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Abstract

For a nontrivial connected graph G, let ¢ : V(G) — N be a vertex
coloring of G where adjacent vertices may be colored the same. For a
vertex v of G, the neighborhood color set NC(v) is the set of colors of
the neighbors of v. The coloring ¢ is called a set coloring if NC(u) #
NC(v) for every pair u,v of adjacent vertices of G. The minimum
number of colors required of such a coloring is called the set chromatic
number x,(G) of G. The set chromatic numbers of some well-known
classes of graphs are determined and several bounds are established
for the set chromatic number of a graph in terms of other graphical
parameters.
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1. INTRODUCTION

Many methods have been introduced in graph theory to distinguish all of
the vertices of a graph or to distinguish every two adjacent vertices in a
graph. Several of these methods involve graph colorings or graph labelings.
In particular, with a given edge coloring ¢ of G, each vertex of G can be
labeled with the set of colors of its incident edges. If distinct vertices have
distinct labels, then ¢ is a vertex-distinguishing edge coloring (see [2, 4]);
while if every two adjacent vertices have distinct labels, then ¢ is a neighbor-
distinguishing edge coloring (see [1]).

If all of the vertices of a graph G of order n are distinguished as a result
of a vertex coloring of GG, then of course n colors are needed to accomplish
this. On the other hand, if the goal is only to distinguish every two adjacent
vertices in G by a vertex coloring, then this can be accomplished by means
of a proper coloring of G and the minimum number of colors needed to do
this is the chromatic number x(G) of G. There are, however, other methods
that can be used to distinguish every two adjacent vertices in G by means
of vertex colorings which may require fewer than x(G) colors.

For a nontrivial connected graph G, let ¢ : V(G) — N be a vertex
coloring of G where adjacent vertices may be assigned the same color. For a
set S C V(G), define the set ¢(S) of colors assigned to the vertices of S by

c(S) ={c(v) : ve S}

For a vertex v in a graph G, let N(v) be the neighborhood of v (the set of all
vertices adjacent to v in G). The neighborhood color set NC(v) = ¢(N(v)) is
the set of colors of the neighbors of v. The coloring c is called set neighbor-
distinguishing or simply a set coloring if NC(u) # NC(v) for every pair u, v
of adjacent vertices of G. The minimum number of colors required of such
a coloring is called the set chromatic number of G and is denoted by x(G).
We refer to the book [3] for graph theory notation and terminology not
described in this paper.

For a graph G with chromatic number k, let ¢ be a proper k-coloring
of G. Suppose that u and v are adjacent vertices of G. Since c(u) € NC(v)
and c(u) ¢ NC(u), it follows that NC(u) # NC(v). Hence every proper
k-coloring of G is also a set k-coloring of G. Therefore, for every graph G,

(1) xs(G) < x(G).
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Observe that if G is a connected graph of order n, then xs(G) = 1 if and only
if x(G) =1 (in this case G = K1) and xs(G) = n if and only if x(G) =n
(in this case G = K,,). Thus if G is a nontrivial connected graph of order n
that is not complete, then

(2) 2 < xs(G) <n—1.

To illustrate these concepts, we consider the graph G = C5 + K7 (the wheel
of order 6). The chromatic number of G is x(G) = 4. In fact, the set
chromatic number of G is xs(G) = 3. Figure 1 shows a set 3-coloring of G
and so xs(G) < 3. We now show that xs(G) > 3. Suppose that there is a set
2-coloring ¢ of G using the colors 1 and 2. Consider a triangle in G induced
by three vertices v1,vo,v3 of G. Since at least two of these three vertices
are colored the same, we may assume that two of these vertices are assigned
the color 1. Thus NC(v;) = {1} or NC(v;) = {1,2} for each ¢ (1 <1 < 3).
This implies, however, that there are two adjacent vertices having the same
neighborhood color set, which contradicts our assumption that c¢ is a set
coloring. Thus ys(G) = 3, as claimed.

{1}

{1,.21 @  {1,3}

{1,3 @Q———— {1,2}
Figure 1. A set coloring of a graph.

The following observation will be useful to us.

Observation 1.1. If u and v are two adjacent vertices in a graph G such
that N(u) — {v} = N(v) — {u}, then c(u) # c(v) for every set coloring c of
G. Furthermore, if S = N(u) —{v} = N(v) —{u}, then {c(u),c(v)} Z c(S).
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2. THE SET CHROMATIC NUMBERS OF SOME CLASSES OF GRAPHS

Since every nonempty bipartite graph has chromatic number 2, the following
is an immediate consequence of (1) and (2).

Observation 2.1. If G is a nonempty bipartite graph, then xs(G) = 2.

In fact, if G is a nonempty graph, then xs(G) = 2 if and only if G is bipartite,
as we show next. We may restrict our attention to connected graphs.

Proposition 2.2. If G is a connected graph with x(G) > 3, then xs(G) > 3.

Proof. Assume, to the contrary, that there exists a connected graph G
with x(G) > 3 for which there exists a set 2-coloring ¢ : V(G) — {1,2}.
Since x(G) > 3, it follows that G contains an odd cycle C : vy, v, ..., v, v1,
where ¢ > 3 is an odd integer.

Consider the (cyclic) color sequence

st c(vr),c(va),. .., c(ve),c(vr).

By a block of s, we mean a maximal subsequence of s consisting of terms of
the same color. First, we claim that s cannot contain a block with an even
number of terms; for suppose, without loss of generality, that c(v,) = 2,
c(v;) =1 for 1 < i < a, where a is an even integer with 2 < a < ¢—1, and
¢(va+1) = 2. Thus NC(v;) € {{1},{1,2}} for 1 < i < a. Since NC(v;) =
{1,2} and c is a set coloring, it follows that

{1}  if 7 is even,

NC(v;) =
(v {{1,2} if i is odd

for 1 <i < a. However, this implies that NC(v,) = {1}, which is impossible
since ¢(vg41) = 2.
Hence either
(i) c(v;) =1foralli (1<i</¥)or
(ii) s contains an even number of blocks each of which has an odd number
of terms.

If (i) occurs, then NC(v;) € {{1},{1,2}} for 1 < i < £. Since ¢ is odd,
there is an integer j (1 < j < /) such that NC(v;) = NC(vj41), which is
impossible. If (ii) occurs, then ¢ is even, which is also impossible. [ |
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The following three corollaries are immediate consequences of (1), Observa-
tion 2.1, and Proposition 2.2.

Corollary 2.3. A nonempty graph G has set chromatic number 2 if and
only if G is bipartite.

Corollary 2.4. If G is a 3-chromatic graph, then xs(G) = 3.
Corollary 2.5. For each integer n > 3, xs(Cy) = x(Ch).

We have seen that xs(K,) = n for n > 1. We now determine the set
chromatic number of a class of graphs that are related to K,,. For a graph
H, its corona cor(H) is that graph obtained by adding a pendant edge at
each vertex of H. For an integer n > 2 and an integer ¢t (0 < t < n),
let Gy, denote the graph of order n + t obtained from K, with V(K,) =
{v1,v9,...,v,} by adding ¢t new vertices uy,us,...,u; (if t > 1) and joining
each u; to v; for 1 <4 <t. Therefore, G, 0 = K, while G, ,, = cor(K,,). We
show that xs(Gp:) =n forall t (0 <t <n). It is convenient to introduce
some notation. For each integer k, let

Ny = {1,2,...,k}.
Proposition 2.6. Forn >2 and 0 <t <n, xs(Gpt) =n.

Proof. The result follows immediately if n = 2 or t = 0, so we assume that
n >3 and 1 <t < n. Since x(Gnt) = n, we have xs(Gpt) < n by (1).
Suppose that xs(Gnt) = k < n —1 and let there be given a set k-coloring
of G, ¢ using the colors in Nj. Permuting colors if necessary, we can obtain
a set k-coloring ¢ : V(G ) — Ny, such that ¢(V(K,,)) = Ny for some ¢ < k.
Let X be the subset of V(K,,) such that for every x € X there exists a
vertex y € X —{z} for which ¢(y) = ¢(x). Since ¢ uses at most n — 1 colors,
|X| > 2 and, furthermore, since each of the vertices in V(K,,) — X receives
a unique color, n — | X| + 1 < £. For each x € X, either

(i) NC(z) =Ny or
(ii) NC(z) = NyU{c(u)} if u is the end-vertex adjacent to z and c(u) ¢ Ny.
Since at most one of the |X| vertices can have the neighborhood color set

Ny, at least | X| — 1 colors not in Ny are needed to color the end-vertices so
that the vertices in X have distinct neighborhood color sets, that is,
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E>0+4+|X|—-1>n,

which is a contradiction. Therefore, xs(Gp ) = n. [ |

We now determine the set chromatic number of every complete multipartite
graph.

Proposition 2.7. For every complete k-partite graph G, xs(G) = k.

Proof. By (1), xs(G) < k. Assume that the statement is false. Then
there is a smallest positive integer k for which there exists a complete k-
partite graph G with xs(G) < k — 1. Necessarily, kK > 4. Suppose that the
partite sets of G are V1, Vs, ..., Vi. Let there be given a set (k — 1)-coloring
¢: V(G) — Ni_1 of G. We claim that for each partite set V; (1 < i < k)
the coloring ¢; = c\V(G)_Vi is a set coloring of G — V;, which is a complete
(k — 1)-partite graph. In order to see that this is the case, let v and v be
adjacent vertices in G — V;. In G we have NC.(u) # NC.(v). Since

NC.(u) = NCg,(u) Uc(V;) and NC.(v) = NC,(v) Uc(Vi),

it follows that NC(u) # NCg, (v). This implies that the coloring ¢; of
G —Vj is a set coloring, as claimed. Since xs(G —V;) = k— 1, it follows that
c¢(V(G) = V;) = Ni_1. Thus NC.(z) = Ni_; for every vertex x of V;. Since
the partite set V; was chosen arbitrarily, NC.(x) = Ny_; for every vertex z
of G, which is impossible. [ |

By Proposition 2.7, the complete k-partite graph Ky 1 1, (k—1) has set
chromatic number k, giving the following result.

Corollary 2.8. For each pair k,n of integers with 2 < k < n, there is a
connected graph G of order n with xs(G) = k.

It is well known that the chromatic number of a graph G is at least as large
as its clique number w(G), which is the largest order of a clique (a complete
subgraph) in G. The following observation will be useful to us.

Observation 2.9. Let G be a graph of order n > 2. Then x(G) =n —1 if
and only if w(G) =n — 1.
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Proposition 2.10. For a connected graph G of order n > 3,
Xs(G) =n—1 if and only if x(G)=n—1.

Proof. If x4(G) = n — 1, then G # K, and so the result immediately
follows by (1). For the converse, assume that x(G) = n — 1. Then by
Observation 2.9, w(G) = n— 1 and so G is obtained from K,_; by adding a
new vertex u and joining u to some (but not all) vertices of K,,_;. Assume,
to the contrary, that xs(G) = k < n — 2 and let there be given a set k-
coloring of G using the colors in Ng. Permuting the colors if necessary, we
can obtain a set k-coloring ¢ : V(G) — Ny such that ¢(V(K,—1)) = Ny,
where 1 < ¢ < k. Since £ < n — 1, some vertices in K,_1 are colored the
same. Let X C V(K,_1) such that for each x € X, there exists a vertex
y € X —{z} such that c¢(y) = c¢(z). Hence |X| > 2. Since each of the
remaining n — 1 — | X| vertices in K,,_1 receives a unique color, it follows
that n — | X| < £. For each z € X, either

(i) NC(x) =Ny or
(ii) NC(z) =Ny U {c(u)} if z € N(u) and c(u) ¢ Ny.
This implies that |X| < 2. Hence |X|=2andso{=n—2. Then k=(+1
(since c(u) ¢ Ny) and
n—2=0=k—-1<n-—3,

which is impossible. [ |

By Proposition 2.10 and its proof, a connected graph G of order n > 3 has
Xs(G) =n—1if and only if G = (K,_1_ U K1) + K}, for some integer k
with 1 <k <n-2.

Corollary 2.11. If G is a connected graph of order n such that x(G) €
{1.2.3.n — L}, then x+(G) = x().

3. LOWER BOUNDS FOR THE SET CHROMATIC NUMBER

We have already observed that xs(G) < x(G) for every graph G. There is
also a lower bound for the set chromatic number of a graph in terms of its
chromatic number.
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Proposition 3.1. For every graph G,
Xs(G) = [logy(x(G) +1)].

Proof. Since this is true if 1 < x(G) < 3, we may assume that x(G) > 4.
Let xs(G) = k and let there be given a set k-coloring of G using the colors
in Ni. Thus NC(z) C Nj, for every vertex = of G. Since NC(u) # NC(v)
for every two adjacent vertices u and v of G, it follows that NC(z) can be
considered as a color for each z € V(G), that is, the coloring ¢ of G defined
by ¢(x) = NC(z) for = € V(G) is a proper coloring of G. Since there are
2% — 1 nonempty subsets of Ny, it follows that ¢ uses at most 2¥ — 1 colors.
Thus x(G) < 28 —1 or x(G) +1 < 2F. Thus xs(G) = k > [logy(x(G) + 1)],
as desired. [

By Corollary 2.11, the lower bound for the set chromatic number of a graph
G in Proposition 3.1 is sharp if x(G) € {1,2}. If x(G) = 3, then xs(G) =
3 > [logy(3+ 1)] = 2 and so this bound is not sharp in this case.

The Grotzsch graph G* of Figure 2 is known to have chromatic number
4. A set 3-coloring of G* is also given in Figure 2 and so ys(G*) < 3. By
Proposition 2.2, xs(G*) > 3. Thus xs(G*) = 3. Since [log,(x(G*) +1)] =
[logy 5] = 3, the lower bound for x(G*) is attained in this case.

Figure 2. A set 3-coloring of the Grétzsch graph.

While x(G) > w(G) for every graph G, the clique number is not a lower
bound for the set chromatic number of a graph.

Proposition 3.2. For every graph G,

3) Xs(G) = 1+ [logyw(G)].
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Proof. If w(G) = 2, then xs(G) > 2; while if w(G) = 3, then xs(G) > 3.
Thus we may assume that w(G) = w > 4. Let H be a clique of order
w in G with V(H) = {v1,v2,...,v,}. Suppose that xs(G) = k and let
¢ : V(G) — Ny be a set k-coloring of G. We consider two cases, according to
whether there are two vertices in V(H) colored the same or no two vertices
in V(H) are assigned the same color.

Case 1. There are two vertices in V(H) colored the same, say c(vi) =
c(vg) = 1.
Then 1 € NC(v;) for 1 <4 < w. Since there are exactly 28! subsets of N,
containing 1, it follows that w < 2¥~1 and so k — 1 > logy w. Therefore, (3)
holds.

Case 2. No two vertices in V(H) are colored the same.
Then w distinct colors are used for the vertices in V(H) and so w < k. Since
w > 4, it follows that

kE>w>14 [logow(G)].

Again, (3) holds. ]

The lower bound for the set chromatic number of a graph in Proposition
3.2 is sharp. To see this, we construct a connected graph G with w(G) =
2=1 and x,(G) = k for each integer k > 2. We start with the complete
graph H = Koi—1 of order 27! where V(H) = {v,va,...,v96-1}. Let
81,82, ...,85-1 be the 28=1 subsets of Ny_;, where S; = (). For each
integer i with 2 < i < 2*71 we add |S;| pendant edges at the vertex v;,
obtaining the connected graph G with w(G) = 2¥~1. It remains to show
that xs(G) = k. By Proposition 3.2, xs(G) > k. Define a k-coloring of G
by assigning

(i) the color k to each vertex of H and

(ii) the colors in S; to the |S;| end-vertices adjacent to v; for 2 <4 < 2+F~1,
Figure 3 shows the graph G for &k = 4 and the corresponding 4-coloring. Thus
NC(v;) = S; U {k} for 1 < i < 21, Hence [NC(v;)| > 2 for 2 < i < 2F1
and [NC(z)| = 1 for each end-vertex = of G. This implies that every two

adjacent vertices in G have different neighborhood color sets. Consequently,
c is a set k-coloring of G and so xs(G) = k.
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Figure 3. A set 4-coloring of a graph G with x5(G) =1+ [log, w(G)].

4. VERTEX OR EDGE DELETIONS AND THE SET CHROMATIC NUMBER

For the graph G of Figure 4(a), x(G) = w(G) = 4. By Proposition 3.2,
Xs(G) > 1+ [logyw(G)] = 3. The set 3-coloring of G in Figure 4(b) shows
that xs(G) = 3. The graph G — z9 is shown in Figure 4(c) together with
a set 4-coloring. Observe that the graph G — x5 is isomorphic to the graph
(4,3 described prior to Proposition 2.6. In fact, xs(G — z2) = xs(Ga3) =4
by Proposition 2.6.

w1 U v V1 1 3 3 2
O O O Q O O
w 3
G
o —o0 o ———oO
T € ) 1 3 2
(a) (b)
1 4 4 2
O O
4
G- To
O
3 4

Figure 4. A set 3-coloring of a graph G and a set 4-coloring of G — .

The preceding example shows that it is possible for a graph G to contain a
vertex v such that the set chromatic number of G — v is greater than the
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set chromatic number of G. If G = Cf5, then xs(G —v) =2 = xs(G) — 1
for every vertex v of G. If G = C5 + K; where v is the central vertex of
G, then xs(G —v) = 3 = xs(G). Therefore, for each i € {—1,0,1}, there
exists a graph G containing a vertex v such that xs(G — v) = xs(G) + i.
In fact, xs(G — v) can exceed xs(G) by more than 1. Prior to showing this,
we introduce additional notation. For integers a and b with a < b, let

[a.b) ={z €Z: a<z<b}.

In particular, [1..b] = Ny.

Let G be a graph of order n = 11 and clique number w(G) = 8 con-
structed from Kg with V(Kg) = {v1,v2,...,vg} by adding three pairwise
nonadjacent vertices w1, ug, u3 and joining v; and w; as follows: Let S = 0,
Sy = {1}, S3 = {2}, Sy = {1,2}, and S; = S;_4 U {3} for 5 < ¢ < 8. For
1<i<8andl<j <3, vu; € E(G) if and only if j € S; (see Figure 5). By
Proposition 3.2, xs(G) > 1+ [logy 8| = 4, while the coloring ¢; : V(G) — Ny
of G defined by

(v) = i ifv=u; (1<i<3),
U= 4 otherwise

is a set 4-coloring. Therefore, xs(G) = 4.

Ui U2 us

BEAEE

U1 V2 U3

Ks
Figure 5. A graph G with x5(G — u3) = xs(G) + 3.

For the graph G of Figure 5, let H = G — ug. We claim that xs(H) = 7.
First observe that the coloring c¢o : V(H) — N7 of H defined by
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1 ifo=0; (5<i<8),
)= 14+ ifv=wv (1<i<4),
541 ifv=w (1=1,2)

—~

is a set 7-coloring and so xs(H) < 7. Assume, to the contrary, that there
exists a set f-coloring of H using the colors in Ny for some ¢ < 6. Permuting
the colors if necessary, we can obtain a set ¢-coloring c3 : V(H) — Ny of
H such that c3(V(Ks)) = Ny for some integer ¢/ with 1 < ¢/ < £. Since
¢ < 8, some vertices in Ky are colored the same. Let X be the subset of
V(K3) such that for each x € X, there exists a vertex y € X — {z} with
c3(y) = es(x). Since each vertex of V(Kg) — X receives a unique color and
at least one additional color is used for the vertices in X, it follows that
®—|X|)+1=9—|X|< /¢ <6andso |X|>3>2.

The remaining ¢ — ¢’ colors are used for the two vertices u; and us,
implying that £ — ¢’ < 2. Also, since each vertex x € X must have a unique
neighborhood color set containing Ny as a subset, the set NC(z) — Ny is a
unique subset of [/ 4 1..¢]. Therefore, 2 < |X| < 2=t < 22 implying that
¢ — ¢ =2 and so ¢ < 4. However, since | X| < 4,

5<9—|X| </ <4,

which is impossible.

Therefore, xs(H) = 7, as claimed, and so xs(G — u3) = xs(G) + 3. In
fact, xs(G —u;) = xs(G) + 3 for each vertex u; (1 < i < 3). Observe for the
graph G of Figure 5 that degg u; = 4 for each i (1 < i < 3). In general, we
have the following result.

Theorem 4.1. If v is a vertex of a graph G, then
XS(G) -1< XS(G - U) < XS(G) + degv.
Proof. First, we verify the lower bound for ys(G — v). Suppose that

Xs(G—v) =k. Let ¢; : V(G — v) — Ni, be a set k-coloring of G — v. Then
the coloring ¢} of G defined by

, ci(z) if x #w,
c(z) = e
kE+1 ifz=v
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is a set coloring of G using k + 1 colors. Therefore, xs(G) < k+1 =
xs(G —v) + 1.

Next, we show that xs(G —v) < xs(G)+degv. Suppose that xs(G) = ¢
and degv = d, where N(v) = {v1,va,...,vq}. Let ca: V(G) — Ny be a set
¢-coloring of G. Then the coloring ¢}, of G — v defined by

X ):{ co(w) ifx ¢ N(v),

A (i ifr=uv (1<i<d)

is a set coloring of G — v, using at most £+ d colors. Therefore, x (G —v) <
{+d=xs(G) + degv. ]

We have already seen that the lower bound for x(G — v) given in Theorem
4.1 is sharp. To see that the upper bound in Theorem 4.1 is sharp, let
n = 2k > 4. We construct a graph G of order 2n from K, with V(K,) =
{v1,v2,...,v,} by adding n new vertices uy,ua,...,u,—1,w and joining

(i) u; tow; for 1 <i<n-—1and

(ii) wtov; for k+1<i<mn-—1.
Hence degw = k — 1 and, furthermore, G — w is isomorphic to the graph
Gpn—1 described prior to Proposition 2.6. Since xs(G — w) = n = 2k, it
follows by Theorem 4.1 that

Xs(G) > xs(G —w) —degw =k + 1.
Furthermore, since the coloring ¢ : V(G) — Ny defined by

7 if ve{uuprit 1<i<k-—1),
clv) =< k if v € {ug, w},
k+1 otherwise

is a set (k + 1)-coloring of G, it follows that xs(G) < k+ 1 and so xs(G) =
k + 1. Consequently,

Xs(G —w) = xs(G) + degw,

establishing the sharpness of the upper bound in Theorem 4.1.

We now consider how the set chromatic number of a connected graph
G is affected by deleting an edge from G. Consider the connected graph G
of Figure 6(a) and the three edges e_1 = vyva, €9 = ugug, and e; = uqvs
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in G. For the three graphs G — ¢; for i € {—1,0, 1}, observe that w(G) =
w(G —ey) = w(G —e1) =5 and w(G —e_1) = 4. Hence xs(H) > 4 for
H € {G,G — ey,G — e1} and xs(G — e_1) > 3 by Proposition 3.2. The
colorings given in Figure 6 show that

Xs(G) = xs(G —e9) =4 and xs(G —e_1) =3.

We now show that xs(G —e1) = 5. Since x(G — e1) = 5, it suffices to verify
that xs(G —e1) # 4. Assume, to the contrary, that c is a set 4-coloring of
G — ey. For the graph F = (G — e1) — ep, it was shown in Proposition 2.6
that ys(F) = 5, that is, ¢ is not a set coloring of F'. Note that

NCg—e, () = NCp(x)
for every x € V(G — e1) — {uz2,u3} and so we may assume that
NCp(v2) = NCp(uz) = {c(v2)} = {1}.
However, this implies that NCq_¢, (v1) = NCg_¢, (v2) = {1}, contradicting

the fact that c is a set coloring of G — ej. Therefore, xs(G —e1) = 5. Hence
for -1 <i <1,

Xs(G —e€;) = xs(GQ) + 1.

Figure 6. Graphs G and G — ¢; with xs(G —e;) = xs(G) +i for i € {—1,0}.
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Next, we show that for every graph G and an edge e in G, the difference
between x(G) and xs(G — e) cannot exceed 2.

Proposition 4.2. If e is an edge of a graph G, then
IXs(G) — xs(G —e)| <2.

Proof. Let e = uv. First, we verify that ys(G) — xs(G — e) < 2. Suppose
that xs(G —e) = k and let ¢; : V(G —e) — Nj, be a set k-coloring of G — e.
Then observe that the coloring ¢} of G defined by

k+1 ifz=u,
@)=L k+2 ifx=nv,
c1(z) otherwise

is a set coloring of G that using at most k + 2 colors. Therefore, x(G) <
k+2 = xs(G —e€) + 2 and so xs(G) — xs(G —e) < 2. To verify that
Xs(G—e)—xs(G) < 2, suppose that xs(G) = ¢ and consider a set ¢-coloring
¢2: V(G) — Ny of G. Then the coloring ¢, defined by

(+1 ifz=u,
Ax)=4 (+2 ifx=uv,
ca(x) otherwise

is a set coloring of G — e using at most ¢ 4+ 2 colors. Thus, xs(G —e) <
0+2=xs(G)+2. ]

We are unaware of a graph G and an edge e of G such that |xs(G)—
Xs(G — e)| = 2. Nevertheless, we conclude by presenting a sufficient condi-
tion that |xs(G) — xs(G — e)| < 1 for an edge e = uv that is not a bridge
in a graph G in terms of the distance between u and v in G. For a vertex
v in a graph G, let Ng[v] = Ng(v) U {v} be the closed neighborhood of v
in G.

Proposition 4.3. If e = uv is an edge of a graph G that is not a bridge
such that dg—c(u,v) > 4, then

Ixs(G) — xs(G —e)| < 1.
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Proof. We first verify that xs(G)—xs(G—e) < 1. Suppose that x(G—e) =
k and let ¢; : V(G — e) — N be a set k-coloring of G — e. We show that
the coloring ¢ defined by

ron | oalx) ifx#u,
Cl(w)_{kz—{—l ifo=u

is a set coloring of G that uses at most k+1 colors. Observe that NC, (z) =
NC¢, (z) for every x € V(G) — Nglu], while k +1 € NC (z) for every
x € Ng(u). Let x,y be a pair of adjacent vertices in G. If {z,y} Z Ng(u),
then NCy (z) # NC. (y). Hence we may assume that {z,y} C Ng(u).
Note that v ¢ {z,y} since dg_(u,v) > 2. Thus, {z,y} C Ng_c(u). Since
NC,, () # NC,,(y) and c¢;(u) € NC., () N NC,, (y), there exists a color
i* € Ny — {c1(u)} that belongs to exactly one of NC,, (x) and NC,, (y), say
i* € NC¢, (v) — NC¢, (y). Then i* € NC (z) — NC, (y). Hence ¢} is a set
coloring of G and so xs(G) <k+ 1= xs(G—e)+ 1.

To verify that xs(G —e) < xs(G) + 1, suppose that xs(G) = ¢ and let
ca : V(G) — Ny be a set f-coloring of G. We show that the coloring ¢},
defined by

&) = co(z) if x ¢ {u,v},
2T 41 ifxe {uv}

is a set coloring of GG — e using at most £+ 1 colors. Observe that NC o (x) =
NCe,(z) for every z € V(G) — (Ng—¢[u] U Ng—,[v]), while £+ 1 € NC,, (z)
for every x € Ng_c(u) U Ng_c(v). Suppose that z,y is a pair of adjacent
vertices in G —e. If {z,y} € Ng—e(u) U NG (v), then NC, () # NCy (y).
On the other hand, since dg—_.(u,v) > 4, no vertex in Ng_.(u) is adjacent
to a vertex in Ng_.(v). Hence if {z,y} C Ng_c(u) U Ng_(v), then either
{z,y} C Ng_c(u) or {z,y} C Ng_(v), say the former. Since NC,,(z) #
NC,,(y) and c2(u) € NCg,(x) N NC,(y), there is a color j* € Ny — {ca(u)}
that belongs to exactly one of NC,(z) and NC,,(y), say j* € NCg,(x) —
NCe,(y). Then j* € NCy(z) — NC, (y). Therefore, ¢ is a set coloring of
G —eandso xs(G—e) <l+1=xs(G)+1. |

According to the proof of Proposition 4.3, if there is a graph G with an edge
e = uv having the property that |xs(G)—xs(G—e)| = 2, then dg_.(u,v) < 3.
In particular, if x5(G) — xs(G — e) = 2, then dg_¢(u,v) = 2.
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