving Theorem 5.

Theorem 9 [13]. For any $n \geq 3$, the complete digraph $\mathcal{D} K_{n}$ is decomposable into paths of arbitrarily prescribed lengths $(\leq n-2)$ provided that the lengths sum up to the size $n(n-1)$ of $\mathcal{D} K_{n}$.

Now we are ready to prove the main result of the paper.
Proof of Theorem 5. If $t \leq 3$, Theorem is true by Proposition 1 for $t=2$ and by (1) and Theorems $2,3,4$ for $t=3$. It is so, too, if $t=n$, by Theorem 7. The result is easily seen for $n \leq 3$ and $t>3$. In particular, S can be chosen so that just \vec{P}_{3} (the only possible candidate) is the ceiling- S th part of $\mathcal{D} K_{3}$ for $t=4,5$.

Consider the case $t>n \geq 4$. Note that $\lfloor n(n-1) / t\rfloor \leq n-2$ whence, in case of the floor class, the result is true by Theorem 9, elements of a decomposition as well as $\langle R\rangle$ are oriented paths. In case of the ceiling class, if $t=n+1$ then $\lceil n(n-1) / t\rceil=n-1,|S|=n-1$ and, by Theorem 7 , the result is true. For $t \geq n+2,\lceil n(n-1) / t\rceil \leq n-2$ and analogously
the result is true by Theorem 9, i.e., elements of a decomposition and $\langle S\rangle$ are paths of prescribed lengths.

It remains to consider the case $4 \leq t<n$. Let $r=n \bmod t$. Then $r \leq n-t$ and $(n(n-1) \bmod t)=(r(r-1) \bmod t)$. Applying similar induction as in the proof of Lemma 8 one can easily construct required near- t th parts of $\mathcal{D} K_{n}$. Namely, in the induction step we use self converse oriented graphs D_{t} (see proof of Lemma 8 for a construction) and D_{n-t} (construction follows from the case $t>n \geq 2$ above and by induction) which are t th and corresponding near- t th parts of $\mathcal{D} K_{t}$ and $\mathcal{D} K_{n-t}$, respectively.

5. Concluding Remarks

Note that the above relatively short proof of the main result is based on Theorem 9 (the proof of which is nontrivial) and on characterizations of special cyclically 1 -generated decompositions, see Theorem 7.

It is an open problem to determine all possible cyclically 1-generated nth parts of $\mathcal{D} K_{n}$, which are self-converse oriented graphs. Similar problem concerns t th parts as considered in Lemma 8 above.

Another open problem is related to the notion of a t th universal floor part, say F, of $\mathcal{D} K_{n}$. The meaning of 'universal' is that packings of t copies of F into $\mathcal{D} K_{n}$ should leave remainders R of all possible shapes. The open problem is motivated by a conjecture of the second author, stated several years ago (see [17]), that universal floor parts of complete (undirected) graphs exist. Supporting results in $[18,9]$ cover infinitely many pairs (n, t). Moreover, Plantholt's deep theorem [14] on the chromatic index is equivalent to the truth of the conjecture for $t=n-1$ with n being odd. On the other hand, there is no universal third part of $\mathcal{D} K_{5}$, see [6].

Acknowledgement

The research was supported by the Ministry of Science and Information Society Technologies of the Republic of Poland, Grant No. 1 P03A 03727.

References

[1] B. Alspach, H. Gavlas, M. Šajna and H. Verrall, Cycle decopositions IV: complete directed graphs and fixed length directed cycles, J. Combin. Theory (A) 103 (2003) 165-208.
[2] C. Berge, Graphs and Hypergraphs (North-Holland, 1973).
[3] J.C. Bermond and V. Faber, Decomposition of the complete directed graph into k-circuits, J. Combin. Theory (B) 21 (1976) 146-155.
[4] J. Bosák, Decompositions of Graphs (Dordrecht, Kluwer, 1990, [Slovak:] Bratislava, Veda, 1986).
[5] G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman \& Hall, 1996).
[6] A. Fortuna and Z. Skupień, On nearly third parts of complete digraphs and complete 2-graphs, manuscript.
[7] F. Harary and R.W. Robinson, Isomorphic factorizations X: Unsolved problems, J. Graph Theory 9 (1985) 67-86.
[8] F. Harary, R.W. Robinson and N.C. Wormald, Isomorphic factorisation V: Directed graphs, Mathematika 25 (1978) 279-285.
[9] A. Kȩdzior and Z. Skupień, Universal sixth parts of a complete graph exist, manuscript.
[10] E. Lucas, Récréations Mathématiques, vol. II (Paris, Gauthier-Villars, 1883).
[11] M. Meszka and Z. Skupień, Self-converse and oriented graphs among the third parts of nearly complete digraphs, Combinatorica 18 (1998) 413-424.
[12] M. Meszka and Z. Skupień, On some third parts of nearly complete digraphs, Discrete Math. 212 (2000) 129-139.
[13] M. Meszka and Z. Skupień, Decompositions of a complete multidigraph into nonhamiltonian paths, J. Graph Theory 51 (2006) 82-91.
[14] M. Plantholt, The chromatic index of graphs with a spanning star, J. Graph Theory 5 (1981) 45-53.
[15] R.C. Read, On the number of self-complementary graphs and digraphs, J. London Math. Soc. 38 (1963) 99-104.
[16] Z. Skupień, The complete graph t-packings and t-coverings, Graphs Combin. 9 (1993) 353-363.
[17] Z. Skupień, Clique parts independent of remainders, Discuss. Math. Graph Theory 22 (2002) 361.
[18] Z. Skupień, Universal fractional parts of a complete graph, manuscript.

