
Discussiones Mathematicae 499
Graph Theory 29 (2009 ) 499–510

THE LIST LINEAR ARBORICITY

OF PLANAR GRAPHS ∗

Xinhui An and Baoyindureng Wu

College of Mathematics and System Science

Xinjiang University

Urumqi 830046, P.R. China

e-mail: xjaxh@xju.edu.cn, baoyin@xju.edu.cn

Abstract

The linear arboricity la(G) of a graph G is the minimum number
of linear forests which partition the edges of G. An and Wu introduce
the notion of list linear arboricity lla(G) of a graph G and conjecture
that lla(G) = la(G) for any graph G. We confirm that this conjecture
is true for any planar graph having ∆ > 13, or for any planar graph
with ∆ > 7 and without i-cycles for some i ∈ {3, 4, 5}. We also prove

that d∆(G)
2 e 6 lla(G) 6 d∆(G)+1

2 e for any planar graph having ∆ > 9.
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1. Introduction

All graphs considered here are finite, undirected and simple. We refer to [4]
for unexplained terminology and notations. For a real number x, dxe is the
least integer not less than x. Let G = (V (G), E(G)) be a graph. |V (G)|
and |E(G)| are called the order and the size of G, respectively. We use
∆(G) and δ(G) to denote the maximum degree and the minimum degree of
G, respectively. Let v be a vertex of G. The neighborhood of v, denoted by
NG(v), is the set of vertices adjacent to v in G. The degree of v, denoted

∗The work is supported by NSFC (No.10601044), XJEDU2006S05 and Scientific Re-
search Foundation for Young Scholar of Xinjiang University.
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by dG(v), is the number of edges incident with v in G. Since G is simple,
dG(v) = |NG(v)|. If there is no confusion, we use N(v) and d(v) for the
neighborhood and degree of v instead of NG(v) and dG(v), respectively.
Let Nk(v) = {u|u ∈ N(v) and d(u) = k}. The girth of G is the minimum
length of cycles in G. A k- or k+-vertex is a vertex of degree k, or at
least k.

A linear forest is a graph in which each component is a path. A map
ϕ from E(G) to {1, 2, . . . , k} is called a k-linear coloring if (V (G), ϕ−1(i))
is a linear forest for 1 6 i 6 k. The linear arboricity la(G) of a graph
G, introduced by Harary [8], is the minimum number k for which G has a
k-linear coloring. Akiyama, Exoo and Harary [1] conjectured that la(G) =

d∆(G)+1
2 e for any regular graph G. It is obvious that for a graph G, la(G) >

d∆(G)
2 e and la(G) > d∆(G)+1

2 e when G is regular. So it is equivalent to the
following conjecture, known as the linear arboricity conjecture.

Linear Arboricity Conjecture. For any graph G,

⌈

∆(G)

2

⌉

6 la(G) 6

⌈

∆(G) + 1

2

⌉

.

The linear arboricity has been determined for complete bipartite graphs [1],
series-parallel graphs [10], and regular graphs with ∆ = 3 [1], 4 [2], 5, 6,
8 [6], 10 [7]. The LAC also has already been proved to be true for any
planar graphs in [9] and [12]. In particular, the author proved that if G is a

planar graph with ∆ > 13, then la(G) = d∆(G)
2 e. In [9] and [11], the authors

showed that the same also holds for a planar graph with ∆ > 7 and without
i-cycles for some i ∈ {3, 4, 5}.

A list assignment L to the edges of G is the assignment of a set L(e) ⊆
N of colors to every edge e of G, where N is the set of natural num-
bers. If G has a coloring ϕ such that ϕ(e) ∈ L(e) for every edge e and
(V (G), ϕ−1(i)) is a linear forest for any i ∈ Cϕ, where Cϕ = {ϕ(e)|e ∈
E(G)}, then we say that G is linear L-colorable and ϕ is a linear L-
coloring of G. We say that G is linear k-list colorable if it is linear L-
colorable for every list assignment L satisfying |L(e)| = k for all edges e. The
list linear arboricity lla(G) of a graph G is the minimum number k for which
G is linear k-list colorable. It is obvious that la(G) 6 lla(G). In [3], the
authors raised the following conjecture, and confirmed that it is true for any
series-parallel graph.
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List Linear Arboricity Conjecture. For any graph G,

⌈

∆(G)

2

⌉

6 la(G) = lla(G) 6

⌈

∆(G) + 1

2

⌉

.

Little was known for this conjecture. In this paper, we will prove that it
is true for any planar graph having ∆ > 13, or for any planar graph with
∆ > 7 and without i-cycles for some i ∈ {3, 4, 5}. We also prove that

d∆(G)
2 e 6 lla(G) 6 d∆(G)+1

2 e for any planar graph having ∆ > 9.

2. Planar Graphs with la(G) = lla(G)

For convenience, we introduce two definitions. The weight w(e) of an edge
e = uv is d(u) + d(v). An even cycle v1v2 · · · v2tv1 is called k-alternating if
d(v1) = d(v3) = · · · = d(v2t−1) = k.

Let L be a list assignment of G, and ϕ be a coloring of G such that
ϕ(e) ∈ L(e) for any edge e of G. For a vertex v ∈ V (G), we denote by Cϕ(v)
the set of colors that appear on the edges incident with v in G.

Ci
ϕ(v) = {j | the color j appears i times at edges incident with v},

for any positive integer i. Observe that ϕ is a linear L-coloring of G if and
only if G does not contain a monochromatic cycle under coloring ϕ and
|Ci

ϕ(v)| = 0 for every vertex v of G and any i > 3. Thus, if ϕ is a linear
L-coloring of G then Cϕ(v) = C1

ϕ(v) ∪ C2
ϕ(v).

The following two lemmas can be found in [9].

Lemma 2.1. Let G be a planar graph with δ(G) > 2. Then either there is

an edge e with w(e) 6 15 or there is a 2-alternating cycle v0v1 · · · v2n−1v0

such that d(v1) = d(v3) = · · · = d(v2n−1) = 2 and max06i<n |N2(v2i)| > 3.

Lemma 2.2. Let G be a planar graph with girth at least g and maximum

degree ∆, and assume that δ(G) > 2. If g = 4, 5 or 6, then either there is an

edge e with w(e) 6 17 − 2g or there is a 2-alternating cycle v0v1 · · · v2n−1v0

such that d(v1) = d(v3) = · · · = d(v2n−1) = 2 and max06i<n |N2(v2i)| > 3.

Under the same conditions as given in the next theorem, Wu [9] proved that

la(G) = d∆(G)
2 e.
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Theorem 2.3. Let G be a planar graph having girth at least g and maximum

degree ∆. Then la(G) = lla(G) = d∆(G)
2 e, provided that one of the following

holds:

(1) ∆ > 13, (2) ∆ > 7 and g > 4,

(3) ∆ > 5 and g > 5, (4) ∆ > 3 and g > 6.

Proof. Since d∆(G)
2 e 6 la(G) 6 lla(G), we show (1) by proving somewhat

a stronger statement: any planar graph G is linear k-list colorable for k =
max{7, d∆(G)

2 e}.
We shall prove it by induction on |E(G)|. The result holds trivially if

|E(G)| 6 7. Next we assume G be a graph with |E(G)| > 8, and let L be a
list assignment of G with |L(e)| = k for any e ∈ E(G).

Suppose that G has an edge xy such that w(xy) 6 2k + 1. Then by
induction hypothesis, G∗ = G − xy has a linear L-coloring ϕ. Let Cϕ =
C2

ϕ(x)∪C2
ϕ(y)∪(C1

ϕ(x)∩C1
ϕ(y)). Since 2|Cϕ| 6 dG∗(x)+dG∗(y) = w(xy)−2 6

2k − 1, |Cϕ| < k. We can extend ϕ to a linear L-coloring of G by taking
ϕ(xy) ∈ L(xy)\Cϕ.

Hence, we assume that w(xy) > 2k + 1 for any edge xy ∈ E(G). Since

k = max{7, d∆(G)
2 e}, we have δ(G) > 2 and 2k + 1 > 15. Therefore, for any

edge xy ∈ E(G), w(xy) > 15. By Lemma 2.1, G contains a 2-alternating
cycle C = v0v1 · · · v2n−1v0 such that d(v1) = d(v3) = · · · = d(v2n−1) = 2 and
max
06i<n

|N2(v2i)| > 3.

Without loss of generality, let |N2(v0)| > 3. Let u ∈ N2(v0)\{v2n−1, v1}
and v ∈ N(u)\{v0}. By induction hypothesis, G∗ = G−{v1, v3, . . . , v2n−1}−
v0u has a linear L-coloring σ. Next, we shall extend σ to a linear L-coloring
ϕ of G by setting ϕ(e) = σ(e) for each e ∈ E(G∗), and assigning some
appropriate colors for the remaining edges as follows. We consider two
cases.

Case 1. |Cσ(v0)| < k.
Since 2|C2

σ(v0)| 6 dG∗(v0) = d(v0) − 3 6 ∆(G) − 3 6 2k − 3, we have
|C2

σ(v0)| 6 k − 2.

Subcase 1.1. |Cσ(v2j)| < k for each 2j with j ∈ {1, 2, . . . , n − 1}.
We take

ϕ(v0u) ∈ L(v0u)\Cσ(v0),
ϕ(v0v1) ∈ L(v0v1)\Cσ(v0),
ϕ(v0v2n−1) ∈ L(v0v2n−1)\(C

2
σ(v0) ∪ {ϕ(v0v1)}), and furthermore



The List Linear Arboricity of Planar Graphs 503

ϕ(v2j−1v2j) ∈ L(v2j−1v2j)\Cσ(v2j) and ϕ(v2jv2j+1) ∈ L(v2jv2j+1)\ Cσ(v2j)
for any j ∈ {1, 2, . . . , n − 1}.

To check that ϕ is a linear L-coloring of G, we need to show that there
exists no monochromatic cycle containing at least one edge of E(C)∪{v0u}
in G and |C i

ϕ(x)| = 0 for any vertex x ∈ V (C) ∪ {u} and any i > 3.

First note that if there is a monochromatic cycle C ′ in G, then C ′

does not contain any edges of C since ϕ(v0v2n−1) 6= ϕ(v0v1), ϕ(v2j−1v2j) /∈
Cσ(v2j) and ϕ(v2jv2j+1) /∈ Cσ(v2j) for each j ∈ {1, 2, . . . , n − 1}. Thus C ′

must contain the edges v0u and uv. However, since ϕ(v0u) /∈ Cσ(v0), C ′

cannot be monochromatic.

Now let x ∈ V (C) ∪ {u} and i be an integer at least 3. We show that
|Ci

ϕ(x)| = 0. Since d(u) = 2 and d(v2j−1) = 2 for each j ∈ {1, 2, . . . , n − 1},
the result is trivially true when x ∈ {u, v1, v3, · · · v2n−1}. Since ϕ(v2j−1v2j) /∈
Cσ(v2j) and ϕ(v2jv2j+1) /∈ Cσ(v2j), we have |C i

ϕ(v2j)| = 0 for any j ∈
{1, 2, . . . , n − 1}. The selection of colors for v0u, v0v1 and v0v2n−1 ensure
that |C i

ϕ(v0)| = 0.

Subcase 1.2. |Cσ(v2j)| > k for some 2j with j ∈ {1, 2, . . . , n − 1}.

We take

ϕ(v0u) ∈ L(v0u)\(C2
σ(v0) ∪ {σ(uv)}),

ϕ(v0v1) ∈ L(v0v1)\(C
2
σ(v0) ∪ {ϕ(v0u)}),

ϕ(v0v2n−1) ∈ L(v0v2n−1)\ Cσ(v0).

For j ∈ {1, 2, · · · , n − 1}, if |Cσ(v2j)| < k, we take

ϕ(v2j−1v2j) ∈ L(v2j−1v2j)\ Cσ(v2j) and ϕ(v2jv2j+1) ∈ L(v2jv2j+1)\ Cσ(v2j);
otherwise,

ϕ(v2j−1v2j) ∈ L(v2j−1v2j)\(C
2
σ(v2j) ∪ {ϕ(v2j−2v2j−1)}) and

ϕ(v2jv2j+1) ∈ L(v2jv2j+1)\(C
2
σ(v2j) ∪ {ϕ(v2j−1v2j)}).

Note that |C2
σ(v2j)| 6 k−2 since k+|C2

σ(v2j)| 6 |C1
σ(v2j)|+2|C2

σ(v2j)| =
d(v2j) − 2 6 2k − 2.

We can check that |C i
ϕ(x)| = 0 for any vertex x ∈ V (C) ∪ {u} and any

i > 3 by a similar argument as in Subcase 1.1. Now, suppose that there
is a monochromatic cycle C ′ in G. Clearly, C ′ cannot contain the edge
v0u since ϕ(v0u) 6= σ(uv). Thus C ′ must contain the edges of C. Since
there exist some 2j such that ϕ(v2j−1v2j) 6= ϕ(v2j−2v2j−1), C ′ 6= C. Then
C ′ must contain the path v2lv2l+1v2l+2 · · · v2r−1v2r of C since ϕ(v2l−1v2l) 6=
ϕ(v2l−2v2l−1) and ϕ(v0v2n−1) /∈ Cσ(v0), where 2 6 2l < 2r 6 2n − 2 and
min{|Cσ(v2l)|, |Cσ(v2r)|} > k. But ϕ(v2rv2r−1) 6= ϕ(v2r−1v2r−2) leads to the
contradiction that C ′ is monochromatic. Thus ϕ is a linear L-coloring of G.
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Case 2. |Cσ(v0)| > k.
Since k + |C2

σ(v0)| 6 |C1
σ(v0)| + 2|C2

σ(v0)| = d(v0) − 3 6 2k − 3, we have
|C2

σ(v0)| 6 k − 3.

Subcase 2.1. L(v0v1)\C
2
σ(v0) * L(v0u)\C2

σ(v0).
We take ϕ(v0v1) ∈ L(v0v1)\(C

2
σ(v0) ∪ L(v0u)). Furthermore, for any j =

{1, 2, . . . , n − 1}, we take
ϕ(v2j−1v2j)∈L(v2j−1v2j)\Cσ(v2j) and ϕ(v2jv2j+1)∈L(v2jv2j+1)\Cσ(v2j)

if |Cσ(v2j)| < k; otherwise,
ϕ(v2j−1v2j) ∈ L(v2j−1v2j)\(C

2
σ(v2j)∪ {ϕ(v2j−2v2j−1)}) and

ϕ(v2jv2j+1) ∈ L(v2jv2j+1)\(C
2
σ(v2j) ∪ {ϕ(v2j−1v2j)}), and finally

ϕ(v0v2n−1) ∈ L(v0v2n−1)\(C
2
σ(v0) ∪ {ϕ(v0v1), ϕ(v2n−1v2n−2)}) and

ϕ(v0u) ∈ L(v0u)\(C2
σ(v0) ∪ {ϕ(v0v2n−1), σ(uv)}).

Subcase 2.2. L(v0v1)\C
2
σ(v0) ⊆ L(v0u)\C2

σ(v0).
Since |C2

σ(v0)| 6 k − 3, we have |L(v0u)\C2
σ(v0)| > |L(v0v1)\C

2
σ(v0)| > 3.

We take ϕ(v0v1) = σ(uv) if σ(uv) ∈ L(v0v1)\C
2
σ(v0), and ϕ(v0v1) ∈

L(v0v1)\C
2
σ(v0), otherwise. For j ∈ {1, 2, . . . , n − 1}, we assign a color

v2j−1v2j and v2jv2j+1 by the way as described in Subcase 2.1.
And then ϕ(v0v2n−1) ∈ L(v0v2n−1)\(C

2
σ(v0)∪{ϕ(v2n−1v2n−2), ϕ(v0v1)}).

If σ(uv) ∈ L(v0u)\C2
σ(v0), but σ(uv) /∈ L(v0v1)\C

2
σ(v0), then |L(v0u)\C2

σ(v0)|
> 4. So, we take

ϕ(v0u) ∈ L(v0u)\(C2
σ(v0) ∪ {ϕ(v0v2n−1), ϕ(v0v1), σ(uv)}); otherwise,

ϕ(v0u) ∈ L(v0u)\(C2
σ(v0) ∪ {ϕ(v0v2n−1), ϕ(v0v1)}).

It is easy to check that ϕ is a linear L-coloring of G both in Subcase 2.1 and
Subcase 2.2 by a similar argument as in Subcase 1.2. So we complete the
proof of (1).

By using Lemma 2.2, one can similarly prove (2), (3), and (4).

For a plane graph G, F (G) denotes the set of faces of G. The degree of a
face f , denote by d(f), is the number of edges incident with it, where each
cut edge is counted twice. A k-face is a face of degree k.

Theorem 2.4. Let G be a planar graph with maximum degree ∆ > 7 and

without i-cycle for some i ∈ {4, 5}. Then la(G) = lla(G) = d∆(G)
2 e.

Proof. We prove the theorem by contradiction. Let G = (V,E) be a
counterexample with the minimum size to the theorem, and be embedded
in the plane. Set k = d∆(G)

2 e. Then k > 4 since ∆ > 7. By a similar
argument as in proof of Theorem 2.3, we can obtain the following claims.
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Claim 1. For any edge xy ∈ E(G), w(xy) > 2k + 2.

Claim 2. G has no even cycle v0v1 · · · v2n−1v0 such that d(v1) = d(v3) =
· · · = d(v2n−1) = 2 and max

06i<n
|N2(v2i)| > 3.

Let G′ be the subgraph induced by edges incident with 2-vertices. Since G
does not contain two adjacent 2-vertices by Claim 1, G′ does not contain
any odd cycle. So it follows from Claim 2 that any component of G′ is either
an even cycle or a tree. So it is easy to find a matching M in G saturating
all 2-vertices. Thus if xy ∈ M and d(x) = 2, y is called a 2-master of x.
Note that every 2-vertex has a 2-master.

We define a weight function ch on V (G) ∪ F (G) by letting ch(v) =
2d(v) − 6 for each v ∈ V (G) and ch(f) = d(f) − 6 for each f ∈ F (G).
Applying Euler’s formula |V (G)| − |E(G)| + |F (G)| = 2, we have

∑

x∈V (G)∪F (G)

ch(x) =
∑

v∈V (G)

(2d(v) − 6) +
∑

f∈F (G)

(d(f) − 6) = −12.

In the following, we will reassign a new weight ch′(x) to each x ∈ V (G) ∪
F (G) according to some discharging rules. Since we discharge weight from
one element to another, the total weight is kept fixed during the discharging.
Thus

∑

x∈V (G)∪F (G)

ch′(x) =
∑

x∈V (G)∪F (G)

ch(x) = −12.

We shall show that ch′(x) > 0 for each x ∈ V (G) ∪ F (G), a contradiction,
completing the proof.

If G contains no 4-cycles, then we give the following discharging rules.

R1-1. Each 2-vertex receives 2 from its 2-master.

R1-2. Each 3-face f receives 3
2 from each of its incident 5+-vertex.

R1-3. Each 5-face f receives 1
3 from each of its incident 5+-vertex.

We can obtain that ch′(x) > 0 for each x ∈ V (G)∪F (G) by using the same
argument in [11]. This complete the proof of the case that G contains no
4-cycles.

Now assume that G contains no 5-cycles. The discharging rules are
defined as follows.

R2-1. Each 2-vertex receives 2 from its 2-master.
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R2-2. For a 3-face f and its incident vertex v, f receives 1
2 from v if

d(v) = 4, 1 if d(v) = 5, 5
4 if d(v) = 6 and 3

2 if d(v) > 7.

R2-3. For a 4-face f and its incident vertex v, f receives 1
2 from v if

4 6 d(v) 6 6, 1 if d(v) > 7.

By the same argument in [11], ch′(x) > 0 for each x ∈ V (G)∪F (G). Hence,
the proof was done for the case that G contains no 5-cycles.

3. Planar Graphs with ∆ > 9

Lemma 3.1 ([5], Lemma 1). Let G be a planar graph with δ(G) > 3. Then

there is either an edge e ∈ E(G) with w(e) 6 11 or a 3-alternating 4-cycle.

Theorem 3.2. Let G be a planar graph with ∆(G) > 9. Then d∆(G)
2 e 6

la(G) 6 lla(G) 6 d∆(G)+1
2 e.

Proof. We prove the theorem by proving somewhat a stronger statement
that any planar graph G is linear k-list colorable for k = max{5, d∆(G)+1

2 e}.
We shall prove it by induction on |E(G)|. Let L be a list assignment

of G with |L(e)| = k for any e ∈ E(G). Clearly, the result is true when
|E(G)| 6 5. Next we assume |E(G)| > 6.

Suppose that G has an edge xy such that w(xy) 6 2k + 1. Then by
induction hypothesis, G − xy has a linear L-coloring ϕ. Let Cϕ = C2

ϕ(x) ∪
C2

ϕ(y)∪ (C1
ϕ(x)∩C1

ϕ(y)). Since 2|Cϕ| 6 dG−xy(x)+dG−xy(y) = w(xy)−2 6

2k − 1, |Cϕ| < k. We can extend ϕ to a linear L-coloring of G by setting
ϕ(xy) ∈ L(xy)\Cϕ.

Hence, we assume that w(xy) > 2k + 1 for any edge xy ∈ E(G) as

follows. Since k = max{5, d∆(G)+1
2 e}, we have δ(G) > 3 and 2k + 1 > 11.

Thus for any edge xy ∈ E(G), w(xy) > 11. By Lemma 3.1, there is a 4-cycle
v1v2v3v4v1 of G such that d(v1) = d(v3) = 3. Let {u} = N(v1)\{v2, v4} and
{w} = N(v3)\{v2, v4}. Note that u and w might be the same vertex. By
induction hypothesis, G∗ = G−{v1, v3} has a linear L-coloring σ. Next, we
shall extend σ to a linear L-coloring ϕ of G. To do this, set ϕ(e) = σ(e) for
each e ∈ E(G∗), and we consider three cases.

Case 1. max{|Cσ(v2)|, |Cσ(v4)|} < k.
Since 2|C2

σ(v2)| 6 dG∗(v2) = d(v2) − 2 6 ∆(G) − 2 6 2k − 3, we have
|C2

σ(v2)| 6 k − 2, and similarly |C2
σ(v4)| 6 k − 2. We take
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ϕ(v1v2) ∈ L(v1v2)\Cσ(v2),

ϕ(v3v4) ∈ L(v3v4)\Cσ(v4),

ϕ(v2v3) ∈ L(v2v3)\(C
2
σ(v2) ∪ {ϕ(v3v4)}) and

ϕ(v1v4) ∈ L(v1v4) \(C2
σ(v4) ∪ {ϕ(v1v2)}).

Subcase 1.1. u 6= w.

If |Cσ(w)| > k then k + |C2
σ(w)| 6 |C1

σ(w)| + 2|C2
σ(w)| = d(w) − 1 6 2k − 2,

and so |C2
σ(w)| 6 k − 2. Then we assign v3w a color

ϕ(v3w) ∈ L(v3w)\(C2
σ(w) ∪ {ϕ(v2v3)}) if |Cσ(w)| > k, and

ϕ(v3w) ∈ L(v3w)\Cσ(w), otherwise. Finally,

ϕ(v1u) ∈ L(v1u)\(C2
σ(u) ∪ {ϕ(v1v4)}) if |Cσ(u)| > k, and

ϕ(v1u) ∈ L(v1u)\Cσ(u), otherwise.

To see that ϕ is a linear L-coloring of G, we shall check that |C i
ϕ(x)| = 0

for any vertex x ∈ {v1, v2, v3, v4, u, w} and any i > 3, and there exists
no monochromatic cycle containing at least one edge of {v1v2, v2v3, v3v4,
v4v1, v1u, v3w}.

Since d(v1) = d(v3) = 3, ϕ(v1v4) 6= ϕ(v1v2) and ϕ(v2v3) 6= ϕ(v3v4),
|Ci

ϕ(x)| = 0 for x ∈ {v1, v3} and any i > 3. |C i
ϕ(v2)| = 0 for any i > 3 since

ϕ(v1v2) /∈ Cσ(v2) and ϕ(v2v3) /∈ C2
σ(v2). Similarly, |C i

ϕ(v4)| = 0 for any
i > 3. Since ϕ(v1u) /∈ C2

σ(u) and ϕ(v3w) /∈ C2
σ(w), |C i

ϕ(u)| = |C i
ϕ(w)| = 0

for any i > 3.

By contradiction, suppose C is a monochromatic cycle in G. Since
ϕ(v4v1) 6= ϕ(v1v2) and ϕ(v4v1) 6= ϕ(v1u) or ϕ(v1u) /∈ Cσ(u), C cannot
contain the edge v4v1. Similarly, C cannot contain the edge v2v3. Thus C
must contain the path uv1v2 or the path wv3v4. However, since ϕ(v1v2) /∈
Cσ(v2) and ϕ(v3v4) /∈ Cσ(v4), C cannot be monochromatic.

Subcase 1.2. u = w.

Since 2|C2
σ(u)| 6 d(u) − 2 6 2k − 3, we have |C2

σ(u)| 6 k − 2.

Assign v3u a color ϕ(v3u) ∈ L(v3u)\(C2
σ(u) ∪ {ϕ(v2v3)}). A choice for

a color for v1u is somewhat complicated.

If ϕ(v3u) = ϕ(v3v4) = ϕ(v1v4) then ϕ(v1u) ∈ L(v1u)\(C2
σ(u)∪{ϕ(v3u)}).

If it is not, ϕ(v1u) ∈ L(v1u)\Cσ(u) when |Cσ(u)| < k. For the case
|Cσ(u)| > k, we have k + |C2

σ(u)| 6 |C1
σ(u)| + 2|C2

σ(u)| = d(u) − 2 6 2k − 3,
and thus |C2

σ(u)| 6 k − 3. Then assign a color ϕ(v1u) ∈ L(v1u)\(C2
σ(u) ∪

{ϕ(v1v4), ϕ(v3u)}) for v1u.

To see ϕ is a linear L-coloring of G, we verify that |C i
ϕ(x)| = 0 for any

vertex x ∈ {v1, v2, v3, v4, u} and any i > 3, and and show that there exists no
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monochromatic cycle containing at least one edge of {v1v2, v2v3, v3v4, v4v1,
v1u, v3u}. We can check that |C i

ϕ(x)| = 0 for any vertex x ∈ {v1, v2, v3, v4}
and any i > 3 by a similar argument as Subcase 1.1. The selection of colors
for v1u and v3u ensure that |C i

ϕ(u)| = 0 for any i > 3. By contradiction, sup-
pose G contains a monochromatic cycle C. One can see that C cannot con-
tain the edge v2v3 since ϕ(v2v3) 6= ϕ(v3u) and ϕ(v2v3) 6= ϕ(v3v4). Clearly,
C 6= v1uv3v4v1 by the choice of the color of v1u. Since ϕ(v1v2) /∈ Cσ(v2) and
ϕ(v3v4) /∈ Cσ(v4), C cannot contain the edges v1v2 and v3v4. Thus C must
contain the path v4v1u, but ϕ(v1u) /∈ Cσ(u) or ϕ(v1u) 6= ϕ(v1v4), C is not
monochromatic.

Case 2. |Cσ(vi)| < k and |Cσ(vj)| > k for {i, j} = {2, 4}.
By the symmetry of the roles of v2 and v4, assume |Cσ(v2)| < k and
|Cσ(v4)| > k. By the similar argument as in proof of Case 1, we have
|C2

σ(v2)| 6 k − 2 and |C2
σ(v4)| 6 k − 3. We take

ϕ(v1v2) ∈ L(v1v2)\Cσ(v2),

ϕ(v2v3) ∈ L(v2v3)\(C
2
σ(v2) ∪ {ϕ(v1v2)}),

ϕ(v3w) ∈ L(v3w)\Cσ(w) if |Cσ(w)|< k, and ϕ(v3w) ∈ L(v3w)\(C2
σ(w)∪

{ϕ(v2v3)}), otherwise. Then we successively take

ϕ(v3v4) ∈ L(v3v4)\(C
2
σ(v4) ∪ {ϕ(v2v3), ϕ(v3w)}) and

ϕ(v1v4) ∈ L(v1v4)\(C
2
σ(v4) ∪ {ϕ(v3v4), ϕ(v1v2)}).

Finally we assign a color for v1u as follows. If |Cσ(u)| < k, ϕ(v1u) ∈
L(v1u)\Cσ(u). If |Cσ(u)| > k, ϕ(v1u) ∈ L(v1u)\ (C2

σ(u) ∪ {ϕ(v1v4)}) if
u 6= w; ϕ(v1u) ∈ L(v1u)\(C2

σ(u) ∪ {ϕ(v1v4), ϕ(v3w)}), otherwise.

It is easy to check that ϕ is a linear L-coloring of G by a similar argument
as in proof of Case 1.

Case 3. |Cσ(vi)| > k for each i ∈ {2, 4}.
Then |C2

σ(v2)| 6 k−3 and |C2
σ(v4)| 6 k−3. We take ϕ(v1u) ∈ L(v1u)\Cσ(u)

if |Cσ(u)| < k, and ϕ(v3w) ∈ L(v3w)\Cσ(w) if |Cσ(w)| < k. Next we
suppose that |Cσ(u)| > k and |Cσ(w)| > k.

If L(v1v2)\C
2
σ(v2) * C1

σ(v2) ∩ C1
σ(v4), we take

ϕ(v1v2) ∈ L(v1v2)\(C
2
σ(v2) ∪ (C1

σ(v2) ∩ C1
σ(v4))), and then

ϕ(v1u) ∈ L(v1u)\(C2
σ(u) ∪ {ϕ(v1v2)}),

ϕ(v3w) ∈ L(v3w)\(C2
σ(w) ∪ {ϕ(v1u)}),

ϕ(v2v3) ∈ L(v2v3)\(C
2
σ(v2) ∪ {ϕ(v1v2), ϕ(v3w)}),

ϕ(v3v4) ∈ L(v3v4)\(C
2
σ(v4) ∪ {ϕ(v2v3), ϕ(v3w)}),

ϕ(v1v4) ∈ L(v1v4)\(C
2
σ(v4) ∪ {ϕ(v3v4), ϕ(v1u)}).
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By the similar argument as in the proof of Case 1, one can show that ϕ is a
linear L-coloring of G.

By symmetry, we consider that L(v1v2)\C
2
σ(v2), L(v2v3)\C

2
σ(v2), L(v3v4)\

C2
σ(v4) and L(v4v1)\C

2
σ(v4) are all contained in C1

σ(v2) ∩ C1
σ(v4).

We claim that (L(v1v2)\C
2
σ(v2)) ∩ (L(v3v4)\C

2
σ(v4)) = ∅. Suppose it is

false, and |C2
σ(v2)| > |C2

σ(v4)|, without loss of generality. Therefore,

2k − 2|C2
σ(v2)| 6 k − |C2

σ(v2)| + k − |C2
σ(v4)|

6 |L(v1v2)\C
2
σ(v2)| + |L(v3v4)\C

2
σ(v4)|

6 |C1
σ(v2) ∩ C1

σ(v4)|

6 |C1
σ(v2)|

6 d(v2) − 2|C2
σ(v2)|

6 2k − 1 − 2|C2
σ(v2)|.

It follows that 2k 6 2k − 1, a contradiction.

Thus we take

ϕ(v1v2) = ϕ(v3v4) ∈ (L(v1v2)\C
2
σ(v2)) ∩ (L(v3v4)\C

2
σ(v4)) and

ϕ(v1u) ∈ L(v1u)\(C2
σ(u) ∪ {ϕ(v1v2)}). And then

ϕ(v3w) ∈ L(v3w)\ (C2
σ(w) ∪ {ϕ(v3v4)}) if u 6= w;

ϕ(v3w) ∈ L(v3w)\ (C2
σ(w) ∪ {ϕ(v3v4), ϕ(v1u)}), otherwise. Finally,

ϕ(v2v3) ∈ L(v2v3)\(C
2
σ(v2) ∪ {ϕ(v3v4), ϕ(v3w)}) and

ϕ(v1v4) ∈ L(v1v4)\(C
2
σ(v4) ∪ {ϕ(v3v4), ϕ(v1u)}).

One can verify that ϕ is a linear L-coloring of G.

The proof is complete.
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