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Abstract

A graph property is any isomorphism closed class of simple graphs.
For a simple finite graph H , let → H denote the class of all simple
countable graphs that admit homomorphisms to H , such classes of
graphs are called hom-properties. Given a graph property P , a graph
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G ∈ P is universal in P if each member of P is isomorphic to an
induced subgraph of G. In particular, we consider universal graphs
in → H and we give a new proof of the existence of a universal graph
in → H , for any finite graph H .

Keywords: universal graph, weakly universal graph, hom-property,
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1. Introduction

Let us denote by I the class of all finite simple graphs and by I(ℵ0) the
class of all simple countable graphs. A graph property P is any nonempty
isomorphism-closed subclass of I(ℵ0). We also say that a graph G has the
property P if G ∈ P. A graph property P is of finite character if a graph G
has property P if and only if each finite vertex-induced subgraph of G has
property P. We consider graph properties of finite character only. It is easy
to see that if P is of finite character and a graph has property P then so
does every induced subgraph.

A property P is said to be hereditary if G ∈ P and H ⊆ G implies
H ∈ P, that is P is closed under taking subgraphs. A property P is said to
be induced-hereditary if G ∈ P andH ≤ G implies H ∈ P, that is P is closed
under taking induced subgraphs. One can easily see that every hereditary
property is induced-hereditary as well. On the other hand, the previous
definitions yields that properties of finite character are induced-hereditary.
However, not all induced-hereditary properties are of finite character; for
example the graph property Q of not containing a vertex of infinite degree
is induced-hereditary but not of finite character. A property P is called
additive if it is closed under disjoint unions of graphs, which means that
a graph has property P providing all its connected components have this
property. The interested reader can find more details about hereditary and
induced-hereditary properties in [4].

Given a graph property P, a graph U ∈ P is said to be universal in P
if each member of P is isomorphic to an induced subgraph of U and every
induced subgraph of U is a member of P. R. Rado in [15] first remarked
that among the countable graphs there exists a universal one, often called
“the Rado graph” or “the infinite random graph” R (for details see [5]).
A graph W ∈ P is called weakly universal in P if each member of P is
isomorphic to a subgraph of W . In practice the two notions of universality
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behave similarly. A universal graph is evidently weakly universal, and very
often the proofs of the nonexistence of a universal graph can be made by
excluding weakly universal graphs (see [6]). More information concerning
universal graphs and their features can be found in [11].

For a finite graph H, the existence of a weakly universal graph W (H)
in the class → H was in fact shown in [13]. In [1, 2] A. Bonato gave an
explicit construction of the universal (pseudo-homogeneous) graph M(H)
in → H as a deterministic limit of a chain of finite H-colourable graphs. In
this paper we provide a new and explicit representation of a universal graph
U(H) in the class → H. The graph is presented by codes associated to its
vertices. We shall show that this graph is isomorphic to M(H).

2. Hom-properties

All graphs considered in this paper are simple (without multiple edges or
loops), finite or countable and we use the standard notation of [8].

A homomorphism of a graph G to a graph H is an edge-preserving
mapping f : V (G) → V (H) satisfying e = uv ∈ E(G) implies f(e) =
f(u)f(v) ∈ E(H). In this case we say that G is homomorphic to H and we
write G→ H.

A core of a finite graph G, denoted by C(G), is any subgraph G′ of G
such thatG→ G′ whileG fails to be homomorphic to any proper subgraph of
G′. A finite graph G is called a core if G is a core of itself, so that G ∼= C(G).
A graph G homomorphic to a given graph H is also said to be H-colourable.
It can be easily seen that up to isomorphism every finite graph has a unique
core (see [9]). A hom-property is any class → H = {G ∈ I(ℵ0)|G→ H}. The
properties → H, H ∈ I, are called hom-properties or colour classes (see [14]).
Graph homomorphisms and their structure were extensively investigated
(see [9, 12, 13, 17]), more references can be found in the survey [14] and in
the book [10].

Let us mention some known results concerning hom-properties. Hom-
properties can be given in various ways, for example the property → C6 is
the same as the property → C38 and/or → K2. Let us say that a graph G

generates the hom-property → H whenever → H = → G.

A standard way to describe hom-properties is by cores (see [13]):

Proposition 1. For any finite graph H and its core C(H) it holds →
H =→ (C(H)).
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The next result follows directly from the definitions:

Proposition 2. For any graph H ∈ I, the hom-property → H is hereditary

and additive.

For any graph G ∈ I with the vertex set V (G) = {v1, v2, . . . , vn}, we define
a multiplication G::(W1;W2; . . . ;Wn) of G in the following way:

1. V (G::) = W1 ∪W2 ∪ · · · ∪Wn,

2. for each 1 ≤ i ≤ n : |Wi| ≥ 1,

3. for any pair 1 ≤ i < j ≤ n: Wi ∩Wj = ∅,

4. for any 1 ≤ i ≤ j ≤ n, u ∈ Wi, v ∈ Wj: {u, v} ∈ E(G::) if and only if
{vivj} ∈ E(G).

The sets W1,W2, . . . ,Wn are called the multivertices corresponding to ver-
tices v1, v2, . . . , vn, respectively. The condition 4 immediately yields that
W1,W2, . . . ,Wn are independent sets and any two vertices belonging to the
same multivertex have identical neighbourhoods. Furthermore, it is not
difficult to see that G:: is homomorphic to G. In order to emphasize the
structure of G:: we also use the notation G::(W1,W2, . . . ,Wn).

Let us recall some important properties of multiplications presented in
[12, 13]:

Lemma 1. Let G:: be a multiplication of a graph G. If w,w∗ are two distinct

vertices belonging to the same multivertex W of G::, then there exists a

homomorphism ψ : G −→ G−w∗.

The multiplication operation strongly copies the structure of the original
graph H. This can be expressed in the language of uniquely H-colourable
graphs. This concept was introduced in [17]. We say that a graph G is
uniquely H-colourable if there is a surjective homomorphism ϕ from G to
H, such that any other homomorphism from G to H is the composition ϕ◦α

of ϕ and an automorphism α of H.

According to Lemma 1 one can rather easily see the following fact.

Theorem 1. Let H be a core. Then any multiplication H ::(W1,W2, . . . ,Wn)
of H is uniquely H-colourable.
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3. Main Results

By the definition of → H, it is easy to see that for a given finite core H, the
graph W (H) = H ::(W1,W2, . . . ,Wn), with |Wi| = ℵ0 for i = 1, 2, . . . , n is a
weakly universal graph in the class → H.

In this section we shall show, how to derive a universal graph U(H)
in → H from the graph W (H). As was already pointed out, its existence
was proved by A. Bonato in [2]. Some of its properties were investigated
in [1].

Consider a graph H of order d. We are going to construct a graph
U(H) – the candidate for a universal graph for the property → H. Let η
be a bijection η : N

d → N. Let us denote the vertices of H by v1, v2, . . . , vd.
For each i = 1, 2, . . . , d take a countable set of independent vertices Wi =
{v1

i , v
2
i , . . . , v

k
i , . . . } and for a fixed i ∈ {1, 2, . . . , d} and for each k ∈ N, let

us assign to vk
i a d + 1-tuple (u1, u2, . . . , ud, ud+1) such that k = ud+1 =

η(u1, u2, . . . , ud) (if there is no danger of confusion we shall write and use
vk
i = (u1, u2, . . . , ud, ud+1)). One can immediately see that in such a way

the vertices in Wi obtain different ordered (d+ 1)-tuples, while the codes of
vk
i and vk

j are the same.

Now we are going to describe the structure of the universal graph
U = U(H) in → H. Put V (U) = W1 ∪ W2 ∪ · · · ∪ Wd. If u = vr

i =
(u1, u2, . . . , ud, ud+1) ∈ Wi and u′ = vs

j = (u′1, u
′
2, . . . , u

′
d, u

′
d+1

) ∈ Wj are
vertices of U , then uu′ is an edge of U if and only if i < j and vivj ∈ E(H)
and 2r occurs in the unique base 2 expansion of u′i (the i-th element of the
code of the vertex u′ ∈Wj). Note that for each i the set Wi is independent.

Now we are going to prove the main result. The proof of the theorem
follows the idea of the proof of Rado in [15] (see also [3]).

Theorem 2. Let H be a graph. Then U(H) is an universal graph for the

property → H.

Proof. Let us fix a positive integer k ∈ {2, 3, . . . , d} and for j = {1, 2, . . . ,
k − 1} let Aj , Bj ⊆ Wj be arbitrary finite disjoint sets. We shall show that
there exists a vertex w ∈Wk such that w is joined to all vertices from Aj ’s
but it is joined to no vertex from Bj’s. This property provides a variation
of the property called “e.c. – existentially closed” (see e.g. [3]). We referred
it briefly EC*. For each j = 1, 2, . . . , k − 1 let us put zj = max{ud+1 : u =
(u1, u2, . . . , ud+1) ∈ Aj ∪Bj}. Now define
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aj =











2zj+1 +
∑

u∈Aj
2ud+1 for all j ∈ {1, . . . , k − 1},

0 for k ≤ j ≤ d,

η(a1, a2, . . . , ad) for j = d+ 1.

We claim that for each j ∈ {1, . . . , k − 1} the vertex w ∈Wk with the code
(a1, a2, . . . , ad+1) is joined to all vertices from Aj but with no vertex from
Bj providing that vjvk ∈ E(H). Indeed, by the definition of U = U(H) and
the construction of the code of w, the vertex w is joined to each vertex of
Aj . To see, that w is joined to no vertex of Bj , note that for all vertices

u′ = (u′1, u
′
2, . . . , u

′
d+1

) of Bj 2u′
d+1 is not in the base 2 expansion of aj .

It remains to prove that for any countable graph G belonging to the
class → H there exists a graph G′, induced subgraph of U , isomorphic to
the graph G.

Since the property → H is additive and hereditary we can represent
a countable graph G in → H as a limit of finite graphs from → H (see
[16, 3]). Thus it is sufficient to provide the embeddings of all finite graphs
to U = U(H). Let us remark here that the property → H is of finite
character, hence the compactness can also be used (see [7]). In order to
prove that if G is a fixed finite graph belonging to → H then there exists a
graph G′, the induced subgraph of U , isomorphic to G we follow the idea of
the proof of Theorem 6.7 of [3] and we omit some technical details.

It is obvious that K1 is and induced subgraph of U . Now let G be a finite
graph belonging to → H. Then there exists a homomorphism ϕ : G → H.
For an arbitrary vertex v ∈ V (G) the graph S = G − v has order smaller
than G and therefore, according to the induction hypothesis, there exists
an induced subgraph S ′ of the graph U that is isomorphic to S. Moreover,
it is not difficult to see, that there exists such an embedding that a vertex
u ∈ V (G) with ϕ(u) = j is mapped to a vertex of Wj ⊆ V (U).

According to the labeling of the vertices of H (see the description of
the construction above), let k be the largest index such that vi ∈ V (H)
(i = 1, 2, . . . , d) is an image of some vertex of G, i.e., k = max{i : ϕ(x) =
vi, x ∈ V (G)}. Let us choose a vertex u∗ ∈ V (G) such that ϕ(u) = k (note
that the set of vertices of G with ϕ(u) = k is independent in G). According
to the previous, using EC* property and taking an appropriate vertex of
Wk ⊆ V (U) we can now extend the embedding of the graph S = G− u∗ to
an embedding of the whole graph G of U and the proof is complete.
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A. Bonato in [1] investigated universal pseudo-homogeneous graphs, that
were defined in the following way:

Definition 1. Let C be a class of countable graphs closed under isomor-
phisms. A countable graph M ∈ C is called universal pseudo-homogeneous

if there is a subclass C ′ of finite graphs from C such that:

(PH1) The graph M embeds each graph in C ′ as an induced subgraph.

(PH2) Each finite S ≤M is contained in T ≤M with T ∈ C ′.

(PH3) For each G ≤ M with G ∈ C ′ and for each graph H ∈ C ′ so that
G ≤ H, there is an H ′ ≤ M and an isomorphism f : H → H ′ such
that f restricted to G is and identity mapping.

A. Bonato in [1, 2] proved that for each finite core graph H there is a
countable universal pseudo-homogeneous H-colourable graph M(H), that
is unique up to isomorphism. If we consider the class of graphs that are
H-colourable and as the class C ′ we take the class of finite uniquely H-
colourable graphs, then we immediately have the following result.

Theorem 3. Let H be a finite core. Then U(H) is the unique universal

pseudo-homogeneous graph for the property → H with respect to the family

of finite uniquely H-colourable graphs.

Proof. In order to prove the assertion of the theorem we have to verify
properties (PH1)–(PH3) from Definition 1. We remind that in our case the
set C′ is the class of uniquely H-colourable graphs.

Since U(H) is universal in → H, the property (PH1) is evidently sat-
isfied. As all the induced subgraphs of U(H) belongs to → H, the con-
dition (PH2) is evidently satisfied as well. Now we focus on the condi-
tion (PH3). Firstly we fix the graph G. Let G ≤ X, X ∈ → H and let
V (X) \ V (G) = {v1

1 , . . . , v
i1
1
, . . . , v1

k, . . . , v
ik
k }. Since X and G are uniquely

H-colourable, we can find an extension X ′ ≤ U(H) of X. Observe that
there exists a vertex w1

1 ∈ U(H) that is an image of v1
1 . Thus by induction

hypothesis we obtain that such images exist for all vertices in V (X) \ V (G)
(we can apply similar arguments as in the proof of Theorem 2, but using also
the “or” statement in the construction of U(H)). Indeed, by the consecu-
tive selection of vertices with a suitable structure of neighbours (because of
selection of the vertex w with respect to the structure of Aj ’s and Bj’s) we
can find the desired graph X ′.
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Corollary 1. Let H be a finite core and let G ∈→ H, then U(H) ∼= U(G).

Proof. Both universal graphs U(H) and U(G) are universal pseudo-
homogeneous graphs for → H and thus they are isomorphic to the uni-
versal pseudo-homogeneous graph M(H), the existence of which have been
proved by A. Bonato in [1].
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