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Abstract

We consider a list cost coloring of vertices and edges in the model
of vertex, edge, total and pseudototal coloring of graphs. We use a
dynamic programming approach to derive polynomial-time algorithms
for solving the above problems for trees. Then we generalize this ap-
proach to arbitrary graphs with bounded cyclomatic numbers and to
their multicolorings.
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1. Introduction

The problem that we are going to consider is strongly related to Optimum
Cost Partition [4] but it also has other names. It generalizes some basic
graph coloring problems like sum edge coloring for example [1]. The problem
is motivated by potential applications in multiprocessor task scheduling to
minimize mean flow time [2] and by minimum wire length routing in VLSI
circuit design [11].

All graphs considered in this paper are simple and connected. Let G =
G(V,E) be such a graph with n = |V | vertices and m = |E| edges. By
deg(v) we mean the degree of vertex v ∈ V , and ∆ stands for the maximum
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vertex degree. Symbol Ev = {e ∈ E : v ∈ e} is used to mean the set of all
edges incident to v ∈ V . By γ(G) we denote the cyclomatic number of G,
i.e., γ(G) = m − n + 1. Since we consider many different graphs and other
objects simultaneously, sometimes we use the symbol of graph to which the
corresponding notion is relevant, e.g. degG(v). Pfin(A) denotes the family
of all finite subsets of set A. By N we mean the set of natural numbers and
N0 = N ∪ {0} is the set of non-negative integers. We begin with recalling
standard definitions from the chromatic theory of graphs.

Definition 1.1. Let G(V,E) be any graph. A function c : V 7→ N is called
a vertex coloring of G if c(u) 6= c(v) whenever {u, v} ∈ E.

In symbols, a function c is vertex coloring if ∀{u,v}∈E c(u) 6= c(v).

Definition 1.2. A function c : E 7→ N is called an edge coloring of G if
c(e) 6= c(f) for any two adjacent edges e, f ∈ E.

More formally, a function c is edge coloring if ∀e,f∈E e∩f 6= ∅ ⇒ c(e) 6= c(f).

Definition 1.3. A function c: V ∪ E 7→ N is called a pseudototal coloring
of G if its restriction c|E is an edge coloring and c(e) 6= c(v) whenever v ∈ e.

In symbols, ∀e,f∈E e ∩ f 6= ∅ ⇒ c(e) 6= c(f) and ∀v∈V ∀e∈E v ∈ e ⇒ c(e) 6=
c(v).

Definition 1.4. A function c: V ∪ E 7→ N is called a total coloring of G if
it is pseudototal and its restriction c|V is a vertex coloring.

Constrains on function c are the strongest for total coloring, namely
∀{u,v}∈E c(u) 6= c(v), ∀e,f∈E e∩ f 6= ∅ ⇒ c(e) 6= c(f) and ∀v∈V ∀e∈E v ∈ e ⇒
c(e) 6= c(v).

In our general model to different elements x of graph G (vertices, edges,
or vertices and edges simultaneously) there are assigned arbitrary cost func-
tions fx : N 7→ N0 specifying the cost of coloring x with a particular color
i ∈ N . Informally, the sum of costs among all such x is the cost of color-
ing of a particular set (of vertices, edges, or vertices and edges). We will
attempt to minimize this parameter. Another restriction that we consider
in the paper is connected with lists L(x) ⊆ N specifying which colors are
available to x.
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Definition 1.5. Let it be a graph G(V,E) and a collection of lists L : V 7→
Pfin(N) (resp. L : E 7→ Pfin(N), L : V ∪ E 7→ Pfin(N)). A vertex coloring
(resp. edge coloring, (pseudo)total coloring) c of G is called L-list coloring
if ∀v∈V c(v) ∈ L(v) (resp. ∀e∈E c(e) ∈ L(e), ∀x∈V ∪E c(x) ∈ L(x)).

Given a graph G and a collection of lists L, the problem of existence of a
coloring of the above type is called the list coloring problem for vertices,
edges, etc.

Definition 1.6. Let it be a graph G(V,E) and cost functions fx computable
in time O(1) for all x ∈ V (resp. x ∈ E, x ∈ V ∪ E). By the cost of vertex
coloring (resp. edge coloring, (pseudo)total coloring) c we mean the sum∑

v∈V fv(c(v)) (resp.
∑

e∈E fe(c(e)),
∑

x∈V ∪E fx(c(x))).

Given a graph G with functions fx on the vertices and/or edges, it is natural
to ask for a coloring whose sum of costs is as small as possible. We shall
call such a coloring as optimal. At last we combine both models, that is, we
consider a graph whose elements x are assigned both available colors L(x)
and cost functions fx (which are defined on L(x) rather than on the whole
N) and we ask for a cheapest coloring among all legal L-list colorings (if one
exists). We shall call such a problem the list cost coloring problem.

Lemma 1.7. Let G(V,E) be a graph and L be a collection of lists. Then a
coloring c exists if the cardinalities of lists fulfil the following:

• for vertex coloring

∀u∈V |L(u)| ≥ deg(u) + 1,

• for edge coloring

∀{u,v}∈E |L({u, v})| ≥ deg(u) + deg(v) − 1,

• for pseudototal coloring

∀{u,v}∈E|L({u, v})| ≥ deg(u)+deg(v)+1 and ∀u∈V |L(u)| ≥ deg(u)+1,

• for total coloring

∀{u,v}∈E|L({u, v})| ≥ deg(u)+deg(v)+1 and ∀u∈V |L(u)| ≥ 2deg(u)+1.
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Proof. It is easy to see that any greedy algorithm finds a solution provided
that elements x are colored one by one and L(x) contains more elements than
the number of colors being in a conflict with c(x).

a

b

c

d

1 2

1

1

a

b

c

d

1

2

3
a

b

c

d

4 1 4

4

2

3

4

a

b

c

d

2 1 4

3

2

3

1

a

b

c

d

2 1

2

3

a

b

c

d

3

2

1

a

b

c

d

1 3

2

1

(a) (b) (c)

(d) (e) (f)

(g)

Figure 1. Colorings: (a) vertex; (b) edge; (c) pseudototal; (d) total; (e) list vertex

L(a) = {2, 3}, L(b) = {2, 3}, L(c) = {1, 3}, L(d) = {1, 2}; (f) list edge

L(ad) = {2, 3}, L(bd) = {2, 3}, L(cd) = {1, 4}; (g) vertex cost optimal

fa(x) = 5x, fb(x) = 5|x − 2|, fc(x) = fd(x) = x.

Definition 1.8. For a given graph G and a given model of coloring, the
collection of lists L is called exact if for all elements of G being colored the
corresponding bound in Lemma 1.7 holds tight.

Note that the general problem of list coloring can be reduced to that of cost
coloring. It suffices to assign cost fx(i) = 0 if i ∈ L(x) and fx(i) = 1 if
i /∈ L(x). Then a list coloring of G exists if and only if there is a coloring of
G (without lists) with zero cost.
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Next, the cost coloring problem can be reduced to that of list cost coloring.
In fact, we can create an exact collection of lists by assigning to each element
x a list L(x) of length mentioned in Definition 1.8, and consisting of colors
with the smallest possible costs, i.e., the smallest values of functions fx. It
is easy to see that a coloring c can be reduced to an L-list coloring without
increasing its cost. To the aim we successively exchange all colors c(x) /∈
L(x) with the cheapest available (at the moment) from L(x). By Definition
1.8 we know that there is at least one such color available.

Also, note that the general version of list cost coloring problem can be
polynomially reduced to the same problem but with all lists being exact.
In fact, let C be the biggest of all costs on all lists of L. We construct a
collection L′ of lists by augmenting lists too short (in the sense of Definition
1.8) by new unique colors with cost (m + n)C + 1. Then the existence of L-
list coloring is equivalent to the fact that an optimal L′-list coloring has the
cost less than (m + n)C + 1. On the other hand, deleting the elements with
highest costs without changing the optimal solution can shorten the lists
too long for being exact. For this reason we may assume, unless otherwise
stated, that all instances of the list cost coloring problem have an exact
collection of lists.

Kroon et al. [6] proved that the optimal cost coloring of the vertices
of G can be found in linear time if G is a tree. Using a similar method we
obtain

Theorem 1.9 ([6]). The list cost vertex coloring problem for trees is solv-
able in linear time.

2. Coloring Algorithms

We begin with recalling some basic facts concerning matching.

Definition 2.1. Any set of independent edges B ⊆ E of graph G(V,E) is
called a matching. A matching is perfect if |B| = |V |/2.

Lemma 2.2 ([9]). A maximum cardinality matching can be found in time
O(mn1/2).

Lemma 2.3 ([5]). For a given bipartite graph G(V,E) with weights w :
E 7→ N0 one can find the heaviest matchings (in the sense of sum of
weights) in all subgraphs induced by sets V − v, v ∈ V in time O(mn1/2

log(nmaxe∈E w(e))).
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Note that the same time is required to find the lightest matchings hav-
ing the maximum cardinality in these subgraphs. It suffices to use the
above-mentioned algorithm to the same subgraphs but with weights w ′(e) =
bn(G)maxf∈E(G) w(f)/2c − w(e) + 1.

Lemma 2.4 ([8, 10]). For every fixed k ∈ N there exists a polynomial-
time probabilistic algorithm for solving the following problem: given graph
G, a family of pairwise disjoint subsets Ei ⊆ E, and integers ai ∈ N0, i =
1, . . . , k; we aim at finding a perfect matching B in G such that |B∩Ei| = ai

for all i = 1, . . . , k.

The authors showed in [2] the following

Theorem 2.5. For every fixed k the cost edge coloring problem with increas-
ing cost functions for graphs G with the cyclomatic number at most k can
be solved in time O(n∆1.5+k log(nC)), where C = maxe∈E(G) fe(2∆(G)−1).

We will show that Theorem 2.5 can be generalized to list cost coloring of such
graphs with arbitrary cost functions. Our approach develops a technique for
finding optimal edge sum coloring of trees [1] and uses an improvement useful
in reducing its time complexity [12].

Lemma 2.6. An optimal list cost coloring of the edges of tree G can be
found in time O(n∆2 log(nC)), where C = maxe∈E(G),i∈L(e) fe(i).

Proof. We shall sketch a procedure for determining the minimum cost
of list coloring of a tree G(V,E). One can easily extend it to finding the
corresponding coloring. Suppose that a collection of lists L is exact for
G. For a pair of adjacent vertices v and v ′ let H stand for the largest
subtree of G such that {v, v′} belongs to H and v is a leaf. Function
V al(v, v′) : L({v, v′}) 7→ N0 is defined so that V al(v, v′)(i) is the minimal
cost of L|E(H)-list coloring of the edges of H with the same cost functions
as in G, in which edge {v, v′} gets color i. If we recursively find the values
of V al(u, u′) for a leaf u of G then the requested optimal cost will be equal
to mini∈L({u,u′}) V al(u, u′)(i).

If H contains only one edge {v, v′} then obviously V al(v, v′) = f{v,v′}.
So suppose that in the succeeding step of the procedure we have a subtree H
as shown in Figure 2 and the functions V al(v ′, wl), l = 1, . . . , k are already
known.
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Figure 2. Tree H and its subtrees.

To find the value of V al(v, v′) we construct a bipartite graph Kv,v′ whose
vertices in the first partition are w1, . . . , wk and the vertices in the second
partition are colors L({w1, v

′})∪· · ·∪L({wk, v
′}). There is an edge {wl, x} in

Kv,v′ if and only if x ∈ L({wl, v
′}) and then we put the weight V al(v′, wl)(x)

on it. In that case V al(v, v′)(j) is equal to the weight of the lightest k-
edge matching in subgraph Kv,v′ − {j} (i.e., the cost of coloring of Tl) plus
f{v,v′}(j), since edge {v, v′} has to be given color j.

Finding the value of V al(v, v′) requires prior calculating the weights of
k-edge matchings in all graphs Kv,v′ − {j} for j ∈ L({v, v′}). By using the
algorithm mentioned in Lemma 2.3 for graph K v,v′ , for which n(Kv,v′) =
O(degG(v′)∆(G)) = m(Kv,v′), we can do this in time O(degG(v′)3/2∆(G)3/2

log(n∆(G)C)). We get the overall complexity of the coloring algorithm by
summing up among all vertices v′, which results in O(n∆2 log(nC)).

Theorem 2.7. For every fixed k a list cost coloring of the edges of graph
G with the cyclomatic number at most k can be found in time O(n∆2+k

log(nC)), where C = maxe∈E(G),i∈L(e) fe(i).

Proof. Let G(V,E) be a graph with γ(G) = k, L its exact lists and let
A = {e1, . . . , ek} be a set of the edges whose deletion form G results in a
spanning tree. Moreover, let U =

⋃
e∈A e be the set of all vertices incident

with the edges of A. All we need is an O(n(G)∆(G)2 log(n(G)C))-time
procedure which for a given L|A-list coloring d : A 7→ N0 of G(U,A) finds
its cost optimal extension to an L-list edge coloring of G. We will use the
algorithm of Lemma 2.6. On the basis of graph G, the collection of lists L
and cost functions we build a tree T , as follows.
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Step 1. Delete the edges of A from G.

Step 2. For each deleted edge {u, v} ∈ A introduce two new pendant
edges {u, unew}, {v, vnew} with 1-element lists of the form: LT ({v, vnew}) =
LT ({u, unew}) = {d({u, v})}. Next, define two cost functions for them,
namely: one fT

{v,vnew} = f{v,u}, and the other fT
{u,unew} = 0.

Step 3. Leave costs and lists of the remaining edges unchanged.

The optimal cost of list edge coloring of T and the extension of function d to
list cost coloring of G are equal: edges {u, unew} and {v, vnew} correspond
to the ’halves’ of split edge {u, v} and 1-element lists of these pendant edges
enforce the validity of the extension of d. Finally, note that n(T ) = n(G)+2k
and ∆(T ) = ∆(G), which completes the proof.

Analogously, for the pseudototal model of coloring (cf. [3]) we have

Theorem 2.8. For every fixed k a list cost pseudototal coloring of a graph
G with the cyclomatic number at most k can be found in time O(n∆2+k

log(nC)), where C = maxx∈V (G)∪E(G),i∈L(x) fx(i).

Proof. It is easy to see that a pseudototal coloring of G(V,E) corresponds
to edge coloring of its supergraph G′(V ′, E′), in which a new additional
pendant edge ev incident with v is introduced on each v ∈ V (G). Both
coloring problems become equivalent, if we carry over the lists and costs
from v to ev for all v, i.e., ∀v∈V (G)f

G′

ev
= fv ∧ LG′

(ev) = L(v). Note that
n(G′) = 2n(G), γ(G) = γ(G′), ∆(G′) = ∆(G)+1, so the complexity follows.

Now, let us consider the total model of coloring of G.

Lemma 2.9. An optimal total list cost coloring of a tree G can be found in
time O(n∆3 log(nC)), where where C = maxx∈V (G)∪E(G),i∈L(x) fx(i).

Proof. Like previously, we merely sketch a procedure for determining
the minimum cost of coloring a tree G. We will use a method similar to
that in the proof of Lemma 2.6. Suppose that a collection of lists L is
exact for G. For a pair of adjacent vertices v, v ′ we denote by H the same
subtree as in that proof. Now let V al(v, v ′) : L(v) × L({v, v′}) 7→ N0 be
defined so that the value of V al(v, v′)(i, j) for i 6= j is the minimal cost of
L|V (H)∪E(H)-list total coloring of H (with cost functions as in G), in which
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vertex v got color i and edge {v, v′} obtained color j. If we succeed in
calculating the value of function V al(u, u′) for a pendant vertex u in G and
{u, u′} ∈ E(G), then the requested optimal value of cost will be equal to
mini∈L(u),j∈L({u,u′})−{i} V al(u, u′)(i, j).

If E(H) consists of {v, v′} only and i 6= j, then clearly V al(v, v ′)(i, j) =
fv(i)+f{v,v′}(j)+mina∈L(v′)−{i,j} fv′(a). So suppose that we have a subtree
H as in Figure 2 and that the values of V al(v ′, wl), l = 1, . . . , k are already
known. For a triple of different integers (i, j, s) ⊆ L(v) × L({v, v ′}) × L(v′)
by V ali,j,s we denote the minimal cost of L|V (H)∪E(H)-list total coloring of
H in which vertices v, v′ and edge {v, v′} got colors i, s, j, respectively. In
order to calculate V ali,j,s we construct a bipartite graph Kv,v′(s) — the
same as in the proof of Lemma 2.6, except that edge {wl, x} has the weight
V al(v′, wl)(s, x). It is easy to see that V ali,j,s is equal to the weight of
the lightest k-edge matching in graph Kv,v′(s) − {j, s} (i.e., the total cost
of coloring of subtrees Tl) plus fv(i) + f{v,v′}(j) − (k − 1)fv′(s) (i.e., the
cost of coloring vertex v, edge {v, v ′} and a correction resulting from a
(k − 1)-fold counting of fv′(s) in the previous step). In the end, we have
V al(v, v′)(i, j) = mins∈L(v′)−{i,j} V ali,j,s for i 6= j.

Finding the value of function V al(v, v ′) requires prior calculation of
the numbers V ali,j,s, where s ∈ L(v′). The cardinality of the set of these
numbers is bounded by O(∆(G)2deg(v′)), but this must be preceded by
finding the lightest k-edge matchings in all graphs K v,v′(s) − {j, s} for j ∈
L({v, v′}), s ∈ L(v′)−{j}. By using the algorithm of Lemma 2.3 for graphs
Kv,v′(s) − {s}, s ∈ L(v′) we can calculate this in time O(deg(v ′)∆(G)3

log(n∆(G)C)). Finally, by summing up the timing for all v ′ we conclude
that the overall complexity of the tree coloring algorithm is bounded by
O(n∆3 log(nC)).

A dynamic programming for the total cost coloring of trees was first applied
in [3], however, without considering the lists of available colors. Now we
shall prove two new theorems that extend Theorems 2.7 and 2.8 to total
colorings.

Theorem 2.10. For every fixed k a total list cost coloring of a graph G with
the cyclomatic number at most k can be found in time O(n∆3+2k log(nC)),
where C = maxx∈V (G)∪E(G),i∈L(x) fx(i).

Proof. We apply the same notation as used in the proof of Theorem 2.7.
In addition, let U ′ ⊆ U with |U ′| ≤ k be a vertex cover in graph (U,A). All
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we need is design an algorithm running in time O(n(G)∆(G)3 log(n(G)C)),
which for a given function d : U ′ ∪ A 7→ N such that

∀x∈U ′∪Ad(x) ∈ L(x),

∀u,v∈U ′{u, v} ∈ E(G) ⇒ d(u) 6= d(v),

∀e,f∈Ae ∩ f 6= ∅ ⇒ d(e) 6= d(f),

∀v∈U ′∀e∈Av ∈ e ⇒ d(e) 6= d(v),

finds the minimum cost extension to list coloring of the whole G. As previ-
ously, we apply the procedure from the proof of Lemma 2.9. We transform
graph G and its lists into tree T (see Steps 1 and 2 in the proof of Theorem
2.7), and define zero-valued cost functions as well as lists for new vertices
unew and vnew, namely: LT (unew) = L(v) i LT (vnew) = L(u). Next we
introduce the following modifications:

1. For each v ∈ U ′ the new list is LT (v) = {d(v)}.

2. For each new pendant vertex vnew belonging to edge {v, vnew} introduced
in the place of deleted edge {u, v} ∈ A, if u ∈ U ′ then we set LT (vnew) =
{d(u)}.

3. The remaining elements of tree T inherit their lists and cost functions
from G, i.e., ∀x∈(V (G)∪E(G))−(A∪U ′)f

T
x = fx ∧ LT (x) = L(x).

Again, it is easy to see that by the same arguments the minimal cost of total
list coloring of T and that of list cost coloring of G extending d are equal to
each other.

The following corollary generalizes Theorem 1.9.

Corollary 2.11. For every fixed k the problem of list cost coloring of the
vertices of G with the cyclomatic number at most k is polynomially solvable.

Proof. List cost coloring of the vertices of graph G reduces to list total col-
oring of G whenever all edges are preassigned the same list of ∆(G)+1 colors
different from the colors available to vertices and all edges are preassigned
zero-valued cost functions.
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3. Multicoloring of Graphs with Few Cycles

Let us assume that graph G is assigned a new parameter being an integer
function size S defined on elements to be colored (vertices, edges or both
vertices and edges). This allows us to generalize all models of coloring under
consideration to multicoloring. A multicoloring is an assignment of a set c(x)
of colors to every vertex and/or edge x, i.e., a set c(x) ∈ Pfin(N), where
|c(x)| = S(x). Now the non-conflict condition c(x) 6= c(y) becomes c(x) ∩
c(y) = ∅ for any two adjacent or incident elements x, y. We are not going
to give a formal definition of vertex multicoloring, edge multicoloring, etc.,
since these notions are obvious. It is easy to see that classical coloring can be
regarded as a special case of multicoloring in which S = 1. In addition, for a
list multicoloring we have c(x) ⊆ L(x). We can also extend the cost criterion
to the formula

∑
v∈V

∑
i∈c(v) fv(i) for the vertex multicoloring model and∑

e∈E

∑
i∈c(e) fe(i) and

∑
x∈V ∪E

∑
i∈c(x) fx(i) for the edge and (pseudo)total

multicoloring model, respectively. The extension of coloring to multicoloring
causes a dramatic increase in computational complexity.

Theorem 3.1 ([7]). It is NP-complete to decide the existence of list vertex
multicoloring for a binary tree G with a size function S : V (G) 7→ N .

If we assign to the edges any 1-element pairwise different lists of available
colors not appearing on the vertex lists L and we set S(e) = 1 to each e of
a binary tree, then we transform our problem to the total list multicoloring
problem.

Corollary 3.2. It is NP-complete to decide the existence of list total multi-
coloring of a binary tree.

Similarly as in Section 1 we can get rid of lists by introducing suitable zero-
one cost functions. In this way we reduce the L-list multicoloring problem
to the cost multicoloring (without lists).

Corollary 3.3. The problems of vertex cost and total cost multicoloring of
a binary tree are NP-hard.

Thus the only chance for trees to have a polynomial-time algorithm for mul-
ticoloring are the models of edge and pseudototal coloring, i.e., the models
not introducing the conflicts on colors of adjacent vertices. In fact, we have
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Theorem 3.4 ([8]). The list edge multicoloring problem can be solved in
polynomial time for a tree G with size function S : E(G) 7→ N .

Following [8] we shall sketch the proof. For a graph G(V,E) with function
S : E 7→ N0 let us define another mapping S ′ : V 7→ N0 as follows

S′(v) =
∑

e∈Ev

S(e).(1)

This allows us to reduce L-list edge multicoloring that fulfills:

∀e∈Ec(e) ⊆ L(e),

∀e,f∈Ee ∩ f 6= ∅ ⇒ c(e) ∩ c(f) = ∅,(2)

∀e∈E|c(e)| = S(e)

to deciding whether there is a modified L-list multicoloring c of G with
appropriate numbers of colors meeting at the vertices rather than just put
on the edges,

∀e∈Ec(e) ⊆ L(e),

∀e,f∈Ee ∩ f 6= ∅ ⇒ c(e) ∩ c(f) = ∅,(3)

∀v∈V

∑

e∈Ev

|c(e)| = S ′(v).

As it was shown in [8], if G is a tree then function S ′ unambiguously de-
termines S, then in case of trees and functions S and S ′ defined in (1)
conditions (2) and (3) are equivalent for any multicoloring.

Now conditions (3) can be reduced to finding a perfect matching, see
Figure 3 for example. Namely, we construct graph M as a sum of disjoint
copies Gl(Vl, El) of G for all l ∈

⋃
e∈E(G) L(e). From here on by xi we denote

a copy of element x in subgraph Gi. Delete from M all edges ei such that
i /∈ L(e) and after that all isolated vertices. We want a perfect matchings
in M to correspond to modified multicoloring c fulfilling conditions (3) with
i ∈ c(e) if and only if ei belongs to the perfect matching. Henceforth, we
have to guarantee that for each v ∈ V in

⋃
l∈(

⋃
e∈E(G)

L(e)) El there are exactly

S′(v) edges of the matching outgoing from vertices vi (i ∈
⋃

e∈Ev(G) L(e)).
To the purpose we add to graph M a set of new vertices Vv with cardinality
|
⋃

e∈Ev(G) L(e)| − S′(v) which, together with vi (i ∈
⋃

e∈Ev(G) L(e)) create
two partitions of a complete bipartite graph, and we iterate this operation
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for all v ∈ V (G). It is easy to see that each perfect matching in such M corre-
sponds to a certain L-list multicoloring of tree G. But n(M) = O(n(G)∆L)
and m(M) = O(n(G)∆2

L), where ∆L = maxv∈V (G)
∑

e∈Ev(G) |L(e)|. There-
fore, by Lemma 2.2, we can solve the problem of existence of L-list edge

multicoloring for tree G in time O(n3/2∆
5/2
L ). The description of problem’s

instance must contain the structure of graph G, function S as well as all
lists L(e) for e ∈ E(G), so the above time complexity is polynomial.

S=1

S=2

S=1

{1,3,5}

{1,2}

{2,3,4,5}

{1,3,5}

{2,3,4,5}

{1,2}

1

1

4
2

K1,2

K2,3

K4,2

K5,1

( )a ( )c

( )b

Figure 3. Reduction: (a) instance of the problem; (b) tree G with function S ′; (c)

graph M , where grey ellipses stand for complete bipartite graphs with

white-black partitions and vertices of different subgraphs G1, . . . , G5 are

marked with five different black symbols.

Theorem 3.5. The list cost multicoloring problem for the edges of tree G
with S : E(G) 7→ N can be solved in polynomial time.

Proof. On the edges of graph M defined in the previous proof we put
weights w equal to the costs of coloring of the corresponding edges from G:

∀e∈E(G)∀i∈L(e)w(ei) = fe(i)

and the remaining edges have weights all equal to 0. Next, we look for
a lightest perfect matching in M . Such a matching determines a minimum
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solution to our multicoloring problem. Using the algorithm mentioned in

Lemma 2.3 we obtain the result in time O(n3/2∆
5/2
L log(n∆LC)), where

C = maxe∈E(G),i∈L(e) fe(i).

Theorem 3.6 ([8]). For every fixed k there is a randomized polynomial-
time algorithm for list edge multicoloring in graphs with the cyclomatic num-
ber at most k.

Proof. Following [8] we sketch the proof. Given graph G(V,E), let A ⊆ E
(|A| = k) be a set of edges whose deletion from G results in a tree. Now
function S ′ defined in (1) does not have to determine S unambiguously
and, consequently, conditions (3) do not imply those of (2). In order for
a perfect matching B in M to determine L-list multicoloring of the edges
of G with size functions S, we have to add to (3) the following condition:
∀e∈A|B ∩ {ei : i ∈ L(e)}| = S(e) to fulfil condition (2) (see [8] for details).
In this place the author of [8] refers to Lemma 2.4.

Now, by combining both techniques, we obtain

Theorem 3.7. For every fixed k there is a randomized pseudopolynomial-
time algorithm for list cost edge multicoloring in graphs with the cyclomatic
number at most k.

Proof. Instead of M we consider a homeomorphic graph M ′ in which
each edge ei ∈ E(M), where e ∈ E(G), i ∈ L(e), has been replaced by a
path of length 2fe(i)+1 consisting of consecutive edges denoted ei,1, ei,2, . . . ,
ei,2fe(i)+1. Note that there is a one-to-one correspondence between a perfect
matching B in M and a perfect matching B ′ in M ′. Moreover, if ei ∈ B then
ei,1, ei,3, ei,5, . . . , ei,2fe(i)−1, ei,2fe(i)+1 ∈ B′, otherwise ei,2, ei,4, . . . , ei,2fe(i)−2,
ei,2fe(i) ∈ B′. Now let F = {ei,j ∈ E(M ′) : e ∈ E(G) ∧ i ∈ L(e) ∧ j >
1 ∧ ¬(2|j)} and A ⊆ E(G) be the same as in the proof of Theorem 3.6.
Note that F has exactly fe(i) edges in common with the path of M ′ which
replaced edge ei ∈ E(M). Thus G has L-list edge multicoloring with cost
equal to X if and only if M ′ has a perfect matching B ′ fulfilling

∀e∈A|B
′ ∩ {ei,1 : i ∈ L(e)}| = S(e),

|B′ ∩ F | = X.
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The latter problem can be solved by means of the algorithm of Lemma 2.4.
The minimum cost solution to our problem can be found by a search in the
interval from 0 to

∑
e∈E(G) S(e)max fe|L(e).

Theorem 3.8. All the theses of Theorems 3.4–3.7 remain true in pseudo-
total multicoloring model.

Proof. Similarly as in the proof of Theorem 2.8 we can translate pseudo-
total multicoloring into the edge multicoloring model by replacing G(V,E)
with its supergraph G′(V ′, E′). In this case we also have to extend the size
function by giving the size SG′

(ev) = S(v) to each new pendant edge ev.
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