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1. Introduction

In this paper we consider finite simple graphs. Our graph-theoretic termi-
nology follows [3]. For a graph G by VG and EG we denote its vertex set
and its edge set, respectively.

Let G be a graph and let T be a spanning tree in G (that is, T is both
a tree and a spanning subgraph of G). For each edge e of T let Ae and Be
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be the vertex sets of the components of T\e. By eG(Ae, Be) we denote the
number of edges with one end vertex in Ae and the other end vertex in Be.
We define the edge congestion of G in T by

ec(G : T ) = max
e∈ET

eG(Ae, Be).

The name comes from the following analogy. Imagine that edges of G are
roads, and that edges of T are those roads which are cleaned from snow
after snowstorms. For each road g ∈ EG there exists a unique path Pg in
T joining the end vertices of g, we call such path a detour, even in the case
when Pg = g. For an edge h of T it is quite natural to define the congestion
c(h) as the number of times h is used in different detours {Pg}g∈EG

. Then

ec(G : T ) = max
h∈ET

c(h).

It is clear that for applications it is interesting to find a spanning tree which
minimizes the congestion.

We define the spanning tree congestion of G by

s(G) = min{ec(G : T ) : T is a spanning tree of G}.(1)

Each spanning tree T in G satisfying ec(G : T ) = s(G) is called a minimum
congestion spanning tree for G. The parameters ec(G : T ) and s(G) were
introduced and studied in [7], see also [9]. These parameters are of interest
in the study of Banach-space-theoretical properties of Sobolev spaces on
graphs, see [8, Section 3.5.1]. An additional motivation for this study is
that minimum congestion spanning trees can be considered as ‘congestional’
analogues of the well-known shortest (or minimal) spanning trees. See [11]
for an account on shortest spanning trees, and on other minimality properties
of spanning trees.

The purpose of this paper is to find exact values or estimates of s(G)
for some grids and discrete toruses.

2. Some General Remarks on the Spanning Tree Congestion

The definitions and observations recalled in this paragraph go back to C. Jor-
dan [6], see [5, pp. 35–36]. Let u be a vertex of a tree T . If we delete all
edges incident with u from T , we get a forest. The maximal number of
vertices in components of the forest is called the weight of T at u. A vertex
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v of T is called a centroid vertex if the weight of T at v is minimal. Each
tree has one or two centroid vertices.

Denote by ∆G the maximum degree of the graph G. Let T be an
optimal spanning tree in G, that is, ec(G : T ) = s(G). Let u be a centroid
of T . Since T is a subgraph of G, there are at most ∆G edges incident
with u in T . Hence at least one of the components, we denote it by A, in
the forest obtained from T after deletion of u has at least oG = d |VG|−1

∆G
e

vertices, and at most |VG|
2 vertices. The edge connecting u with A is used in

eG(A, Ā) detours. Therefore, any isoperimetric type inequality, estimating
from below the number of edges in G joining a set containing at least oG and
at most |VG|/2 vertices with its complement provides an estimate of s(G)
from below. In the next section we see that combining this observation with
the known isoperimetric inequalities [2] for discrete toruses and for grids, we
get close-to-optimal estimates from below for the spanning tree congestion
of some of these graphs.

3. Grids and Toruses

We use the notation from [2]. Namely, the grid graph is the graph with
vertex set [k]n = {0, 1, 2, 3, . . . , k − 1}n in which x = (xi)

n
1 is joined to

y = (yi)
n
1 if and only if |xi − yi| = 1 for some i and xj = yj for all j 6= i. Let

Zk be the quotient group Z/kZ. The discrete torus is the graph with the
vertex set Z

n
k = (Zk)

n in which x = (xi)
n
1 is joined to y = (yi)

n
1 if and only

if xi − yi = ±1 for some i and xj = yj for all j 6= i.

3.1. Two-dimensional case

It turns out that for two-dimensional square grids and toruses the isoperi-
metric inequalities proved in [2] provide bounds for s(G) from below which
are achieved for easily constructed trees.

Theorem 1. s([k]2) = k for k ≥ 2 and s(Z2
k) = 2k for k ≥ 3.

Proof. Observe that for both graphs the maximum degree is 4, therefore
o

Z
2

k

= o[k]2 = dk2−1
4 e (oG was defined in Section 2). We need

Theorem 2 ([2, Theorem 3]). Let A be a subset of [k]n with |A| ≤ kn/2.
Then

eG(A, Ā) ≥ min
{
|A|1−1/rrk(n/r)−1 : r = 1, . . . , n

}
.(2)
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Theorem 3 ([2, Theorem 8]). Let A be a subset of Z
n
k with |A| ≤ kn/2.

Then

eG(A, Ā) ≥ min
{

2|A|1−1/rrk(n/r)−1 : r = 1, . . . , n
}

.(3)

Using Theorem 2 with |A| = o[k]2 = dk2−1
4 e and the observation from Section

2, we get s([k]2) ≥ 2
√

dk2−1
4 e. Hence s([k]2) ≥ k for k ≥ 2. (Observe that

for even k we can use the second inequality from [2, Corollary 4].)

Using Theorem 3 with |A| = o
Z

2

k

= dk2−1
4 e and the observation from

Section 2, we get s(Z2
k) ≥ 4

√
d k2−1

4 e. Hence s(Z2
k) ≥ 2k for k ≥ 3.

It remains to show that there exist trees for which these bounds are
attained. It turns out that if we consider [k]2 as a subgraph of Z

2
k, we can

use the same tree for both of them.

Now we construct optimal spanning trees Tk in [k]2. We construct them
somewhat differently for odd and even k.

First let k = 2r + 1, r ∈ N. In this case the edge set of Tk consists of

(A) ‘Vertical’ edges joining the vertices (r, y) and (r, y + 1), y ∈ {0, . . . ,
k − 2};

(B) ‘Horizontal’ edges joining the vertices (x, y) and (x+1, y), x ∈ {0, . . . ,
k − 2}, y ∈ {0, . . . , k − 1}.

The verification of the equality ec([k]2 : Tk) = k is straightforward (the
reader is advised to sketch a picture).

Now let k = 2r, r ∈ N. In this case the edge set of Tk consists of

(A) Two sets of ‘vertical’ edges:

(1) edges joining the vertices (r, y) and (r, y + 1), y ∈ {0, . . . , k − 2};
(2) edges joining the vertices (r−1, y) and (r−1, y+1), y ∈ {0, . . . , k−2};
(B)

(1) ‘Horizontal’ edges joining the vertices (x, y) and (x + 1, y), x ∈ {0, . . . ,
k − 2}\{r − 1}, y ∈ {0, . . . , k − 1};

(2) A horizontal edge joining (r − 1, r) and (r, r). (The enclosed figure
shows the resulting graph for k = 4.)
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• • • •
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The verification of the equality ec([k]2 : Tk) = k is straightforward.

3.2. Three-dimensional grids and toruses

It is much more difficult to find the exact values of s([k]3) and s(Z3
k), except

for very small values of k. We prove the following asymptotic estimates only.

Theorem 4.
2√
6
k2 − o(1) ≤ s([k]3) ≤ 7

8
k2 + O(k).(4)

4√
6
k2 − o(1) ≤ s(Z3

k) ≤
7

4
k2 + O(k).(5)

Proof. The estimates from below are proved in the same way as in the
two-dimensional case. If k ≥ 3, the maximum degree of [k]3 is 6, therefore

o[k]3 = dk3−1
6 e (oG was defined in Section 2). Using Theorem 2 with |A| =

o[k]3 we get

e[k]3(A, Ā) ≥ min

{
k2, 2

√⌈
k3 − 1

6

⌉
· k, 3

(⌈
k3 − 1

6

⌉) 2

3

}
.(6)

A simple computation shows that for k ≥ 2 the number

2

√⌈
k3 − 1

6

⌉
· k

is the minimum in (6). Using the observation from Section 2, we get the
estimate from below in (4). Using Theorem 3 and the same computation as
above, we get the estimate from below in (5).

Now we turn to the estimate from above. First we consider a solid cube
of size k × k × k. We cut it into 6 rectangular pieces, first we cut a slice of
height 3

8k at the top, and divide it vertically into two rectangular pieces of
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the same size. We get two rectangular parallelepipeds of height 3
8k whose

bases are k × k
2 rectangles. We cut the bottom slice of height 5

8k into four

pieces, using vertical cuts, each of the 4 pieces from above is an k
2 × k

2 square.

We get four rectangular parallelepipeds of height 5
8k whose bases are k

2 × k
2

squares. It is easy to check that for each of the 6 pieces the surface area of
the intersection of cuts with the piece is 7

8k2. It is an interesting geometric
question: is it possible to get less than 7

8k2 cutting the cube into 6 pieces
in a different way? It is natural to expect that an answer to this question
would allow to improve bounds in Theorem 4.

We partition [k]3 into 6 pieces using discrete versions of the cuts de-
scribed above. Of course we have to round the numbers 5

8k and k
2 to nearest

integers. We introduce the notation: A = d k
2e, B = dk

2 e − k + 1, C = d 3
8ke,

D = d3
8ke − k + 1. We consider the grid [k]3 as the set of integer points

(x, y, z) ∈ R
3 satisfying the inequalities B ≤ x ≤ A, B ≤ y ≤ A, D ≤ z ≤ C.

Our partition of the vertex set of [k]3 is the following:

P1 : B ≤ x ≤ A, 1 ≤ y ≤ A, 1 ≤ z ≤ C,
P2 : B ≤ x ≤ A, B ≤ y ≤ 0, 1 ≤ z ≤ C,
P3 : 1 ≤ x ≤ A, 1 ≤ y ≤ A, D ≤ z ≤ 0,
P4 : B ≤ x ≤ 0, 1 ≤ y ≤ A, D ≤ z ≤ 0,
P5 : 1 ≤ x ≤ A, B ≤ y ≤ 0, D ≤ z ≤ 0,
P6 : B ≤ x ≤ 0, B ≤ y ≤ 0, D ≤ z ≤ 0.

We construct a spanning tree T whose centroid is the vertex O = (0, 0, 0).
All edges incident with O are in T . Therefore O has six neighbors in T . We
denote them by {ni}6

i=1, where n1 = (0, 1, 0), n2 = (0, 0, 1), n3 = (0, 0,−1),
n4 = (−1, 0, 0), n5 = (1, 0, 0), n6 = (0,−1, 0). The indices of {ni}6

i=1 are
chosen in such a way that ni is on the path from O to Pi (i = 1, . . . , 6) in the
following sense: If we delete the edge joining O and ni from T , the vertex set
of one of the obtained components is, up to certain small and independent
of k amount of vertices, the vertex set of Pi. Together with the estimates
for the boundaries of Pi, this leads to the desired estimates for the numbers
of detours in which each of these 6 edges is used.

Now we construct the rest of T . We start by construction of a tree which
is a subgraph of [k]3 and whose vertex set is P1. This tree is constructed as
follows: each ‘rectangle’ R1(x) in P1 consisting of vertices (x, y, z) with fixed
x is joined with the rectangle R1(x + 1) (B ≤ x ≤ A − 1) with exactly one
edge, and this edge is the edge joining the vertices (x, 1, 1) and (x+1, 1, 1). In
each of R1(x) we construct a tree in the following way. It contains ‘vertical’
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edges joining (x, 1, z) and (x, 1, z + 1) for 1 ≤ z ≤ C − 1 and ‘horizontal’
edges joining (x, y, z) with (x, y + 1, z) for 1 ≤ z ≤ C and 1 ≤ y ≤ A − 1.

We also add to T the edge between n1 and the vertex (0, 1, 1). There
are no other edges in T having one of their end vertices in P1.

The part of T corresponding to P2 is constructed similarly. One of the
differences is that we do not need an additional edge mentioned in the previ-
ous paragraph: the vertex n2 is already in P2. Because of lack of symmetry
and for the sake of completeness we describe the rest of the construction.
Each ‘rectangle’ R2(x) in P2 consisting of vertices (x, y, z) with fixed x is
joined with the rectangle R2(x + 1) (B ≤ x ≤ A− 1) with exactly one edge,
and this edge is the edge joining the vertices (x, 0, 1) and (x + 1, 0, 1). In
each of R2(x) we construct a tree in the following way. It contains ‘vertical’
edges joining (x, 0, z) and (x, 0, z + 1) for 1 ≤ z ≤ C − 1 and ‘horizontal’
edges joining (x, y, z) with (x, y + 1, z) for 1 ≤ z ≤ C and B ≤ y ≤ −1.

The trees corresponding to Pi, i = 3, 4, 5, 6 are somewhat different.
Unfortunately, the structure we consider does not have enough symmetry for
the uniform description of the trees. Nevertheless, the trees corresponding
to Pi, i = 3, 4, 5, 6 are similar to each other.

First we describe paths from O to each of Pi, i = 3, 4, 5, 6.

• Path to P3 goes through n3 = (0, 0,−1), and the vertex (0, 1,−1). It
reaches P3 at the vertex p3 = (1, 1,−1).

• Path to P4 goes through n4 = (−1, 0, 0), and reaches P4 at the vertex
p4 = (−1, 1, 0).

• Path to P5 is trivial: n5 is already in P5, we let p5 = n5.

• Path to P6 is also trivial: n6 is already in P6, we let p6 = n6.

We exclude from each of the Pi vertices used in the described above paths
to other pieces, and denote the obtained sets by P̃i. We let (x3, y3) = (1, 1),
(x4, y4) = (−1, 1), (x5, y5) = (1, 0), (x6, y6) = (0,−1). Observe that these
pairs satisfy the conditions: (a) They are the pairs of the (x, y)-coordinates
of p3, p4, p5, and p6, respectively; (b) All points of the form (xi, yi, z),
D ≤ z ≤ 0 are in P̃i (this means that they are not among the vertices
excluded from Pi according to the first sentence of this paragraph).

In each P̃i (i = 3, 4, 5) we construct a tree in the following way: it
contains.

• Edges joining (xi, yi, z) and (xi, yi, z + 1) for D ≤ z ≤ −1.

• Edges joining (xi, y, z) and (xi, y + 1, z) in the cases when both points
are in P̃i.
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• Edges joining (x, y, z) and (x + 1, y, z) in the cases when both points are
in P̃i.

For P̃6 we construct the tree slightly differently. The tree contains

• Edges joining (0,−1, z) and (0,−1, z + 1) for D ≤ z ≤ −1.

• Edges joining (x,−1, z) and (x + 1,−1, z) in the cases when both points
are in P̃6.

• Edges joining (x, y, z) and (x, y + 1, z) in the cases when both points are
in P̃6.

For each z satisfying D ≤ z ≤ 0 we denote the set of the points of the form
(x, y, z) which are in P̃i (i = 3, 4, 5, 6) by Ri(z).

Now we estimate the congestion on each of the edges of T . It is easy to
see that, up to a small constant number of edges, the congestion on the edge
from O to n1 is equal to the number of edges joining P1 with its complement,
and this number is ≤ 7

8k2 + O(k). The same can be said about the edge
joining n1 and (0, 1, 1). Similarly we estimate the congestion on the edge
joining O and each point of the set {ni}6

i=2 as well as the congestion on the
other edges from paths joining O and p3, and O and p4.

Now we consider other edges. The tree T was constructed in such a way
that each of the edges is either an edge between different rectangles Ri, or
an edge inside one of Ri.

For an edge between different rectangles Ri, the congestion on it is equal
to the ‘surface area’ of the piece which is separated by the removal of such
edge. Such pieces are discrete rectangular parallelepipeds and their ‘surface
area’ can be easily estimated from above by 7

8k2 +O(k) in all possible cases.
If we consider an edge inside one of the rectangles Ri, the congestion on

it can be estimated from above by the 2M +B+4, where M is the number of
vertices in the sub-rectangle of Ri(z) (or Ri(x)) separated by the removal of
the edge, and B is the number points on the boundary of the sub-rectangle.
It is clear that this number is ≤ 7

8k2 + O(k).
The same tree can be used to estimate s(Z3

k) from above. It is easy to
verify that the congestion on each edge is at most doubled when we pass
from [k]3 to Z

3
k.

4. Final Remarks

It looks plausible that in order to obtain estimates for the spanning tree
congestion of d-dimensional, d ≥ 3, cubic grids and toruses up to O(k) it
suffices to solve the following isoperimetric problem.
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Problem. How to cut [k]d (or Z
d
k) into 2d pieces in such a way that each

piece contains at most half of vertices of [k]d (Zd
k), and the maximum edge

boundary of pieces is minimized?
This problem, with 2d replaced by a general number I is well-known

in computer science, see [4, p. 358] and [10]. The main focus in the men-
tioned papers is somewhat different, and the obtained results do not provide
estimates, which are precise enough for the problem above.

R. Ahlswede and S. L. Bezrukov [1] obtained versions of results of [2]
for rectangular grids. These results could help to generalize results of the
present paper to the rectangular case.
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