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Abstract

A graph is 1-planar if it can be embedded in the plane so that each
edge is crossed by at most one other edge. We prove that each 1-planar
graph of minimum degree 5 and girth 4 contains

(1) a 5-vertex adjacent to an ≤ 6-vertex,

(2) a 4-cycle whose every vertex has degree at most 9,

(3) a K1,4 with all vertices having degree at most 11.
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1. Introduction

Throughout this paper, we consider connected graphs without loops or mul-
tiple edges. We use the standard graph terminology by [6]. By a k-path (a
k-cycle) we mean a path Pk (a cycle Ck) on k vertices. A k-star Sk is the
complete bipartite graph K1,k. A vertex of degree k is called a k-vertex,
a vertex of degree ≥ k (≤ k) an ≥ k-vertex (an ≤ k-vertex, respectively).
For a plane graph G, the size of a face α ∈ G is the length of the minimal
boundary walk of α; a face of size k (or ≥ k) is called a k-face (an ≥ k-face,
respectively).

∗This work was supported by Science and Technology Assistance Agency under the
contract No. APVV-0007-07, and by Slovak VEGA Grant 1/3004/06.
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A graph is 1-planar if it can be embedded in the plane so that each edge
is crossed by at most one other edge. 1-planar graphs were first considered
by Ringel [11] in connection with the simultaneous vertex/face colouring of
plane graphs (note that the graph of adjacency/incidence of vertices and
faces of a plane graph is 1-planar); in the mentioned paper, he proved that
each 1-planar graph is 7-colourable (in [5], a linear time algorithm for 7-
colouring of 1-planar graphs is presented). Borodin [2, 3] proved that each
1-planar graph is 6-colourable (and the bound 6 is best possible), and in
[4], it was proved that each 1-planar graph is acyclically 20-colourable. The
global structural aspects of 1-planar graphs were studied in [12] and [10].
The local structure of 1-planar graphs was studied in detail in [7].

But, comparing to the family of all plane graphs, the family of 1-planar
graphs is still only little explored. In particular, the complete information on
dependence of girth of 1-planar graphs according to their minimum degree
is not known. From Euler polyhedral formula, one obtains that each planar
graph of minimum degree δ ≥ 3 has the girth at most 5, and if δ ≥ 4, then
the girth is 3. For 1-planar graphs, it was proved in [7] that each 1-planar
graph of minimum degree δ ≥ 5 has girth at most 4 (and there are graphs
that reach this bound) and if δ ≥ 6, then the girth is 3. In addition, R. Soták
(personal communication) found an example of 1-planar graph with δ = 4
and girth 5, and in [7], there is an example of 1-planar graph of minimum
degree 3 and girth 7; we conjecture that the values 5 and 7 are best possible.

The aim of this paper is to explore in deeper details the local properties
of 1-planar graphs of minimum degree 5. Our motivation comes from the
research of structure of plane graphs of minimum degree 5. It is known
that such graphs contain a variety of small configurations having vertices
of small degrees. For example, Borodin [1] proved that each plane graph of
minimum degree 5 contains a triangular face of weight (that is, the sum of
degrees of its vertices) at most 17 (the bound being sharp). Other similar
results may be found in [8] or [9]. It appears that analogical results hold
also for 1-planar graphs with sufficiently high minimum degree. In [7], it was
proved that each 1-planar graph of minimum degree ≥ 6 contains a 3-cycle
with all vertices of degree at most 10 as well as 4-star with all vertices of
degrees at most 23, and if the minimum degree is 7, then it contains also a
6-star with all vertices of degree at most 15. On the other hand, such result
do not apply in general on 1-planar graphs of minimum degree ≥ 5: in [7],
there are examples of 1-planar graphs of minimum degree 5 such that all
their 3-cycles have arbitrarily high degree-sum of vertices.
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In this paper, we show that, under the additional requirement of girth be-
ing 4, 1-planar graphs of minimum degree ≥ 5 also contain certain small
subgraphs with vertices of small degrees. We prove

Theorem 1. Each 1-planar graph of minimum degree 5 and girth 4 contains

a 5-vertex which is adjacent to an ≤ 6-vertex.

Theorem 2. Each 1-planar graph of minimum degree 5 and girth 4 contains

a 4-cycle such that each its vertex has degree at most 9.

Theorem 3. Each 1-planar graph of minimum degree 5 and girth 4 contains

a 4-star such that each its vertex has degree at most 11.

In Theorems 1 and 2, the requirement of girth 4 cannot be avoided: in [7], it
was shown that 4-cycles and 4-stars in 1-planar graphs of minimum degree
5 may reach arbitrarily high degrees. This requirement is also substantial
for the first result, since there is an example of 1-planar graph of minimum
degree 5 such that each its 5-vertex is adjacent only with ≥ 8-vertices (see
Figure 1). An open question is whether each 1-planar graph of minimum
degree 5 and girth 4 contains a pair of adjacent 5-vertices.

As any 1-planar graph G with girth at least 5 has δ(G) ≤ 4, we obtain
that G is 5-colourable. It is not known whether an analogical result holds
for 1-planar graphs of girth at least 4. The example of infinite 1-planar
graph of minimum degree 4 and girth 6 (constructed from hexagonal tiling
of the plane, see Figure 2) together with the example of Soták concerning
1-planar graph of minimum degree 4 and girth 5 suggest to conjecture that
each 1-planar graph with δ ≥ 4 has girth at most 5; in this case, any 1-planar
graph of girth at least 6 would be of minimum degree at most 3, hence, it
would be 4-colourable.

2. Proofs

2.1. Basic terms

The following definitions are taken from [7].
Let G be a 1-planar graph and let D(G) be its 1-planar diagram (a

drawing of G in which every edge is crossed at most once). Given two
nonadjacent edges xy, uv ∈ E(G), the crossing of xy, uv is the common
point of two arcs

_
xy,

_
uv∈ D(G) (corresponding to edges xy and uv). Denote

by C = C(D(G)) the set of all crossings in D(G) and by E0 the set of all
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non-crossed edges in D(G). The associated plane graph D×(G) of D(G) is
the plane graph such that V (D×(G)) = V (D(G)) ∪ C and E(D×(G)) =
E0 ∪ {xz, yz| xy ∈ E(D(G)) − E0, z ∈ C, z ∈ xy}. Thus, in D×(G), the
crossings of D(G) become new vertices of degree 4; we call these vertices
crossing vertices. The vertices of D×(G) which are also vertices of G are
called true.

Note that a 1-planar graph may have different 1-planar diagrams, which
lead to nonisomorphic associated plane graphs. Among all possible 1-planar
diagrams of a 1-planar graph G, we denote by M(G) such a diagram that
has the minimum number of crossings (it is not necessarily unique), and by
M×(G) its associated plane graph.

All results of this paper are proved in a common way: we proceed by
contradiction, thus, we consider a hypothetical counterexample G which
does not contain the specified graph. Further, on the plane graph M×(G) =
(V ×, E×, F×), the Discharging method is used. We define the charge c :
V × ∪ F× → Z by the assignment c(v) = degG(v) − 6 for all v ∈ V × and
c(α) = 2 degG(α) − 6 for all α ∈ F×. From the Euler polyhedral formula, it
follows that

∑
x∈V ×∪F× c(x) = −12. Next, we define the local redistribution

of charges between the vertices and faces of M×(G) such that the sum of
charges remain the same. This is performed by certain rules which specify
the charge transfers from one element to other elements in specific situations.
After such redistribution, we obtain a new charge c̃ : V × ∪ F× → Q. To
get the contradiction, we prove that for any element x ∈ V × ∪F×, c̃(x) ≥ 0
(hence,

∑
x∈V ×∪F× c̃(x) ≥ 0).

For the purposes of these proofs, we introduce some specialized nota-
tions. Given a d-vertex x ∈ M×(G), by x1, . . . , xd we denote its neighbours
in M×(G) in the clockwise order. By fi, i = 1, . . . , d, we denote the face of
M×(G) which contains the path xixxi+1 (index modulo d) as a part of its
boundary walk. If fi is a 4-face, then x′

i will denote the common neighbour
of xi and xi+1 which is different from x.

2.2. Proof of Theorem 1

The proof proceeds in the way described in Subsection 2.1 under the follow-
ing discharging rules:

Rule 1. Each face f ∈ F× sends c(f)
m(f) to each incident 4- and 5-vertex,

where m(f) is the number of 4- and 5-vertices incident with f . If m(f) = 0,
no charge is transferred.
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Rule 2. Each ≥ 7-vertex v sends c(v)
degG(v) to each 5-vertex which is incident

with v in G.

Let c(x) be the charge of a vertex x ∈ V × after application of Rules 1 and 2.

Rule 3. Each 5-vertex v with c(v) > 0 sends c(v)
m(v) to each adjacent 4-vertex;

m(v) is the number of 4-vertices adjacent to v (if m(v) = 0, no charge is
transferred).

We will check the final charge of vertices and faces after the charge redis-
tribution. From Rule 1, it follows that c̃(f) ≥ 0 for each face f ∈ F ×.
Similarly, the Rule 2 ensures that c̃(v) ≥ 0 for any ≥ 7-vertex v ∈ V ×.
Since, for a 6-vertex v, c̃(v) = c(v) = 0, it is enough to check the final
charge of 5- and 4-vertices.

Case 1. Let x be a 5-vertex. Then all its neighbours in G are ≥ 7-
vertices, thus, by Rule 2, x receives at least 5 · 1

7 from them. Furthermore,
in M×(G), x is incident with at least two ≥ 4-faces (otherwise it is incident
with at least four consecutive 3-faces, which results in an appearance of a
3-cycle in the neighbourhood of x, a contradiction) and it receives at least
1

2 from each of them. Thus,

c(x) ≥ −1 + 5 · 1

7 + 2 · 1
2 = 5
7 > 0.

Case 2. Let x be a 4-vertex; then, it is a crossing-vertex. Note that
x is incident with at most two 3-faces (otherwise three neighbours of x in
M×(G) form a 3-cycle in G, a contradiction).

Case 2.1. If x is incident only with ≥ 4-faces, then, by Rule 2, c̃(x) ≥
−2 + 4 · 1

2 = 0.

Case 2.2. Let x be incident with exactly one ≥ 4-face, say f4. Note
that at most one of x1, x4 is a 5-vertex. Suppose first that x1 and x4 are
≥ 6-vertices. If at least one of x2, x3 is an ≥ 6-vertex, then c̃(x) ≥ −2 + 1 +
2 · 2

3 > 0; so, suppose that both x2, x3 are 5-vertices. Then these vertices are
incident with at least three ≥ 4-faces (otherwise a 3-cycle appears), thus,
by Rules 1 and 2,

c(x2) ≥ −1 + 5

7 + 3 · 1
2 = 17
14 ,

c(x3) ≥
17

14 . Consequently, by

Rules 1 and 3, c̃(x) ≥ −2 + 1

2 + 2 · 2
3 + 2 ·

17

14

5 = 67
210 > 0.

Now, let one of x1, x4 be a 5-vertex, say x1. Then x3, x4 are ≥ 7-vertices
and c̃(x) ≥ −2 + 1 + 2

3 + 1
2 = 1
6 > 0.
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Case 2.3. Let x be incident with exactly two ≥ 4-faces. Note that
the remaining 3-faces in the neighbourhood of x cannot be adjacent (other-
wise their vertices form a 3-cycle); thus, assume that f4 and f2 are 3-faces.
Moreover, at most two neighbours of x in M×(G) are 5-vertices.

Case 2.3.1. If all vertices x1, . . . , x4 are ≥ 6-vertices, then c̃(x) ≥ −2 +
2 · 1 = 0.

Case 2.3.2. Let exactly one of x1, . . . , x4 be a 5-vertex, say x1. Then
x3, x4 are ≥ 7-vertices, x2 is a ≥ 6-vertex. If f1 is an ≥ 5-face, then c̃(x) ≥
−2 + 1 + 2·5−6

5−1 = 0; hence, assume that f1 is a 4-face.
If x′

1 is a true vertex, then it is an ≥ 7-vertex and c̃(x) ≥ −2+1+1 = 0;
thus, assume that x′

1 is a crossing-vertex. Denote by w and y the remaining
neighbours of x1 (such that the neighbours of x1 in M×(G) in clockwise
ordering are w, y, x′

1, x, x4) and let f ′, f ′′, f ′′′ be faces that contain, as a part
of the boundary, the paths x′

1xy, yxw and wxx4, respectively.
Suppose first that f ′′′ is an ≥ 4-face. If w is a true vertex, then it is ≥ 7-

vertex and c(x1) ≥ −1+1+ 2

3 +5· 1

7 = 29

21 and c̃(x) ≥ −2+1+ 2
3 +

29

21

3 = 8
63 > 0.

Thus, let w be a crossing-vertex. Now, if y is a true vertex, then it is also
an ≥ 7-vertex and m(x1) ≤ 3; we have c(x1) ≥ −1 + 5 · 1

7 + 2 · 2
3 = 22
21 and

subsequently c̃(x) ≥ −2 + 1 + 2

3 +
22

21

3 = 1
63 > 0. Hence, both y and w are

crossing-vertices; but then f ′′ is necessarily an ≥ 4-face. In this case, we

obtain c(x1) ≥ −1+5 · 1

7 +2 · 2
3 + 1
2 = 65
42 and c̃(x) ≥ −2+1+ 2
3 +

65

42

4 = 3
56 > 0.

Now, let f ′′′ be a 3-face. Then w is a crossing-vertex and f ′′ is an
≥ 4-face (otherwise either 3-cycle appears or 1-planarity of G is violated).
If y is a true vertex, then it is an ≥ 7-vertex and we have c(x1) ≥ −1 +

5 · 1

7 + 2 · 2
3 = 22
21 , c̃(x) ≥ −2 + 1 + 2
3 +

22

21

3 = 1
63 > 0; so, suppose that y

is a crossing-vertex. But then f ′ is necessarily an ≥ 4-face and we obtain

c(x1) ≥ −1+5· 17 + 2
3 +2· 1

2 = 29
21 which yields c̃(x) ≥ −2+1+ 2
3 +

29

21

4 = 1
84 > 0.

Case 2.3.3. Let two of x1, . . . , x4 be 5-vertices, say x1 and x2. Then
x3, x4 are ≥ 7-vertices. If f1 is an ≥ 6-face, then c̃(x) ≥ −2 + 1 + 2·6−6

6 = 0.
If f1 is a 5-face, then it is incident with at most two crossing-vertices, which
implies that there exists an ≥ 7-vertex incident with f1 which is adjacent
with x1 or x2; this yields m(f1) ≤ 4 and c̃(x) ≥ −2 + 1 + 2·5−6

4 = 0. So, let
f1 be a 4-face.

If x′

1 is a true vertex, then it is an ≥ 7-vertex; in this case, c(x1) ≥

−1 + 5 · 1

7 + 1
2 + 2
3 = 37
42 ,

c(x2) ≥
37

42 and c̃(x) ≥ −2 + 1 + 2
3 + 2 ·

37

42

4 = 3
28 > 0.
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Hence, assume that x′

1 is a crossing-vertex. Now, consider the charge of the
vertex x1 after application of Rules 1 and 2 (the situation for the vertex x2

is symmetric). Let w, y, f ′, f ′′, f ′′′ be the same elements as defined in the
case 2.3.2.

If f ′′ is a 3-face, then w is a crossing-vertex; subsequently, f ′′ has to be
an ≥ 4-face. Independently of this, if f ′ is a 3-face, then y is not a crossing-
vertex, hence, it is an ≥ 7-vertex. Thus, we consider four possibilities:

(a) f ′′′, f ′ are 3-faces. Then m(x1) = 3 and c(x1) ≥ −1+5 · 1

7 + 1
2 + 2
3 = 37
42 .

(b) f ′′′ is a 3-face, f ′ is an ≥ 4-face. Then also f ′′ is an ≥ 4-face,

m(x1) ≤ 4
and c(x1) ≥ −1 + 5 · 1

7 + 3
2 = 17
14 .

(c) f ′′′ is an ≥ 4-face, f ′ is a 3-face. Then

m(x1) = 3 and c(x1) ≥ −1 + 5 ·
1

7 + 1
2 + 2
3 = 37
42 .

(d) Both f ′′′ and f ′ are ≥ 4-faces. Then

m(x1) ≤ 4 and c(x1) ≥ −1 + 5 ·
1

7 + 2 · 1
2 + 2
3 = 29
21 .

From this we obtain that, in each of these four cases, x1 sends to x by Rule
3 at least 37

126 (the bound being attained in the first and third case). The
same considerations apply for the vertex x2. Hence, in total, x receives at
least 1 + 1

2 + 2 · 37

126 = 263

126 > 2 and c̃(x) > 0.

2.3. Proof of Theorem 2

The proof proceeds in the way described in Subsection 2.1 under the follow-
ing discharging rules (for the purpose of this proof, a big vertex is one of
degree ≥ 10):

Rule 1. Each face f ∈ F× sends c(f)
m(f) to each incident 4- and 5-vertex,

where m(f) is the number of 4- and 5-vertices incident with f . If m(f) = 0,
no charge is transferred.

Rule 2. Each big vertex sends 2

5 to each adjacent vertex in D×(G).

Let

c(x) be the charge of a vertex x ∈ V × after application of Rules 1 and 2.

Rule 3. Each 5-vertex v with c(v) > 0 sends c(v)
m(v) to each adjacent 4-vertex;

m(v) is the number of 4-vertices adjacent to v (if m(v) = 0, no charge is
transferred).
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To show that the final charges of elements of M×(G) are nonnegative, we
consider several cases; due to the formulation of discharging rules, it is
enough to check the final charges of 4-, 5- and big vertices.

Case 1. Let x be a 5-vertex. Then x is incident with at most three 3-
faces (otherwise it is incident with two 3-faces with the common edge having
one endvertex of degree 4; thus, x belongs to a 3-cycle of G, a contradiction).
By Rule 1, c̃(x) ≥ −1 + 2 · 2·4−6

4 = −1 + 2 · 1

2 = 0; note that if x is incident
with 3-faces that are not adjacent in G×, then c̃(x) ≥ −1 + 3 · 1

2 = 1
2 .

Case 2. Let x be a 4-vertex. Then all its neighbours are of degree ≥ 5
and x is incident with at most two 3-faces (otherwise a 3-cycle is found in
G, a contradiction).

Case 2.1. Let x be incident only with faces of size ≥ 4. Then c̃(x) ≥
−2 + 4 · 1

2 = 0

Case 2.2. Let x be incident with exactly one 3-face, say f4. If at least one
of remaining faces is of size ≥ 6, then c̃(x) ≥ −2+2 · 1

2 + 2·6−6

6 = 0; similarly,
if at least two of them are ≥ 5-faces, then c̃(x) ≥ −2 + 2 · 2·5−6

5 + 1

2 > 0.
Hence, we may consider the following possibilities:

Case 2.2.1. Let one of f1, f2, f3 be a 5-face. Suppose first that f1 is a
5-face (the case of f3 is symmetric). If f1 is incident with at least one ≥ 6-
vertex, then c̃(x) ≥ −2 + 2 · 1

2 + 2·5−6

5−1 = 0. Further, if x3 is an ≥ 6-vertex,

then c̃(x) ≥ −2 + 4

5 + 2 · 2·4−6

4−1 = 2
15 > 0. Hence, we may assume that both

x2 and x3 are 5-vertices. Then each of them is incident with at least three
≥ 4-faces, so c(x2) ≥ −1 + 4

5 + 2 · 1
2 = 4
5 ,

c(x3) ≥ −1 + 3 · 1

2 = 1
2 . Now,

c̃(x) ≥ −2 + 2 · 1

2 + 4
5 +

4

5

5 +
1

2

5 = 3
50 > 0.

Suppose next that f2 is a 5-face. If at least one of x2, x3 is an ≥ 6-vertex,
then c̃(x) ≥ −2 + 1

2 + 2·4−6

4−1 + 2·5−6
5−1 > 0; thus, assume that both x2, x3 are

5-vertices. Then again, x2 and x3 are incident with at least three ≥ 4-faces
and c(x2) ≥ −1+2 · 1

2 + 4
5 = 4
5 ,

c(x3) ≥ −1+2 · 1

2 + 4
5 = 4
5 ; we conclude that

c̃(x) ≥ −2 + 2 · 1

2 + 4
5 + 2 ·

4

5

5 = 3
25 > 0.

Case 2.2.2. Let each of f1, f2, f3 be a 4-face.

If both vertices x2, x3 are of degree ≥ 6, then c̃(x) ≥ −2 + 2 · 1

2 + 2·4−6

2 = 0;
also, it is easy to check that c̃(x) ≥ 0 if two of x1, . . . , x4 (except of x1, x4)
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are of degree ≥ 6. If both x1, x4 are ≥ 6-vertices, then c(x2) ≥ −1 + 2

3 +

2 · 1

2 = 2
3 (similarly for x3) and c̃(x) ≥ −2 + 2 · 2
3 + 1
2 + 2 ·

2

3

5 = 1
10 > 0.

Moreover, if at least one of x1, . . . , x4 is big, then c̃(x) ≥ −2 + 2 · 1

2 + 2
3+

2
5 > 0. In what follows, assume that these possibilities do not appear in the
neighbourhood of x.

Case 2.2.2.1. Suppose that at least one of x′

1, x
′

3 is a true vertex, say
x′

1. As x4x2x
′

1x1 is a 4-cycle in G, x′

1 is a big vertex. If one of x1, x2 is an
≥ 6-vertex, then c̃(x) ≥ −2+1+2 · 1

2 = 0; thus, let both x1, x2 be 5-vertices.
Then

c(x1) ≥ −1+ 1

2 + 2
3 + 2
5 = 17
30 ,

c(x2) ≥ −1+2 · 1

2 + 2
3 + 2
5 = 16
15 ,

m(x1) ≤

3,m(x2) ≤ 4 and c̃(x) ≥ −2 + 2 · 1

2 + 2
3 +

17

30

3 +
16

15

4 = 11

90 > 0.

Case 2.2.2.2. Let both x′

1, x
′

3 be crossing-vertices.

Case 2.2.2.2.1. Suppose that x′

2 is a true vertex; firstly, let x′

2 is not
big. Let one of x2, x3, say x2, is an ≥ 6-vertex; then x3 is a 5-vertex.
If x3 has a big neighbour, then

c(x3) ≥ −1 + 2 · 1

2 + 2
3 + 2
5 = 16
15 and,

subsequently, c̃(x) ≥ −2 + 2 · 2

3 + 1
2 +

16

15

3 = 17

90 > 0; thus, suppose that
x3 has no big neighbour. Then the face f ′ that has edge x3x

′

3 in com-
mon with f3 cannot be a 3-face (otherwise 1-planarity of G is violated,
or a light 4-cycle appears). Moreover, since x′

2 is a true vertex, at least
one of remaining two faces incident with x3 (those different from f2, f3, f

′)
is also an ≥ 4-face. Hence, we obtain

c(x3) ≥ −1 + 3 · 1

2 + 2
3 = 5
6 ,

m(x3) ≤ 4 and c̃(x) ≥ −2 + 2 · 2

3 + 1
2 +

5

6

4 > 0. So, it remains to re-
solve the case when x′

2 is not big and both x2, x3 are 5-vertices. Consider
the charge of x2 after application of the first two discharging rules (the
case of x3 is analogous). If x2 is incident with at most one 3-face, then
c(x2) ≥ −1 + 4 · 1

2 = 1,

m(x2) ≤ 4, thus, x2 contributes at least 1

4 to
x by Rule 3. Let x2 be incident with exactly two 3-faces. Now, if the
face f ′′ that has a common edge x′

1x2 with f1 is a 3-face, then the vertex
u ∈ f ′′, u 6= x2, x

′

1 is necessarily big (as x1ux2x4 is a 4-cycle in G); we have

c(x2) ≥ −1 + 3 · 1

2 + 2
5 = 9

10 ,m(x2) ≤ 3 and x2 may contribute at least
9

10

3 > 1

4 to x by Rule 3. If f ′′ is an ≥ 4-face, then, using again the fact
that x′

2 is true, we obtain that x2 is incident with at least four ≥ 4-faces,
thus

c(x2) ≥ −1 + 4 · 1

2 = 1,

m(x2) ≤ 4 and x2 contributes at least 1

4 to
x by Rule 3. We conclude that each of x2, x3 sends at least 1

4 to x, so
c̃(x) ≥ −2 + 3 · 1

2 + 2 · 1
4 = 0.
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Suppose now that x′

2 is a big vertex. If some of x2, x3 is an ≥ 6-vertex,
then c̃(x) ≥ −2 + 1

2 + 2
3 + 1 > 0; hence, assume that both x2, x3 are 5-

vertices. Then

c(x2) ≥ −1 + 3 · 1

2 + 2
5 = 9

10 , c(x2) ≥ −1 + 3 · 1

2 + 2
5 = 9

10 and

c̃(x) ≥ −2 + 2 · 1

2 + 2
3 + 2 ·

9

10

4 = 7
60 > 0.

Case 2.2.2.2.2. Let each of x′

1, x
′

2, x
′

3 be a crossing-vertex.

Case 2.2.2.2.2.1. Suppose first that exactly one of x1, . . . , x4 is an ≥ 6-
vertex; due to the symmetry, we will consider x1 or x2. Let x1 be an ≥ 6-
vertex. If x4 is incident with at most two 3-faces, then c(x4) ≥ −1 + 3 · 1

2 =
1

2 ,

m(x4) ≤ 4 and x4 may contribute to x at least 1

8 by Rule 3. Suppose
that x4 is incident with three 3-faces. Then the edge x′

3x4 is incident with
a 3-face [x′

3x4u]. As x4x1x3u is a 4-cycle in G, u is big and

c(x4) ≥ −1 +
2 · 1

2 + 2
5 = 2
5 ,

m(x4) ≤ 3 and x4 may contribute to x at least 2
15 > 1

8 .
Also,

c(x2) ≥ −1 + 2

3 + 2 · 1
2 = 2
3 ,

c(x3) ≥ −1 + 3 · 1

2 = 1
2 ; thus, c̃(x) ≥

−2 + 2 · 1
2 + 2
3 + 1
8 + 2

15 + 1
10 = 1

40 > 0.
Now, let x2 be an ≥ 6-vertex. Then c(x1) ≥ −1 + 1

2 + 2
3 = 1
6 ,

c(x3) ≥

−1 + 2 · 1

2 + 2
3 = 2
3 and c̃(x) ≥ −2 + 2 · 2
3 + 1
2 +

1

6

5 +
2

3

5 = 0.

Case 2.2.2.2.2.2. Let all neighbours of x be 5-vertices. Note that each
of x2, x3 is incident with at least three ≥ 4-faces; this implies that each

of them may contribute at least
−1+3· 1

2

4 = 1

8 to x by Rule 3 (if there are

at least four incident ≥ 4-faces, then the contribution is at least
−1+4· 1

2

5 =
1

5 > 1
8). Now, if both x1, x4 are incident with at least three ≥ 4-faces,

then c̃(x) ≥ −2 + 3 · 1
2 + 4 · 1
8 = 0; hence, suppose that one of them,

say x1 is incident with exactly two ≥ 4-faces. Then there exists a 3-face
[x1x

′

1w]. As x4x1wx2 is a 4-cycle in G, w is a big vertex; subsequently,

m(x1) = 3, c(x1) ≥ −1 + 2 · 1

2 + 2
5 = 2
5 and x1 may supply x by

2

5

3 = 2
15 > 1

8 .
The same consideration applies, due to symmetry, also to vertex x4, so that
c̃(x) ≥ −2 + 3 · 1

2 + 2 · 1
8 + 2 · 2

15 > 0.

Case 2.3. Let x be incident with exactly two 3-faces (note that they are
not adjacent). Then (to avoid a light 4-cycle) one of x1, . . . , x4 is big, say
x1. If x has also another big neighbour then c̃(x) ≥ −2 + 2 · 2

3 + 2 · 2
5 > 0

or c̃(x) ≥ −2 + 1 + 1
2 + 2 · 2
5 > 0. Also, if f3 is incident with at least two

≥ 6-vertices then c̃(x) ≥ −2 + 1 + 2
3 + 2
5 > 0; similarly, c̃(x) > 0 if f1 is

incident with at least two ≥ 6-vertices and f3 with at least one ≥ 6-vertex.
Thus, we will analyze the following subcases:
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Case 2.3.1. Let x2, x3, x4 be 5-vertices. If f1 is an ≥ 5-face, then
c(x2) ≥ −1+1+ 1

2 = 1
2 ,

m(x2) ≤ 4, c(x4) ≥ −1+2· 1

2 + 2
5 = 2
5 ,

m(x4) ≤ 4 and

c̃(x) ≥ −2 + 1 + 1

2 + 2
5 +

2

5

4 +
1

2

4 = 1

8 > 0. Similarly, if f3 is an ≥ 5-face, then

c(x4) ≥ −1 + 4

5 + 1
2 + 2
5 = 7

10 ,m(x4) ≤ 4, c(x2) ≥ −1+ 2

3 + 1
2 = 1
6 ,

m(x2) ≤ 4

and c̃(x) ≥ −2 + 2

3 + 4
5 + 2
5 +

7

10

4 +
1

6

4 = 1
12 > 0. Hence, we may suppose

that both f1 and f3 are 4-faces. In addition, we may also suppose that x′

3

is a crossing vertex (otherwise x′

3 is big, since x′

3x3x2x4 is a 4-cycle; then
c(x3) ≥ −1 + 1

2 + 2
3 + 2
5 = 17
30 ,

c(x4) ≥ −1 + 1

2 + 2
3 + 2 · 2
5 = 29
30 ,

m(x3) ≤

3,m(x4) ≤ 3 and c̃(x) ≥ −2 + 2 · 2

3 + 2
5 +

17

30

3 +
29

30

3 = 56

45 > 0).

Case 2.3.1.1. Let the edges x′

3x3, x
′

3x4 be incident only with ≥ 4-faces.
In this case, we have

c(x3) ≥ −1 + 3 · 1

2 = 1
2 ,

c(x4) ≥ −1 + 3 · 1

2 + 2
5 =

9

10 , m(x3) ≤ 4,m(x4) ≤ 4. Now, if m(x4) ≤ 3, then c̃(x) ≥ −2 + 1

2 + 2
3 +

2

5 +
9

10

3 +
1

2

4 +
1

6

4 = 1
30 > 0. Thus, let m(x4) = 4. Further, if m(x3) ≤ 3, then

c̃(x) ≥ −2 + 1

2 + 2
3 + 2
5 +

9

10

4 +
1

2

3 +
1

6

4 = 0; hence, we may assume that also
m(x3) = 4. Consider now the faces α, β, γ, f2, f3 that appear around x3 in
the counter-clockwise order. We may assume that γ is a 3-face (otherwise

c̃(x) ≥ −2+ 1

2 + 2
3 + 2
5 +

9

10

4 + 1

4 +
1

6

4 = 1
12 > 0). If some of α, β is an ≥ 5-face,

then c(x3) ≥ −1+2· 12+ 4

5 = 4
5 and c̃(x) ≥ −2+ 1

2+ 2
3+ 2

5+
9

10

4 +
4

5

4 +
1

6

4 = 1
30 > 0.

Hence, let α = [x3x
′

3yw], β = [x3wzq] be 4-faces. As x2x4yz is a 4-cycle
in G, one of y, z must be big. Then c(x3) ≥ −1 + 2 · 1

2 + 2
3 = 2
3 and

c̃(x) ≥ −2 + 1

2 + 2
3 + 2
5 +

9

10

+

2

3

4 +
1

6

4 = 0.

Case 2.3.1.2. Let x′

3x4 be incident with exactly one ≥ 4-face f3. Then
there exists a 3-face [x′

3x4w]. Since x4wx3x2 is a 4-cycle in G, w is a big
vertex. Moreover, at least one of edges wx4, x1x4 is incident with an ≥ 4-
face. This yields c(x4) ≥ −1+ 1

2 + 2
3 +2 · 2
5 = 29
30 ,

m(x4) ≤ 3. Now, if the edge
x3x

′

3 is incident with two ≥ 4-faces, then c(x3) ≥ −1 + 3 · 1

2 = 1
2 ,

m(x3) ≤ 4

and c̃(x) ≥ −2+ 1

2 + 2

3 + 2

5 +
29

30

3 +
1

2

4 +
1

6

4 = 1
18 > 0. So, let x3x

′

3 be incident with
exactly one ≥ 4-face f3. Then there exists a 3-face [x3x

′

3w
′]. As x4x2x3w

is a 4-cycle in G, w′ is big. Therefore, we have c(x3) ≥ −1 + 2 · 1

2 + 2
5 =

2

5 ,

m(x3) ≤ 3 and c̃(x) ≥ −2 + 1

2 + 2
3 + 2
5 +

29

30

3 +
2

5

3 +
1

6

4 = 23
360 > 0.

Case 2.3.1.3. Let x′

3x3 be incident with exactly one ≥ 4-face f3. Then
there exists a 3-face [x′

3x3w]. Again, wx4x2x3 is a 4-cycle in G, so w is big.
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Now, if the edge x3w is incident with an ≥ 4-face, then c(x3) ≥ −1 +
1

2 + 2
3 + 2
5 = 17
30 ,

m(x3) ≤ 3, c(x4) ≥ −1 + 3 · 1

2 + 2
5 = 9

10 , m(x4) ≤ 4

and c̃(x) ≥ −2 + 1

2 + 2
3 + 2
5 +

17

30

3 +
9

10

4 +
1

6

4 = 1
45 > 0. In the opposite case,

consider the face γ 6= f2 incident with the edge x2x3. If γ is an ≥ 5-face, then
c(x3) ≥ −1+ 1

2 + 4
5 + 2
5 = 7

10 , c(x2) ≥ −1+ 1

2 + 4
5 = 3

10 , m(x3) ≤ 3,m(x4) ≤ 4

and c̃(x) ≥ −2 + 1

2 + 2
3 + 2
5 +

9

10

4 +
7

10

3 +
3

10

4 = 1
10 > 0. Hence, suppose that γ

is a 4-face. If m(x3) = 2, then c̃(x) ≥ −2+ 1

2 + 2
3 + 2
5 +

9

10

4 +
2

5

2 +
1

6

4 = 1
30 > 0;

so, we may assume that m(x3) = 3. Now, if m(x2) ≤ 2, then c̃(x) ≥

−2+ 1

2 + 2
3 + 2
5 +

9

10

4 +
2

5

3 +
1

6

2 = 1
120 > 0. So, assume that m(x2) = 3. Then x2

is adjacent to two crossing vertices lying in the face ω 6= f1 that is incident
with the edge x′

1x2, which implies that ω is an ≥ 4-face. Then we have

c(x2) ≥ −1+2 · 1

2 + 2
3 = 2
3 and c̃(x) ≥ −2+ 1
2 + 2
3 + 2
5 +

9

10

4 +
2

5

3 +
2

3

3 = 53
360 > 0.

Case 2.3.2. Let x4 be an ≥ 6-vertex and x2, x3 be 5-vertices; moreover,
we can suppose that both f1, f3 are 4-faces (otherwise c̃(x) ≥ −2 + 1 + 2

3+
2

5 > 0). In addition, we may also suppose that x′

3 is a crossing-vertex
(otherwise x′

3 is big, since x′

3x4x2x3 is a 4-cycle, hence, f3 is incident with
two ≥ 6-vertices).

Case 2.3.2.1. If both x2, x4 are incident with at least three ≥ 4-faces,
then

c(x2) ≥ −1 + 2 · 1

2 + 2
3 = 2
3 ,

m(x2) ≤ 4; the same holds for x3 and we

get c̃(x) ≥ −2 + 2 · 2

3 + 2
5 + 2 ·

2

3

4 > 0.

Case 2.3.2.2. Let x3 be incident with precisely two ≥ 4-faces. Then
there exists a 3-face [x3x

′

3w]. As x4x2x3w is a 4-cycle in G, w is a big vertex;
consequently, m(x1) = 3. Now, if the edge x3w is incident with an ≥ 4-face,
then c(x3) ≥ −1 + 2 · 2

3 + 2
5 = 11
15 ; taking into account that

m(x2) ≤ 4 and

c(x2) ≥ −1+ 1

2 + 2
3 = 1
6 , we obtain c̃(x) ≥ −2+2 · 2
3 + 2
5 +

11

15

3 +
1

6

4 = 7
360 > 0.

Thus, assume that x3w is incident only with 3-faces [x3x
′

3w], [x3wy]. If y is
a true vertex, then m(x3) = 2, c(x3) ≥ −1+ 1

2 + 2
3 + 2
5 = 17
30 and (again using

the support of ≥
1

6

4 from x2) c̃(x) ≥ −2 + 2 · 2

3 + 2
5 +

17

30

2 +
1

6

4 = 7
120 > 0. So,

let y be a crossing-vertex. Consider now the local neighbourhood of vertex
x2; let α, β, γ, f1, f2 be faces incident with x2 in the counter-clockwise order.
If α is an ≥ 5-face, then c(x3) ≥ −1 + 2

3 + 4
5 + 2
5 = 13
15 ,

c(x2) ≥ −1 + 2

3 + 4
5 =

7

15 , m(x3) = 3, m(x2) ≤ 4 and c̃(x) ≥ −2 + 2 · 2

3 + 2
5 +

13

15

3 +
7

15

4 = 5
36 > 0;

hence, let α = [x2x3yz] be a 4-face. Then z is a true vertex, which implies
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m(x2) ≤ 3. If x2 is incident with at least three ≥ 4-faces, the c(x2) ≥ −1+2·
1

2 + 2
3 = 2
3 and c̃(x) ≥ −2+2 · 2
3 + 2
5 +

17

30

3 +
2

3

3 = 13

90 > 0. Thus, we can assume
that x2 is incident with precisely two 4-faces f1 and α. Then both x′

1x2 and
x2z are incident with 3-faces, which implies that x′

1 is a crossing-vertex and

m(x2) ≤ 2. In this case, we obtain c̃(x) ≥ −2+2 · 2

3 + 2
5 +

17

30

3 +
1

6

2 = 1
180 > 0.

Case 2.3.3. Let x3 be an ≥ 6-vertex and x2, x4 be 5-vertices; again, we
can suppose that both f1, f3 are 4-faces (otherwise c̃(x) ≥ −2+1+ 2

3 + 2
5 > 0)

and that x′

3 is a crossing-vertex (otherwise x′

3 is big, since x′

3x4x2x3 is a 4-
cycle, hence, f3 is incident with two ≥ 6-vertices).

If x4 is incident with at least three ≥ 4-faces, then

c(x4) ≥ −1 + 2 · 1

2 +

2

3 + 2
5 = 16
15 ,

m(x4) ≤ 4 and c̃(x) ≥ −2 + 2 · 2

3 + 2
5 +

16

15

4 +
1

6

4 = 1
24 > 0; so,

suppose that x4 is incident with precisely two ≥ 4-faces. Then there exists
a 3-face [x′

3x4w]. As x4x2x3w is a 4-cycle, w must be big. Hence, c(x4) ≥

−1+ 1

2 + 2
3 +2· 2
5 = 29
30 ,

m(x4) ≤ 3 and c̃(x) ≥ −2+2· 2

3 + 2
5 +

29

30

3 +
1

6

4 = 7
72 > 0.

Case 3. Let x be a big d-vertex. Then c̃(x) ≥ d − 6 − 2

5d = 3d

5 − 6 ≥ 0
for d ≥ 10.

2.4. Proof of Theorem 3

The proof proceeds in the way described in Subsection 2.1 under the follow-
ing discharging rules (here, the big vertex is one of degree ≥ 12):

Rule 1. Each face f ∈ F× sends c(f)
m(f) to each incident 4- and 5-vertex,

where m(f) is the number of 4- and 5-vertices incident with f . If m(f) = 0,
no charge is transferred.

Rule 2. Each big vertex v sends 1

2 to each 5-vertex which is adjacent to v

in G.

Let

c(x) be the charge of a vertex x ∈ V × after application of Rules 1 and 2.

Rule 3. Each 5-vertex v with c(v) > 0 sends c(v)
m(v) to each adjacent 4-vertex;

m(v) is the number of 4-vertices adjacent to v (if m(v) = 0, no charge is
transferred).

We will check final charges of elements of M×(G). Due to the formula-
tion of Rule 1, the final charge of each face of M×(G) is nonnegative. Also,
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if v is a big d-vertex, then it has at most d neighbours of degree 5 in G, thus
c̃(v) ≥ d−6− d

2 ≥ 0 since d ≥ 12. As vertices of degree between 6 and 11 do
not change their initial charge, it is enough to check just the final charges
of 5- and 4-vertices.

Case 1. Let x be a 5-vertex. Recall that x is incident with at least two
≥ 4-faces. Also, in G, x has at least two big neighbours (otherwise a light
4-star is found). Thus, c(x) ≥ −1 + 2 · 1

2 + 2 · 1
2 = 1 > 0.

Remark. For the analysis of the final charge of 4-vertices, it is useful to
take a closer look on the charge of a 5-vertex after application of Rules 1
and 2; we will also estimate the value t(x) =

c(x)
m(x) from Rule 3 according to

type of the neighbourhood of x.

(a) If x is incident only with ≥ 4-faces, then c(x) ≥ −1 + 5 · 1

2 + 2 · 1
2 = 5
2

and t(x) ≥
5

2

5 = 1

2 .

(b) If x is incident with exactly one 3-face, then

c(x) ≥ −1+4 · 1

2 +2 · 1
2 = 2

and t(x) ≥ 2
4 = 1
2 .

(c) If x is incident with two nonadjacent 3-faces, then

c(x) ≥ −1 + 3 · 1

2 +

2 · 1

2 = 3
2 and t(x) ≥

3

2

3 = 1

2 .

(d) If x is incident with two 3-faces that are adjacent, then

c(x) ≥ −1 + 3 ·
1

2 + 2 · 1
2 = 3
2 and t(x) ≥

3

2

4 = 3

8 .

(e) If x is incident with three 3-faces, then

c(x) ≥ −1 + 2 · 1

2 + 2 · 1
2 = 1 and

t(x) ≥ 1
3 .

Thus, in any case, a 5-vertex sends by Rule 3 at least 1

3 .

Case 2. Let x be a 4-vertex; then, it is a crossing-vertex. Recall that x

is incident with at most two 3-faces.

Case 2.1. If x is incident only with ≥ 4-faces, then, by Rule 1, c̃(x) ≥
−2 + 4 · 1

2 = 0.

Case 2.2. Let x be incident with at least one 4-face, say f4. Note that f1

and f3 are ≥ 4-faces. Consider now the vertices x1 and x2 of f1. If both of
them are ≥ 6-vertices, then f1 contributes 1 to x by Rule 1. If one of them,
say x1, is a 5-vertex and the other one is an ≥ 6-vertex, then f1 contributes
to 2

3 to x by Rule 1 and x1 contributes at least 1
3 to x by Rule 3. Finally,
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if both these vertices are 5-vertices, then f1 contributes 1

2 to x by Rule 1
and x1, x2 contribute at least 2 · 2

3 . Hence, the total contribution of these
elements to x is always at least 1. The same applies for the face f3, thus,
we obtain c̃(x) ≥ −2 + 2 · 1 = 0.

Figure 1

Figure 2
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