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Instituto Literario, Centro 50000, Toluca, Edo. de México, México

Abstract

We call the digraph D an m-coloured digraph if the arcs of D are
coloured with m colours and all of them are used. A directed path is
called monochromatic if all of its arcs are coloured alike. A set N of
vertices of D is called a kernel by monochromatic paths if for every
pair of vertices there is no monochromatic path between them and for
every vertex v in V (D) \ N there is a monochromatic path from v to
some vertex in N . We denote by A+(u) the set of arcs of D that have
u as the initial endpoint.

In this paper we introduce the concept of semikernel modulo i by
monochromatic paths of an m-coloured digraph. This concept al-
low us to find sufficient conditions for the existence of a kernel by
monochromatic paths in an m-coloured digraph. In particular we deal
with bipartite tournaments such that A+(z) is monochromatic for each
z ∈ V (D).

Keywords: m-coloured bipartite tournaments, kernel by monochro-
matic paths, semikernel of D modulo i by monochromatic paths.

2000 Mathematics Subject Classification: 05C15, 05C20.



350 H. Galeana-Sánchez, R. Rojas-Monroy and B. Zavala

1. Introduction

For general concepts we refer the reader to [1]. A kernel N of a digraph D is
an independent set of vertices of D such that for every w ∈ V (D) \N there
exists an arc from w to N (i.e., N is dominating). So a kernel is a dominating
independent set of vertices. For a deep wide study of domination the reader
can see [15] or [16]. An m-coloured digraph D is called quasi-monochromatic
if with at the most one exception all of its arcs are coloured alike (i.e., all
arcs are coloured alike or all arcs but one are coloured alike). The problem
of the existence of a kernel in a given digraph has been studied by several
authors in particular Richardson [23, 24], Duchet and Meyniel [5], Duchet
[3, 4], Galeana-Sánchez and V. Neumann-Lara [10, 11]. A survey on kernels
can be found in [2] and in [6]. The concept of kernel by monochromatic
paths is a generalization of the concept of kernel and it was introduced by
Galeana-Sánchez [7]. In that work she obtained some sufficient conditions
for an m-coloured tournament T has a kernel by monochromatic paths.
More information about m-coloured digraphs can be found in [8, 9, 27, 28].
Another interesting generalization is the concept of (k, l)-kernel introduced
by M. Kwaśnik [19]. Other results about (k, l)-kernels have been developed
by M. Kucharska [17], M. Kucharska and M. Kwaśnik [18], M. Kwaśnik [20],
and A. W loch and I. W loch [26].

In [25] Sands et al. have proved that any 2-coloured digraph has a ker-
nel by monochromatic paths. In particular they proved that any 2-coloured
tournament has a kernel by monochromatic paths. They also raised the
following problem: Let T be a 3-coloured tournament such that every di-
rected cycle of length 3 is quasi-monochromatic; must D have a kernel by
monochromatic paths? In [21] S. Minggang proved that if in the problem we
ask that every transitive tournament of order 3 be quasi-monochromatic, the
answer will be yes. In [7] it was proved that if T is an m-coloured tournament
such that every directed cycle of length at most 4 is quasi-monochromatic
then T has a kernel by monochromatic paths. The known sufficient condi-
tions for the existence of a kernel by monochromatic paths in m-coloured
(m ≥ 3) tournaments, (or nearly tournaments), ask for the monochromatic-
ity or quasi-monochromaticity of small subdigraphs as directed cycles of
length at most 4 or transitive tournaments of order 3. A related problem
to the existence of kernels by monochromatic paths in tournaments is to
find absorbing sets of minimum size, this problem has been studied by G.
Hahn, P. Ille and R. Woodrow [14]. In [12] were proved that: Let D be an
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m-coloured bipartite tournament. If every directed cycle of length 4 in D
is monochromatic, then D has a kernel by monochromatic paths. Another
kind of condition is about the number of colours assigned to A+(u) for each
u, [13]. (A+(u) denotes the sets of arcs with u as an endpoint).

A digraph T is called bipartite tournament if exists a partition {V1, V2}
of V (T ) such that every arc of A(T ) joins a vertex of V1 to a vertex of V2

and between every vertex of V1 and every vertex of V2 exists one and only
one arc.

We denoted by T4 the digraph such that V (T4) = {u, v, w, x} and
A(T4) = {(u, v), (v, w), (w, x), (u, x)}. Let C3 be the 3-coloured directed
cycle of length 3. We say that a digraph D is a (1, 1, 2) subdivision of C3 if
V (D) = {v1, v2, v3, v4} and A(D) = {(v1, v2), (v2, v3), (v3, v4), (v4, v1)} such
that (v1, v2) and (v2, v3) are coloured a, (v3, v4) is coloured b and (v4, v1) is
coloured c, with a 6= b, a 6= c, b 6= c, see Figure 1.

1
v v2u v

x w v4 v3

a
a

b

c4T
of 3C

subdivision
(1,1,2)

:
:

Figure 1

In this paper is proved that if T is an m-coloured bipartite tournament with
m ≥ 3 such that for every vertex u of T , A+(u) is monochromatic (all of its
elements have the same colour) and T contains no (1, 1, 2) subdivision of C3

and every T4 contained in T is at most 2-coloured. Then T has a kernel by
monochromatic paths.

We will need the following results:

Lemma 1.1. Every uv-monochromatic walk in a digraph contains a uv-
monochromatic path.

Lemma 1.2 (H. Galeana-Sánchez and R. Rojas-Monroy [12]). Let D be a
bipartite tournament, if C = (u0, u1, . . . , un) is a directed walk in D then for
i ∈ {0, 1, . . . , n} and j ∈ {0, 1, . . . , n}, (ui, uj) ∈ A(D) or (uj , ui) ∈ A(D) if
and only if j − i ≡ 1 ( mod 2).

Theorem 1.3 (Sands, Sauer and Woodrow [25]). Let D be a 2-coloured
digraph, then D has a kernel by monochromatic paths.
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Let α = (x0, x1, . . . , xn) be a path, we will denote by `(α) the length of α,
and we will denote by (xi, α, xj) the path (xi, xi+1, . . . , xj).

2. Semikernels Modulo i by Monochromatic Paths

An important concept in the study of the existence of kernels in digraphs
has been semikernel that was given by V. Neumann-Lara in 1971 [22]. In
this section we defined semikernel modulo i by monochromatic paths for an
m-coloured digraph. This concept is a generalization of semikernel and will
be useful to prove Theorem 3.1, our main result.

Definition 2.1. Let D be an m-coloured digraph, let 1, 2, . . . ,m be the
distinct colours, and let i ∈ {1, . . . ,m} be anyone but fixed. A set S ⊆ V (D)
is a semikernel of D modulo i by monochromatic paths if the following
conditions are fulfilled:

1. S is an independent set by monochromatic paths, i.e., for every pair of
vertices there is no monochromatic path between them.

2. For each z ∈ V (D) \ S such that there exists a Sz-monochromatic path
of different colour of i, then there exists a zS-monochromatic path in
D. (Sz-monochromatic path denotes a sz-monochromatic path for some
s ∈ S, similarly zS-monochromatic paths).

Theorem 2.2. Let D be an m-coloured digraph such that for every u ∈
V (D), A+(u) is monochromatic. Then D has a non empty semikernel mod-
ulo i by monochromatic paths for every i ∈ {1, 2, . . . ,m}.

Proof. Let i ∈ {1, . . . ,m} and z0 ∈ V (D) such that A+(u) is coloured i,
clearly {z0} is a semikernel modulo i by monochromatic paths.

Let i ∈ {1, . . . ,m} and Γi = {S | S is a non empty semikernel mod i by
monochromatic paths of D}. Notice that Γi 6= ∅ by Theorem 2.2.

We define a partial order in Γi as follows:

Definition 2.3. Let {S1, S2} ⊆ Γi. We called S1 ≤ S2 if for each x1 ∈ S1

exists x2 ∈ S2 such that one the following properties is satisfies:

1. x1 = x2,

2. There exists a x1x2-monochromatic path coloured i and there exists no
x2x1-monochromatic path coloured i.
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We will denote x1

i
−→ x2 if there exists an x1x2-monochromatic path

coloured i, and x2 6
i

−→ x1 if there is no monochromatic path coloured i.

Theorem 2.4. Γi is a partially ordered set by ≤.

Proof. 1. S ≤ S for every S ∈ Γi is immediate.

2. S1 = S2 whenever {S1, S2} ⊆ Γi, S1 ≤ S2, S2 ≤ S1.

We will prove S1 ⊆ S2. Let x1 ∈ S1, we have S1 ≤ S2 then there exists

x2 ∈ S2 such that x1 = x2 or x1

i
−→ x2 and x2 6

i
−→ x1. We analyze two

cases.

(a) If x1 = x2 then x1 ∈ S2.

(b) If x1

i
−→ x2 and x2 6

i
−→ x1. Since x2 ∈ S2, S2 ≤ S1 there exists

u1 ∈ S1 such that x2 = u1 or x2

i
−→ u1 and u1 6

i
−→ x2. Then we have

the following cases

(i) Let x2 = u1 then x1

i
−→ x2 = u1, {x1, u1} ⊆ S1, contradicting

that S1 is independent by monochromatic paths.

(ii) If x2

i
−→ u1 and u1 6

i
−→ x2 then x1

i
−→ x2

i
−→ u1, from Lemma 1.1

x1

i
−→ u1, contradicting that S1 is independent by monochromatic

paths.

Thus (b) is not possible.

The proof of S2 ⊆ S1 is similar.

Thus S1 = S2.

3. If S1 ≤ S2, S2 ≤ S3 we prove that S1 ≤ S3, {S1, S2, S3} ⊆ Γi.

Let x1 ∈ S1. Since S1 ≤ S2, then there exists x2 ∈ S2 such that x1 = x2 or

x1

i
−→ x2 and x2 6

i
−→ x1. We consider two possible cases.

(a) If x1 = x2. Since S2 ≤ S3 then there exists x3 ∈ S3 such that x2 = x3

or x2

i
−→ x3 and x3 6

i
−→ x2. Then we have:

(i) If x2 = x3, then x1 = x2 = x3 with x3 ∈ S3.

(ii) If x2

i
−→ x3 and x3 6

i
−→ x2. Since x1 = x2, we have that x2 =

x1

i
−→ x3 and x3 6

i
−→ x2 = x1.

(b) If x1

i
−→ x2 and x2 6

i
−→ x1. We have the next cases:

(i) If x2 = x3 then x1

i
−→ x3 and x3 6

i
−→ x1.
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(ii) If x2

i
−→ x3 and x3 6

i
−→ x2, then x1

i
−→ x2 and x2

i
−→ x3 then

from Lemma 1.1 x1

i
−→ x3.

We will prove x3 6
i

−→ x1. By contradiction, we assume there exists

x3

i
−→ x1 and we have x1

i
−→ x2, then from Lemma 1.1 there

exists x3

i
−→ x2, contradicting that x3 6

i
−→ x2.

Thus S1 ≤ S3.

Since D is a finite digraph, we claim that (Γi,≤) has maximal elements.

3. The Main Result

Now we show a sufficient condition for an m-coloured bipartite tournament
has a kernel by monochromatic paths.

Theorem 3.1. Let T be an m-coloured bipartite tournament with m ≥ 3,
such that A+(u) is monochromatic for every u ∈ V (T ). If every T4 contained
in T is at most 2-coloured and T has not (1, 1, 2) subdivision of C3, then T
has a kernel by monochromatic paths.

Proof. By induction on | V (T ) |.
If | V (T ) |≤ 3, T has at most 2 arcs and T can not be 3-coloured, so by

Theorem 1.3 T has a kernel by monochromatic paths.

If | V (T ) |= 4, suppose that V (T ) = {u, v, w, x} w.l.o.g. suppose that
(X,Y ) is a bipartition of T and we have the next cases:

Case I. X = {u}, Y = {v, w, x}.

I.a. |A+(u)| ≥ 2, it contradicts the 3-coloring.

I.b. |A+(u)| ≤ 1.

i. |A+(u)| = 0, in this case N = {u} is a kernel by monochromatic
paths.

ii. |A+(u)| = 1, in this case N = {v, w, x} is a kernel by monochromatic
paths of T .

Case II. X = {u, v}, Y = {w, x}.

II.a. |A+(u)| = 2 = |A+(v)|, this is not possible, T is 3-coloured.
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II.b. |A+(u)| = 2, |A+(v)| = 1, this is not possible, T contains no 3-coloured
T4.

II.c. |A+(u)| = 2, |A+(v)| = 0. In this case, N = {u, v} is a kernel by
monochromatic paths (we are using 3 colours).

II.d. |A+(u)| = 1 = |A+(v)|.

i. |A+(x)| = 2, |A+(w)| = 0, analogous at the case (II.c).

ii. |A+(x)| = 1 = |A+(w)| is not possible, T contains no (1,1,2)
subdivision of C3, and we suppose that m ≥ 3 then there is no
monochromatic paths of length greater or equal than 1. Thus T
has a kernel by monochromatic paths, let N = {u, v}.

Now, let T be an m-coloured bipartite tournament with | V (T ) |= n, n ≥ 5.
By contradiction. We assume that T has no kernel by monochromatic

paths. From Theorem 2.2 we know that T has a non empty semikernel
modulo i by monochromatic paths. Let S be a maximal element of (Γi,≤).
Then S is not a kernel by monochromatic paths of T . Let X0 = {x ∈
V (T )\S | there is no xS-monochromatic path }. Since X0 6= ∅ we have that
T [X0] is a proper induced subdigraph of T . And by inductive hypothesis
T [X0] has a kernel by monochromatic paths we call N0. Let B = {x ∈ S |
there is no xN0-monochromatic path coloured i in T}. Then we have the
following assertions:

1. B ∪ N0 ∈ Γi.

1.1. First we will prove B∪N0 is independent by monochromatic paths. We
have that:

1.1.1. B is independent by monochromatic paths, B ⊆ S.

1.1.2. N0 is independent by monochromatic paths in T . We observe that
N0 is independent by monochromatic paths in T [X0]. We proceed by con-
tradiction. We assume that there exists {x, y} ⊆ N0 such that there ex-
ists a xy-monochromatic path in T , we call it α. Then we have that: (i)
V (α) ∩ (V (T ) \X0) 6= ∅ (otherwise α ⊆ D[X0] contradicting that S is inde-
pendent by monochromatic paths in D[X0]), and (ii) V (α)∩S = ∅ (otherwise
we have an X0S-monochromatic path, contradiction to the definition of X0.

Since V (α)∩(V (T )\X0) 6= ∅, then exists z ∈ V (α)∩(V (T )\X0) and we
can suppose that z /∈ S for (ii). Thus exists a zS-monochromatic path we
call it γ. Since z ∈ V (α) ∩ V (γ) and A+(z) is monochromatic we have that
α and γ have the same colour. Then (x, α, z) ∪ γ is a walk and by Theorem
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1.1 it contains a xS-monochromatic path, contradicting x ∈ N0 ⊆ X0. Thus
N0 is independent by monochromatic paths in T .

1.1.3. There is no BN0-monochromatic paths. We assume that there exists
v ∈ B and u ∈ N0 such that there is a vu-monochromatic path, we call it
α, and α is coloured distinct of i because v ∈ B. Since S ∈ Γi, S is a non
empty semikernel by monochromatic paths modulo i, then by definition of
S exists a uS-monochromatic path in T , contradicting u ∈ N0 ⊆ X0.

1.1.4. There is no N0B-monochromatic paths. It is immediately from B ⊆
S, N0 ⊆ X0 and definition of X0.

Thus B ∪ N0 is independent by monochromatic paths.

1.2. Let z ∈ V (T ) \ (B ∪ N0) such that there exists a wz-monochromatic
path coloured distinct of i, with w ∈ B∪N0. We will prove that there exists
a z(B ∪ N0)-monochromatic path. Since N0 is a kernel by monochromatic
paths of T [X0], then N0 6= ∅, so B ∪ N0 6= ∅.

Now we proceed by contradiction. We assume that there is no z(B∪N0)-
monochromatic path in T . Let α be a wz-monochromatic path coloured j,
with j 6= i, we may assume j = 2, α = (w = x0, x1, . . . , xn−1, z). We have
the following cases:

Case 1. Suppose w ∈ B. Since w ∈ B ⊆ S and S ∈ Γi then there
exists a zs-monochromatic path in T with s ∈ S, we call it α′, let α′ =
(z, y1, y2, . . . , ym−1, s). Thus s ∈ S \B, {w, s} ⊆ S and S is independent by
monochromatic paths, then α and α′ have distinct colour, we may assume
that α′ is coloured b 6= 2.

Since s ∈ S \ B and the definition of B implies that for some u ∈ N0

there exists a su-monochromatic path coloured i, we call it α′′ let α′′ =
(s, z1, z2, . . . , z` = u).

If b = i then α′ ∪ α′′ is a zu-walk, by Theorem 1.1 it contains a
zu-monochromatic path with u ∈ N0. Thus there exists a z(B ∪ N0)-
monochromatic path, a contradiction.

We may assume that b 6= i, we remember that b 6= i, b 6= 2, and i 6= 2
we may assume that b = 3.

Case 1.1. `(α′) = 1.
Then (xn−1, z, s, z1) is a path of length 3, Lemma 1.2 implies (xn−1, z1) ∈
A(T ) or (z1, xn−1) ∈ A(T ). If (xn−1, z1) ∈ A(T ), then {xn−1, z, s, z1} in-
duces a 3-coloured T4, contradicting the hypothesis. So we will assume
(z1, xn−1) ∈ A(T ), now we consider two possible cases:
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Case 1.1.1. `(α′′) ≥ 2.
In this case (z1, xn−1) is coloured i thus {xn−1, z, s, z1} induces a (1, 1, 2)
subdivision of C3, a contradiction.

Case 1.1.2. `(α′′) = 1.
In this case z1 = u. If (u, xn−1) is coloured i or 2, then {u, xn−1, z, s} is
a (1,1,2) subdivision of C3, a contradiction. We may assume (u, xn−1) is
coloured c, with c 6= 2 and c 6= i. And we analyze the following cases:

Case 1.1.2.1. `(α) ≥ 2.
We have (xn−2, xn−1, z, s) is a path of length 3 and Lemma 1.2 implies
that xn−2 and s are adjacent. If (xn−2, s) ∈ A(T ) then it is coloured 2, so
{xn−2, s, u, xn−1} induces a 3-coloured T4, a contradiction. Then we may
assume (s, xn−2) ∈ A(D) then it is coloured i and {s, xn−2, xn−1, z} induces
a (1,1,2) subdivision of C3 a contradiction.

Case 1.1.2.2. `(α) = 1.
In this case (w, z, s, u) is a wu-path of length 3, by Lemma 1.2 u and w are
adjacent. The definition of X0 implies (u,w) /∈ A(D), so (w, u) ∈ A(D).
Then {w, z, s, u} induces a 3-coloured T4, a contradiction.

Case 1.2. `(α′) > 1.
We have that S is an independent set and {w, s} ⊆ S then w and s are
not adjacent in T . Since T is a bipartite tournament then w and ym−1

are adjacent. If (ym−1, w) ∈ A(T ), then it is coloured 3, so (z, α′, ym−1) ∪
(ym−1, w) is a zw-monochromatic path, a contradiction. We may assume
that (w, ym−1) ∈ A(T ) and we have that it is coloured 2. Now, (w, ym−1, s, z1)
is a path of length 3, by Lemma 1.2 we have that w and z1 are adjacent.
If (w, z1) ∈ A(T ) then it is coloured 2, then {w, ym−1, s, z1} induces a 3-
coloured T4, a contradiction. We may assume that (z1, w) ∈ A(T ).

If `(α′′) ≥ 2 then (z1, w) ∈ A(T ) is coloured i. Hence {w, ym−1, s, z1, w}
induces a (1,1,2) subdivision of C3, a contradiction. If `(α′′) = 1, then z1 = u
and (u,w) ∈ A(T ), and we have a contradiction with the definition of X0.
If (w, u) ∈ A(T ) is coloured 2, then {w, ym−1, s, u} induces a 3-coloured T4,
a contradiction.

We conclude that case 1 is not possible.

Case 2. Suppose that w ∈ N0.
If z ∈ X0, since N0 is kernel by monochromatic paths of T [X0], then there
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exists a zN0-monochromatic path, a contradiction. Assume that z /∈ X0.
Then there is a zs-monochromatic path α′, for some s ∈ S. Let α′ =
(z, y1, y2, . . . , ym−1, s). If s ∈ B we have done. Assume that s /∈ B. The
definition of B implies that there is a sx-path α′′ coloured i, for some x ∈
N0. Let α′′ = (s, z1, z2, . . . , z` = x). If α′ is coloured 2, then α ∪ α′ is
a ws-monochromatic walk and Theorem 1.1 implies that it contains a ws-
monochromatic path, but this is a contradiction with the definition of X0.
We may assume that α′ is not coloured 2. If α′ is coloured i then α′ ∪ α′′

contains a zx-monochromatic path with x ∈ N0 ⊂ B ∪ N0, a contradiction.
Assume that α′ is coloured 3, with 3 6= 2 and 3 6= i. Since T is a bipartite
tournament then w and s are adjacent or ym−1 and w are adjacent, thus we
have the following cases.

Case 2.1. Suppose that w and s are adjacent. Since w ∈ N0 ⊆ X0, then
the definition of X0 implies that (s, w) ∈ A(T ). Hence (s, w) is coloured
i. Now, (ym−1, s, w, x1) is a path of length 3, so Lemma 1.2, implies that
ym−1 and x1 are adjacent. If (ym−1, x1) ∈ A(T ) then it is coloured 3 and
{ym−1, s, w, x1} induces a 3-coloured T4, a contradiction. We may assume
that (x1, ym−1) ∈ A(T ). If `(α) ≥ 2 then (x1, ym−1) is coloured 2, so
{ym−1, s, w, x1} induces a (1,1,2) subdivision of C3, a contradiction. When
`(α) = 1 then z = x1 and (x1, ym−1) is coloured 3, so {z, ym−1, s, w} induces
a (1,1,2) subdivision of C3, a contradiction.

Case 2.2. Suppose that (ym−1, w) ∈ A(T ). In this case (ym−1, w) is
coloured 3, then (z, α′, ym−1)∪(ym−1, w) contains a zw-monochromatic path,
a contradiction.

Case 2.3. Suppose that (w, ym−1) ∈ A(T ). We have that (w, ym−1) is
coloured 2. Then (w, ym−1, s, z1) is a path of length 3, by Lemma 1.2 w and
z1 are adjacent. If (w, z1) ∈ A(T ) then it is coloured 2, so {w, ym−1, s, z1} in-
duces a 3-coloured T4, a contradiction. If (z1, w) ∈ A(T ), then it is coloured
i. Thus {w, ym−1, s, z1} induces a (1, 1, 2) subdivision of C3, a contradiction.

Then case 2 is not possible and we conclude that for every z ∈ V (T ) \
(B ∪ N0) there is a (B ∪ N0)z-monochromatic path.

Therefore B ∪ N0 ∈ Γi.

2. S < B ∪ N0.
Let u ∈ S, we will prove that there exists v ∈ B∪N0 such that u = v or there
is a uv-monochromatic path coloured i and there is no a vu-monochromatic
path coloured i.
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If u ∈ B, we have done. Assume that u ∈ S \ B then there is a uv-
monochromatic path coloured i, for some v ∈ N0 and the definition of X0

implies that there is not a vu-monochromatic path coloured i.

Then S < B ∪ N0 contradicting of maximality of S in (Γi,≤).

We conclude that T has a kernel by monochromatic paths.
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