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Abstract

Let F be a set of graphs and for a graph G let ar(G) and o’%(G)
denote the maximum order of an induced subgraph of G which does
not contain a graph in F as a subgraph and which does not contain
a graph in F as an induced subgraph, respectively. Lower bounds on
ar(G) and o’x(G) are presented.
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1. INTRODUCTION

We consider finite, undirected and simple graphs G with vertex set V(G)
and edge set E(G) and refer to [8] for undefined notation.

A generalization of the well-studied concept of independent sets [12] in
graphs was introduced in [4] and [7] (see also [3] and [11]). The following
problem is considered there: For two given graphs F and G, what is the
mazimum order of an induced subgraph of G that either does not contain F
as a subgraph or does not contain F' as an induced subgraph?

The purpose of the present paper is to formalize the independence con-
cept corresponding to this problem and to initiate its study. Therefore, for a
graph G and a set M of graphs we denoted by f(G, M) the maximum order
|S] of a subgraph G[S] of G induced by S C V(G) such that G[S] belongs
to M. Choosing M appropriately allows to capture the problem mentioned
above. More precisely, let F be a set of graphs and for a graph G let ar(G)
and o%(G) denote the maximum order of an induced subgraph of G which
does not contain a graph in F as a subgraph and which does not contain a
graph in F as an induced subgraph, respectively. Clearly, if we define M x
as the set of all graphs which do not contain a graph in F as a subgraph
and M7 as the set of all graphs which do not contain a graph in F as an
induced subgraph, then az(G) = f(G,Mz) and o’x(G) = f(G,M%). If
F = {F}, then we write ap(G) and a}.(G) for short.

Several well-known graph parameters are special cases of these notions
as shown in the following result which collects some obvious basic observa-
tions.

Proposition 1. Let G be a graph.
(i) ak,(G) equals the independence number a(G) of G.

(ii) ag,(G) equals the clique number of G.

(i) ap,(G) equals the dissociation number of G [2].
(iv) ok, (G) = ak, (G).

(v) ag (G) =min{|V(G)|,r — 1}.

(vi) ozj—(T(G) =max{|S| | S C V(G),a(G]S]) <r—1}.
(vii) a%(G) = aF - (G).

Our next result is a lower bound on f(G, M) provided the set M has some
natural properties.
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Theorem 2. Let M be a set of graphs and let G be a graph.
(i) If M is closed under taking induced subgraphs, then

oz ¥ ()

$:8CV(G),G[S]eM

(ii) If M is closed under taking induced subgraphs and under forming the
union of graphs, then

oz x (e

5:SCV(@),G[S|eM,GIS] @s connected
where Ng[S] = UyesNgu].

Proof. We only prove (ii) and leave the very similar proof of (i) to the
reader. We choose a permutation v, vs, ..., v, of the vertices of G uniformly
at random. Let Sop =) and for 1 <i < nlet S; = S;—1 U{v;} if G[S;—1 U
{vi}] € M and S; = S;_1 otherwise. Clearly, f(G, M) > |S,| and v; € S,
if and only if v; € S; and the component H; of G[S;] containing v; belongs
to M. Therefore, for a set S C V(G) with v; € S such that G[S] € M
and G[S] is connected, a lower bound for the probability that H; = G[S] is
the probability that in the chosen permutation the vertices S\ {v;} preceed
v; while v; preceeds the vertices in Ng[S] \ S which equals f?‘(‘N%HSH)_I.
Therefore, by linearity of expectation

F(G, M) 2 E(ISu]) =D P(vi € 5y)
i=1
i 3 1 (|NG[S]|>‘1
2 | EAE
( S:0;€SCV(G),G[S]eM,G[S] is connected
_ Z Z L(\NG[S”)_l
: A= ST\ S|
5:5CV(Q),G[S]eM,G[S] is connected #vi€S
_ > <\NG[S]|)-1
5|

5:5CV(@),G[S]eM,G[S] is connected

v

and the proof is complete. [
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Corollary 3. Let G be a graph. Then
() a(G) = Tuev(e) gy (Caro [5], We [14]).

(ii) The dissociation number satisfies
2

1
apy(G) Zug(: )m+ EZE(G |Na[u] U N [v]| (INg[u] U Nglv]| — 1)

Proof. Note that M,y = {K, | r € N} and Myp,3 = Mg,  U{K UK, |
r € N}. Both statements follow immediately from Theorem 2(ii) and the
observation that the only connected graph in Mg,y is Ky and the only
connected graphs in Myp,y are Ky and K. [ |

The famous bound due to Caro [5] and Wei [14] from Corollary 3 has yet
another generalization in this context.

Theorem 4. If G is a graph and r € N, then
k,41(G) 2 Lev (o) Tragm—an NN

Proof. We mimic a proof from [1]. For every vertex v € V(G) let the set
X, € Ng(v) be such that | X,| = dg(v) — ak, (G[Ng(v)]) and G[Ng(v) \ X]
does not contain K, as a subgraph. Let vi,vs,...,v, be a permutation of
the vertices of G chosen uniformly at random and let v; € S if and only if
Xy, N{v1,v2,...,0;} =0, ie., v; is the first vertex of {v;} UX,, that appears
within the permutation. Clearly, G[S] does not contain K,;1 as a subgraph
and

1
ak,,(G) > E(|S]) = Z PlveS) = Z — ‘
veV(G) veV(G) 1+dg(v) — akg,(G[NG(v)])

The next result relies on methods proposed in [10].

Theorem 5. If G is a graph with vertex set {vi,va,...,v,} and r € N, then

ak,,(G) =max Y  p; > [Ir II a-2)),

'UiEV(G) Y:YQNG(W),‘Y‘<T‘ 'U]'EY UkENg(Ui)\Y

where the mazimum is taken over all (p1,p2,...,pn) € [0,1]™.
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Proof. Let p; € [0,1] for 1 < i < n. We consider a random subset X of
V(G) formed by choosing every vertex v; independently with probability p;.
If S={ve X |dgx)(v) <r}, then

ak, ,(G) = E(S) = Y p > e II a-»)

U¢€V(G) Y:Ych;(vi),|Y|<'r UjEY 'UkENG(vi)\Y

Conversely, if S C is such that ag, (G) = |S] and G[S] has maximum
degree less than r, then setting p; =1 for all v; € S and p; =0 forall v; € §
yields

ak, (G)=E(S)= Y p} > Iz II a-»)

UiEV(G) Y:YgNg(Ui),‘Y|<T UjEY UkENG(Ui)\Y

which completes the proof. [ |

It is trivial that for several specific choices of M and F the decision problems
associated with f(G, M), ar(G) and o’%(G) are NP-complete. In view of
Mihok’s original problem, we consider the case that F consists of just one
graph in more detail.

Theorem 6. If F is a graph containing at least one edge, then the following
problems are NP-complete.

(i) For a given graph G and k € N, decide whether ap(G)

> k.
(ii) For a given graph G and k € N, decide whether a},(G) > k.
Proof. Let uv be an arbitrary edge of F. For a graph G let the graph G’
arise as follows: For every edge xy of G' add a copy F, of F' and identify
the copy of the edge wv in F,, with zy (in any orientation).

It is obvious that for every set 7' C V(G’) of minimum cardinality such
that G'[V(G’)\ T does not contain F' as a subgraph (or induced subgraph),
T must intersect every copy Fy, of F in G'. Since deleting either = or y
from Fj, clearly deletes this copy of F', we can assume that 7' C V(G) and
that TN {x,y} # 0 for all zy € E(G). Hence T is exactly a vertex cover
of G. This implies a(G) = ap(G’') = aj(G’) and the desired statement
follows from the NP-completeness of the corresponding decision problem for
the independence number [9]. |
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Note that in view Proposition 1(vii), the decision problem “a’(G) > k?”
remains NP-complete even if F' is edgeless.

Tuza [13] observed the following nice relation between the independence
number and the domination number v(G) of a graph G [10]:

a(G) = max{vy(H) | H is an induced subgraph of G}.

We close with a generalization of this equality. For a set F of graphs and
a graph G let v£(G) (v7(G)) denote the minimum cardinality |D| of a set
D C V(G) such that for every vertex u € V(G) \ D there is a graph F' € F
and a set D' C D with |D'| = |[V(F)| — 1 such that G[D" U {u}] contains a
graph in F as an (induced) subgraph (see also [4]).

Theorem 7. If F is a set of graphs and G is a graph, then

ar(G) = max{yr(H) | H is an induced subgraph of G},
ar(G) = max{yz(H) | H is an induced subgraph of G}.

Proof. We only prove the first equality and leave the very similar proof
of the second equality to the reader.

If S C V(G) such that |S| = az(G) and G[S] does not contain a graph
in F as a subgraph, then v£(G[S]) = |S| > ax(G).

Conversely, if G[S] is an induced subgraph of G for which v£(G[S5]) i
maximum, then let S’ C S be of maximum cardinality such that G[S’] doe
not contain a graph in F as a subgraph. We obtain v£(G[S]) < |S
ar(G[S]) < ar(G) and the proof is complete. [ ]

S
S

/‘_
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