Discussiones Mathematicae Graph Theory 29 (2009) 377–383

ON \mathcal{F} -INDEPENDENCE IN GRAPHS

FRANK GÖRING

Fakultät für Mathematik TU Chemnitz, 09107 Chemnitz, Germany e-mail: frank.goering@mathematik.tu-chemnitz.de

Jochen Harant

DIETER RAUTENBACH

Institut für Mathematik TU Ilmenau, Postfach 100565, 98684 Ilmenau, Germany

> e-mail: jochen.harant@tu-ilmenau.de e-mail: dieter.rautenbach@tu-ilmenau.de

> > AND

INGO SCHIERMEYER

Institut für Diskrete Mathematik und Algebra TU Bergakademie Freiberg, 09596 Freiberg, Germany

e-mail: schierme@math.tu-freiberg.de

Abstract

Let \mathcal{F} be a set of graphs and for a graph G let $\alpha_{\mathcal{F}}(G)$ and $\alpha_{\mathcal{F}}^*(G)$ denote the maximum order of an induced subgraph of G which does not contain a graph in \mathcal{F} as a subgraph and which does not contain a graph in \mathcal{F} as an induced subgraph, respectively. Lower bounds on $\alpha_{\mathcal{F}}(G)$ and $\alpha_{\mathcal{F}}^*(G)$ are presented.

Keywords: independence, complexity, probabilistic method.

2000 Mathematics Subject Classification: 05C69.

1. INTRODUCTION

We consider finite, undirected and simple graphs G with vertex set V(G) and edge set E(G) and refer to [8] for undefined notation.

A generalization of the well-studied concept of independent sets [12] in graphs was introduced in [4] and [7] (see also [3] and [11]). The following problem is considered there: For two given graphs F and G, what is the maximum order of an induced subgraph of G that either does not contain F as a subgraph or does not contain F as an induced subgraph?

The purpose of the present paper is to formalize the independence concept corresponding to this problem and to initiate its study. Therefore, for a graph G and a set \mathcal{M} of graphs we denoted by $f(G, \mathcal{M})$ the maximum order |S| of a subgraph G[S] of G induced by $S \subseteq V(G)$ such that G[S] belongs to \mathcal{M} . Choosing \mathcal{M} appropriately allows to capture the problem mentioned above. More precisely, let \mathcal{F} be a set of graphs and for a graph G let $\alpha_{\mathcal{F}}(G)$ and $\alpha^*_{\mathcal{F}}(G)$ denote the maximum order of an induced subgraph of G which does not contain a graph in \mathcal{F} as a subgraph and which does not contain a graph in \mathcal{F} as an induced subgraph, respectively. Clearly, if we define $\mathcal{M}_{\mathcal{F}}$ as the set of all graphs which do not contain a graph in \mathcal{F} as a subgraph and $\mathcal{M}^*_{\mathcal{F}}$ as the set of all graphs which do not contain a graph in \mathcal{F} as an induced subgraph, then $\alpha_{\mathcal{F}}(G) = f(G, \mathcal{M}_{\mathcal{F}})$ and $\alpha^*_{\mathcal{F}}(G) = f(G, \mathcal{M}^*_{\mathcal{F}})$. If $\mathcal{F} = \{F\}$, then we write $\alpha_F(G)$ and $\alpha^*_F(G)$ for short.

Several well-known graph parameters are special cases of these notions as shown in the following result which collects some obvious basic observations.

Proposition 1. Let G be a graph.

- (i) $\alpha_{K_2}(G)$ equals the independence number $\alpha(G)$ of G.
- (ii) $\alpha_{\bar{K}_2}(G)$ equals the clique number of G.
- (iii) $\alpha_{P_3}(G)$ equals the dissociation number of G [2].
- (iv) $\alpha_{K_r}(G) = \alpha^*_{K_r}(G).$
- (v) $\alpha_{\bar{K}_r}(G) = \min\{|V(G)|, r-1\}.$
- $(\text{vi}) \ \alpha^*_{\bar{K}_r}(G) = \max\{|S| \mid S \subseteq V(G), \alpha(G[S]) \le r-1\}.$
- (vii) $\alpha_{\mathcal{F}}^*(G) = \alpha_{\{\bar{F}|F\in\mathcal{F}\}}^*(\bar{G}).$

Our next result is a lower bound on $f(G, \mathcal{M})$ provided the set \mathcal{M} has some natural properties.

Theorem 2. Let \mathcal{M} be a set of graphs and let G be a graph. (i) If \mathcal{M} is closed under taking induced subgraphs, then

$$f(G, \mathcal{M}) \ge \sum_{S:S \subseteq V(G), G[S] \in \mathcal{M}} \binom{|V(G)|}{|S|}^{-1}$$

 (ii) If *M* is closed under taking induced subgraphs and under forming the union of graphs, then

$$f(G, \mathcal{M}) \ge \sum_{S:S \subseteq V(G), G[S] \in \mathcal{M}, G[S] \text{ is connected}} {\binom{|N_G[S]|}{|S|}}^{-1},$$

where $N_G[S] = \bigcup_{u \in S} N_G[u]$.

Proof. We only prove (ii) and leave the very similar proof of (i) to the reader. We choose a permutation v_1, v_2, \ldots, v_n of the vertices of G uniformly at random. Let $S_0 = \emptyset$ and for $1 \leq i \leq n$ let $S_i = S_{i-1} \cup \{v_i\}$ if $G[S_{i-1} \cup \{v_i\}] \in \mathcal{M}$ and $S_i = S_{i-1}$ otherwise. Clearly, $f(G, \mathcal{M}) \geq |S_n|$ and $v_i \in S_n$ if and only if $v_i \in S_i$ and the component H_i of $G[S_i]$ containing v_i belongs to \mathcal{M} . Therefore, for a set $S \subseteq V(G)$ with $v_i \in S$ such that $G[S] \in \mathcal{M}$ and G[S] is connected, a lower bound for the probability that $H_i = G[S]$ is the probability that in the chosen permutation the vertices $S \setminus \{v_i\}$ preceded v_i while v_i preceeds the vertices in $N_G[S] \setminus S$ which equals $\frac{1}{|S|} {|N_G[S]| \choose S}^{-1}$. Therefore, by linearity of expectation

$$f(G, \mathcal{M}) \geq \mathbf{E}(|S_n|) = \sum_{i=1}^{n} \mathbf{P}(v_i \in S_n)$$

$$\geq \sum_{i=1}^{n} \sum_{S:v_i \in S \subseteq V(G), G[S] \in \mathcal{M}, G[S] \text{ is connected}} \frac{1}{|S|} {|N_G[S]| \choose |S|}^{-1}$$

$$= \sum_{S:S \subseteq V(G), G[S] \in \mathcal{M}, G[S] \text{ is connected}} \sum_{i:v_i \in S} \frac{1}{|S|} {|N_G[S]| \choose |S|}^{-1}$$

$$= \sum_{S:S \subseteq V(G), G[S] \in \mathcal{M}, G[S] \text{ is connected}} {|N_G[S]| \choose |S|}^{-1}$$

and the proof is complete.

Corollary 3. Let G be a graph. Then

- (i) $\alpha(G) \ge \sum_{u \in V(G)} \frac{1}{1 + d_G(v)}$ (Caro [5], Wei [14]).
- (ii) The dissociation number satisfies

$$\alpha_{P_3}(G) \ge \sum_{u \in V(G)} \frac{1}{1 + d_G(v)} + \sum_{uv \in E(G)} \frac{2}{|N_G[u] \cup N_G[v]| (|N_G[u] \cup N_G[v]| - 1)}$$

Proof. Note that $\mathcal{M}_{\{K_2\}} = \{\bar{K}_r \mid r \in \mathbb{N}\}$ and $\mathcal{M}_{\{P_3\}} = \mathcal{M}_{\{K_2\}} \cup \{K_2 \cup \bar{K}_r \mid r \in \mathbb{N}\}$. Both statements follow immediately from Theorem 2(ii) and the observation that the only connected graph in $\mathcal{M}_{\{K_2\}}$ is K_1 and the only connected graphs in $\mathcal{M}_{\{P_3\}}$ are K_1 and K_2 .

The famous bound due to Caro [5] and Wei [14] from Corollary 3 has yet another generalization in this context.

Theorem 4. If G is a graph and $r \in \mathbb{N}$, then $\alpha_{K_{r+1}}(G) \geq \sum_{v \in V(G)} \frac{1}{1+d_G(v)-\alpha_{K_r}(G[N_G(v)])}$.

Proof. We mimic a proof from [1]. For every vertex $v \in V(G)$ let the set $X_v \subseteq N_G(v)$ be such that $|X_v| = d_G(v) - \alpha_{K_r}(G[N_G(v)])$ and $G[N_G(v) \setminus X_v]$ does not contain K_r as a subgraph. Let v_1, v_2, \ldots, v_n be a permutation of the vertices of G chosen uniformly at random and let $v_i \in S$ if and only if $X_{v_i} \cap \{v_1, v_2, \ldots, v_i\} = \emptyset$, i.e., v_i is the first vertex of $\{v_i\} \cup X_{v_i}$ that appears within the permutation. Clearly, G[S] does not contain K_{r+1} as a subgraph and

$$\alpha_{K_{r+1}}(G) \ge \mathbf{E}(|S|) = \sum_{v \in V(G)} \mathbf{P}(v \in S) = \sum_{v \in V(G)} \frac{1}{1 + d_G(v) - \alpha_{K_r}(G[N_G(v)])}.$$

The next result relies on methods proposed in [10].

Theorem 5. If G is a graph with vertex set $\{v_1, v_2, \ldots, v_n\}$ and $r \in \mathbb{N}$, then

$$\alpha_{K_{1,r}}(G) = \max \sum_{v_i \in V(G)} p_i \sum_{Y:Y \subseteq N_G(v_i), |Y| < r} \left(\prod_{v_j \in Y} p_j \prod_{v_k \in N_G(v_i) \setminus Y} (1-p_j) \right),$$

where the maximum is taken over all $(p_1, p_2, \ldots, p_n) \in [0, 1]^n$.

Proof. Let $p_i \in [0,1]$ for $1 \leq i \leq n$. We consider a random subset X of V(G) formed by choosing every vertex v_i independently with probability p_i . If $S = \{v \in X \mid d_{G[X]}(v) < r\}$, then

$$\alpha_{K_{1,r}}(G) \ge \mathbf{E}(S) = \sum_{v_i \in V(G)} p_i \sum_{Y:Y \subseteq N_G(v_i), |Y| < r} \left(\prod_{v_j \in Y} p_j \prod_{v_k \in N_G(v_i) \setminus Y} (1-p_j) \right).$$

Conversely, if $S \subseteq$ is such that $\alpha_{K_{1,r}}(G) = |S|$ and G[S] has maximum degree less than r, then setting $p_i^* = 1$ for all $v_i \in S$ and $p_i^* = 0$ for all $v_i \notin S$ yields

$$\alpha_{K_{1,r}}(G) = \mathbf{E}(S) = \sum_{v_i \in V(G)} p_i^* \sum_{Y:Y \subseteq N_G(v_i), |Y| < r} \left(\prod_{v_j \in Y} p_j^* \prod_{v_k \in N_G(v_i) \setminus Y} (1 - p_j^*) \right)$$

which completes the proof.

It is trivial that for several specific choices of \mathcal{M} and \mathcal{F} the decision problems associated with $f(G, \mathcal{M})$, $\alpha_{\mathcal{F}}(G)$ and $\alpha^*_{\mathcal{F}}(G)$ are NP-complete. In view of Mihók's original problem, we consider the case that \mathcal{F} consists of just one graph in more detail.

Theorem 6. If F is a graph containing at least one edge, then the following problems are NP-complete.

- (i) For a given graph G and $k \in \mathbb{N}$, decide whether $\alpha_F(G) \ge k$.
- (ii) For a given graph G and $k \in \mathbb{N}$, decide whether $\alpha_F^*(G) \geq k$.

Proof. Let uv be an arbitrary edge of F. For a graph G let the graph G' arise as follows: For every edge xy of G add a copy F_{xy} of F and identify the copy of the edge uv in F_{xy} with xy (in any orientation).

It is obvious that for every set $T \subseteq V(G')$ of minimum cardinality such that $G'[V(G') \setminus T]$ does not contain F as a subgraph (or induced subgraph), T must intersect every copy F_{xy} of F in G'. Since deleting either x or yfrom F_{xy} clearly deletes this copy of F, we can assume that $T \subseteq V(G)$ and that $T \cap \{x, y\} \neq \emptyset$ for all $xy \in E(G)$. Hence T is exactly a vertex cover of G. This implies $\alpha(G) = \alpha_F(G') = \alpha_F^*(G')$ and the desired statement follows from the NP-completeness of the corresponding decision problem for the independence number [9]. Note that in view Proposition 1(vii), the decision problem " $\alpha_{\mathcal{F}}^*(G) \ge k$?" remains NP-complete even if F is edgeless.

Tuza [13] observed the following nice relation between the independence number and the domination number $\gamma(G)$ of a graph G [10]:

 $\alpha(G) = \max\{\gamma(H) \mid H \text{ is an induced subgraph of } G\}.$

We close with a generalization of this equality. For a set \mathcal{F} of graphs and a graph G let $\gamma_{\mathcal{F}}(G)$ $(\gamma_{\mathcal{F}}^*(G))$ denote the minimum cardinality |D| of a set $D \subseteq V(G)$ such that for every vertex $u \in V(G) \setminus D$ there is a graph $F \in \mathcal{F}$ and a set $D' \subseteq D$ with |D'| = |V(F)| - 1 such that $G[D' \cup \{u\}]$ contains a graph in \mathcal{F} as an (induced) subgraph (see also [4]).

Theorem 7. If \mathcal{F} is a set of graphs and G is a graph, then

 $\alpha_{\mathcal{F}}(G) = \max\{\gamma_{\mathcal{F}}(H) \mid H \text{ is an induced subgraph of } G\},\\ \alpha_{\mathcal{F}}^*(G) = \max\{\gamma_{\mathcal{F}}^*(H) \mid H \text{ is an induced subgraph of } G\}.$

Proof. We only prove the first equality and leave the very similar proof of the second equality to the reader.

If $S \subseteq V(G)$ such that $|S| = \alpha_{\mathcal{F}}(G)$ and G[S] does not contain a graph in \mathcal{F} as a subgraph, then $\gamma_{\mathcal{F}}(G[S]) = |S| \ge \alpha_{\mathcal{F}}(G)$.

Conversely, if G[S] is an induced subgraph of G for which $\gamma_{\mathcal{F}}(G[S])$ is maximum, then let $S' \subseteq S$ be of maximum cardinality such that G[S'] does not contain a graph in \mathcal{F} as a subgraph. We obtain $\gamma_{\mathcal{F}}(G[S]) \leq |S'| = \alpha_{\mathcal{F}}(G[S]) \leq \alpha_{\mathcal{F}}(G)$ and the proof is complete.

References

- [1] N. Alon and J.H. Spencer, The probabilistic method (2nd ed.), (Wiley, 2000).
- [2] R. Boliac, C. Cameron and V. Lozin, On computing the dissociation number and the induced matching number of bipartite graphs, Ars Combin. 72 (2004) 241–253.
- [3] M. Borowiecki, I. Broere, M. Frick, P. Mihok and G. Semanisin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5–50.
- [4] M. Borowiecki, D. Michalak and E. Sidorowicz, Generalized domination, independence and irredudance in graphs, Discuss. Math. Graph Theory 17 (1997) 147–153.

- [5] Y. Caro, New results on the independence number, Technical Report (Tel-Aviv University, 1979).
- [6] Y. Caro and Y. Roditty, On the vertex-independence number and star decomposition of graphs, Ars Combin. 20 (1985) 167–180.
- [7] G. Chartrand, D. Geller and S. Hedetniemi, *Graphs with forbiden subgraphs*, J. Combin. Theory **10** (1971) 12–41.
- [8] G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman & Hall, 2005).
- [9] M.R. Garey and D.S. Johnson, Computers and Intractability (W.H. Freeman and Company, San Francisco, 1979).
- [10] J. Harant, A. Pruchnewski and M. Voigt, On Dominating Sets and Independendent Sets of Graphs, Combinatorics, Probability and Computing 8 (1999) 547–553.
- [11] S. Hedetniemi, On hereditary properties of graphs, J. Combin. Theory (B) 14 (1973) 349–354.
- [12] V. Vadim and D. de Werra, Special issue on stability in graphs and related topics, Discrete Appl. Math. 132 (2003) 1–2.
- [13] Zs. Tuza, Lecture at Conference of Hereditarnia (Zakopane, Poland, September 2006).
- [14] V.K. Wei, A lower bound on the stability number of a simple graph, Bell Laboratories Technical Memorandum 81-11217-9 (Murray Hill, NJ, 1981).

Received 25 March 2008 Revised 26 March 2008 Accepted 23 May 2008