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Abstract

We call the digraph D an m-coloured digraph if the arcs of D are
coloured with m colours. A directed path is called monochromatic if
all of its arcs are coloured alike. A set N of vertices of D is called a
kernel by monochromatic paths if for every pair of vertices of N there
is no monochromatic path between them and for every vertex v /∈ N
there is a monochromatic path from v to N . We denote by A+(u) the
set of arcs of D that have u as the initial vertex. We prove that if D is
an m-coloured 3-quasitransitive digraph such that for every vertex u of
D, A+(u) is monochromatic and D satisfies some colouring conditions
over one subdigraph of D of order 3 and two subdigraphs of D of order
4, then D has a kernel by monochromatic paths.
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1. Introduction

For general concepts we refer the reader to [3]. A kernel N of a digraph D
is an independent set of vertices of D such that for every w ∈ V (D) \ N
there exists an arc from w to N . A digraph D is called kernel perfect

digraph when every induced subdigraph of D has a kernel. We call the
digraph D an m-coloured digraph if the arcs of D are coloured with m
colours. A directed path is called monochromatic if all of its arcs are coloured
alike. A set N of vertices of D is called a kernel by monochromatic paths

if for every pair of vertices there is no monochromatic path between them
and for every vertex v not in N there is a monochromatic path from v to
some vertex in N . The closure of D, denoted C(D), is the m-coloured
digraph defined as follows: V (C(D)) = V (D), A(C(D)) = A(D) ∪ {uv with
colour i | there exists a uv-monochromatic path of colour i contained in
D}. Notice that for any digraph D, C(C(D)) ∼= C(D). The problem of
the existence of a kernel in a given digraph has been studied by several
authors in particular Richardson [14, 15]; Duchet and Meyniel [6]; Duchet
[4, 5]; Galeana-Sánchez and V. Neumann-Lara [9, 10]. The concept of kernel
by monochromatic paths is a generalization of the concept of kernel and it
was introduced by Galeana-Sánchez [7]. In that work she obtained some
sufficient conditions for an m-coloured tournament T to have a kernel by
monochromatic paths. More information about m-coloured digraphs can be
found in [8]. In [16] Sands et al. have proved that any 2-coloured digraph
has a kernel by monochromatic paths. In particular they proved that any
2-coloured tournament has a kernel by monochromatic paths. They also
raised the following problem: Let T be a 3-coloured tournament such that
every directed cycle of length 3 is quasi-monochromatic; must D have a
kernel by monochromatic paths? (An m-coloured digraph D is called quasi-

monochromatic if with at most one exception all of its arcs are coloured
alike). In [13] Shen Minggang proved that under the additional assumption
that every transitive tournament of order 3 is quasi-monochromatic, the
answer will be yes. In [7] it was proved that if T is an m-coloured tournament
such that every directed cycle of length at most 4 is quasi-monochromatic
then T has a kernel by monochromatic paths. In [11] we give an affirmative
answer for this question for quasi-transitive digraphs whenever A+(u) is
monochromatic for each vertex u (A+(u) is the set of arcs of D that have
u as the initial vertex). A digraph D is called quasi-transitive if whenever
(u, v) ∈ A(D) and (v, w) ∈ A(D) then (u,w) ∈ A(D) or (w, u) ∈ A(D).
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Quasi-transitive digraphs were introduced by Ghouilá-Houri [12] and have
been studied by several authors for example Bang-Jensen and Huang [1, 2].
We call a digraph D n-quasitransitive digraph if it has the following property:
If u, v ∈ V (D) and there is a directed uv-path of length n in D, then
(u, v) ∈ A(D) or (v, u) ∈ A(D). In this paper we study 3-quasitransitive
digraphs. We denote by T̃4 the digraph such that V (T̃4) = {u, v, w, x} and
A(T̃4) = {(u, v), (v, w), (w, x), (u, x)}. If C is a walk we will denote by `(C)
its length. If S ⊆ V (D) we denote by D[S] the subdigraph induced by
S. An arc (u, v) ∈ A(D) is symmetrical if (v, u) ∈ A(D). In this paper
we prove that if D is an m-coloured 3-quasitransitive digraph such that for
every C3 (the directed cycle of length 3), C4 (the directed cycle of length
4) and T̃4 contained in D are quasi-monochromatic then D has a kernel by
monochromatic paths.

We will need the following results.

Theorem 1.1. Let D be a digraph. D has a kernel by monochromatic paths

if and only if C(D) has a kernel.

Theorem 1.2. Every uv-monochromatic walk in a digraph contains a uv-
monochromatic path.

Theorem 1.3 (Berge-Duchet [4]). Let D be a digraph. If every directed

cycle of D contains a symmetrical arc, then D is a kernel-perfect digraph.

2. 3-Quasitransitive Digraphs

The following lemma and remarks are about 3-quasitransitive digraphs such
that for every u ∈ V (D), A+(u) is monochromatic, and they are useful to
prove our main result.

Let T = (u0, u1, . . . , un) be a path. Then we will denote the path
(ui, ui+1, . . . , uj) by (ui, T, uj). Here, [x] represents the largest integer less
or equal than x.

Lemma 2.1. Let D be an m-coloured 3-quasitransitive digraph such that for

every vertex u ∈ V (D), A+(u) is monochromatic. If u and v are vertices

of D and T = (u = u0, u1, . . . , un = v) is a uv-monochromatic path of

minimum length n ≥ 3, then (ui, ui−(2k+1)) ∈ A(D) for each i ∈ {3, . . . , n}

and k ∈ {1, . . . , [ i−1
2 ]}. In particular, if `(T ) is odd, then (v, u) ∈ A(D) and

if `(T ) is even, then (v, u) may be absent in D.
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Proof. Observe that if T is a uv-monochromatic path of minimum length
and {ui, uj} ⊆ V (T ) with i < j then the hypothesis that A+(z) is monochro-
matic for every z ∈ V (D) implies that (ui, T, uj) is also a uiuj-monochromatic
path of minimum length.

We will proceed by induction on `(T ) = n.

When n = 3 then T = (u = u0, u1, u2, u3 = v). Since D is a 3-
quasitransitive digraph then (u0, u3) ∈ A(D) or (u3, u0) ∈ A(D). Since
T is of minimum length we have that (u3, u0) ∈ A(D).

If n = 4 then T = (u = u0, u1, u2, u3, u4 = v). By the case n = 3
(u3, u0) ∈ A(D) and (u4, u1) ∈ A(D).

Suppose that if `(T ) = n ≥ 4 then (ui, ui−(2k+1)) ∈ A(D) for each

i ∈ {3, . . . , n} and k ∈ {1, . . . , [ i−1
2 ]}.

Let T = (u = u0, u1, . . . , un, un+1 = v) be a uv-monochromatic path of
minimum length. Let T ′ = (u, T, un), then T ′ is a uun-monochromatic path
of minimum length. By the induction hypothesis we have that (ui, ui−(2k+1))

∈ A(D) for each i ∈ {3, . . . , n} and k ∈ {1, . . . , [ i−1
2 ]}. Also, let T ′′ =

(u1, T, v), then T ′′ is a u1v-monochromatic path of minimum length, the
induction hypothesis implies that (ui, ui−(2k+1)) ∈ A(D) for each i ∈ {4, . . . ,

n + 1} and k ∈ {1, . . . , [ i−1
2 ]}. So, it is sufficient to prove that (un+1, u0) ∈

A(D) whenever n+1 is odd. Assume n+1 is odd. We have that {(un+1, u2),
(u2, u3), (u3, u0)} ⊆ A(D), so (un+1, u2, u3, u0) is a path of length 3. Since D
is a 3-quasitransitive digraph then (un+1, u0) ∈ A(D) or (u0, un+1) ∈ A(D).
Thus (un+1, u0) ∈ A(D).

Remark 2.1. Let D be an m-coloured 3-quasitransitive digraph. If every T̃4

and C4 contained in D are at most 2-coloured then D contains no 3-coloured
path of length 3.

Remark 2.2. Let D be an m-coloured digraph such that for every vertex
u ∈ V (D) A+(u) is monochromatic and D contains no 3-coloured C3. If
(u, u1, u2, v) is a 3-coloured walk then u 6= u1, u 6= u2, u 6= v, u1 6= u2 and
u2 6= v.

3. The Main Result

Definition 3.1. Let D be an m-coloured digraph. A γ-cycle in D is a
sequence of distinct vertices γ = (u0, u1, . . . , un, u0) such that for every
i ∈ {0, 1, . . . , n}
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1. There is a uiui+1-monochromatic path and

2. There is no ui+1ui-monochromatic path.

The addition over the indices of the vertices of γ are modulo n +1. And we
say that the length of γ is n + 1.

Theorem 3.2. Let D be an m-coloured 3-quasitransitive digraph such that

for every vertex u of D, A+(u) is monochromatic. If every C3, C4 and T̃4

contained in D is quasi-monochromatic, then there are no γ-cycles in D.

Proof. We will proceed by contradiction. Suppose that γ = (u0, u1, . . . , un,
u0) is a γ-cycle in D of minimum length. The definition of γ-cycle implies
that for every i ∈ {0, . . . , n} there exist a uiui+1-monochromatic path in
D namely Ti, (we may assume that Ti is of minimum length) and there is
no ui+1ui-monochromatic path in D (notation mod(n + 1)). So we have
(ui+1, ui) /∈ A(D) and by Remark 2.1 `(Ti) is even or `(Ti) = 1 for every
i ∈ {0, . . . , n}. Now we have the following assertions.

1. `(γ) ≥ 3. If `(γ) = 2 then γ = (u0, u1, u0) and this implies that there is
a u1u0-monochromatic path, contradicting the definition of γ-cycle.

2. There is an index i ∈ {0, . . . , n} such that Ti and Ti+1 have different
colours. Otherwise T0 ∪ T1 ∪ · · · ∪ Tn contains a u0un-monochromatic path,
a contradiction. Suppose w.l.o.g. that T0 is coloured 1 and T1 is coloured 2.

3. There is no u2u0-monochromatic path in D. Suppose by contradiction
that T = (u2 = x0, x1, . . . , xt = u0) is a u2u0-monochromatic path of mini-
mum length in D. Then:

3.1. T is neither coloured 1 nor 2. This follows from the facts that T0 is
coloured 1, T1 is coloured 2 and there is no u2u1-monochromatic path and
u1u0-monochromatic path either.

3.2. `(T0) ≥ 4 and `(T1) ≥ 4.
If `(T0) = 1 = `(T1), then C = (u0, u1, u2, x1) is a 3-coloured u0x1-walk of
length 3. So by Remark 2.2 we have that C is a 3-coloured u0x1-path of
length 3 contradicting the Remark 2.1.

If `(T0) = 2 and `(T1) = 1, let T0 = (u0, y, u1), then C = (y, u1, u2, x1)
is a 3-coloured walk of length 3. It follows from Remark 2.2 that C is a
3-coloured path of length 3 contradicting the Remark 2.1.

If `(T0) = 2 = `(T1) then we may consider T0 = (u0, y, u1) and T1 =
(u1, z, u2). We have that z /∈ V (T0) so T0∪(u1, z) (it will denote (u0, y, u1, z))



342 H. Galeana-Sánchez, R. Rojas-Monroy and B. Zavala

is a path of length 3. Since D is a 3-quasitransitive digraph (u0, z) ∈ A(D)
or (z, u0) ∈ A(D). If (z, u0) ∈ A(D) then it is coloured 2 (A+(z) is
coloured 2) and this implies that (u0, y, u1, z, u0) is a C4 that is not quasi-
monochromatic, a contradiction. So (u0, z) ∈ A(D) and it is coloured 1
(A+(u0) is coloured 1). Let C = (u0, z, u2, x1). Then C is a 3-coloured walk
of length 3. By Lemma 2.2 we have that C is a 3-coloured path of length 3
contradicting the Remark 2.1.

If `(T0) = 1 and `(T1) = 2, let T1 = (u1, z, u2) and consider C =
(xt−1, u0, u1, z). Then C is a 3-coloured walk. Remark 2.2 imply that C is
a 3-coloured path of length 3, contradicting the Remark 2.1.

We conclude that `(T0) ≥ 4 and `(T1) ≥ 4.
Let T0 = (u0 = y0, y1, . . . , y` = u1) and T1 = (u1 = z0, z1, . . . , zk = u2) with
` ≥ 4 and k ≥ 4.

3.3. `(T ) ≥ 3.
Suppose by contradiction that `(T ) < 3.

If `(T ) = 1 then C = (zk−1, u2, u0, y1) is a 3-coloured walk. Remark 2.2
implies that C is a 3-coloured path of length 3 but this is a contradiction
with the Remark 2.1. If `(T ) = 2 then C1 = (zk−1, u2)∪ T is a zk−1u0-path
of length three. Since D is a 3-quasitransitive digraph then (zk−1, u0) ∈
A(D) or (u0, zk−1) ∈ A(D). If (zk−1, u0) ∈ A(D) then it is coloured 2
and D[{zk−1, u2, x1, u0}] contains a T̃4 which is not quasi-monochromatic, a
contradiction. If (u0, zk−1) ∈ A(D) then it is coloured 1 and (u0, zk−1, u2, x1)
is a 3-coloured path of length three, a contradiction to Remark 2.1. We
conclude that `(T ) ≥ 3.

3.4. (u0, u2) /∈ A(D).
Proceeding by contradiction, suppose that (u0, u2) ∈ A(D). Since T0 is
coloured 1 then (u0, u2) is coloured 1. By Lemma 2.1 (remember that `(Ti) is
even) we have that (u2, z1) ∈ A(D), so it is coloured 3. Then (u0, u2, z1, z2)
is a path of length 3 that is 3-coloured, but this is a contradiction with
Remark 2.1.

3.5. `(T0) ≥ 4, `(T1) ≥ 4, `(T ) ≥ 4 and `(T ) is even.
(3.3) implies that `(T ) ≥ 3. Since T is a u2u0-monochromatic path of
minimum length (u2, u0) /∈ A(D) and by assertion (3.4) (u0, u2) /∈ A(D). So
it follows from Lemma 2.1 that `(T ) is even.

Now, Lemma 2.1 implies that (u0, x1) ∈ A(D), and it is coloured 1. Then
(zk−1, u2, x1, x2) is a path of length 3. Since D is a 3-quasitransitive digraph
(zk−1, x2) ∈ A(D) or (x2, zk−1) ∈ A(D). If (zk−1, x2) ∈ A(D) it is coloured 2
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and D[{zk−1, u2, x1, x2}] contains a T̃4 that is not quasi-monochromatic. So
(x2, zk−1) ∈ A(D) and it is coloured 3. Then (u0, x1, x2, zk−1) is a u0zk−1-
path of length 3. Since D is a 3-quasitransitive digraph then (u0, zk−1) ∈
A(D) or (zk−1, u0) ∈ A(D). If (u0, zk−1) ∈ A(D) then it is coloured 1, so
D[{u0, x1, x2, zk−1}] contains a T̃4 that is not quasi-monochromatic, a con-
tradiction. We may assume that (zk−1, u0) ∈ A(D), so it is coloured 2. Then
(u0, x1, x2, zk−1) is a C4 that is not quasi-monochromatic, a contradiction.

We conclude that there is no u2u0-monochromatic path in D.

4. `(γ) ≥ 4. It follows from (1) and (3).

5. There is no u0u2-monochromatic path in D.

Assume that there exists a u0u2-monochromatic path in D. Then γ1 =
(u0, u2, u3, . . . , un, u0) would be a γ-cycle such that `(γ1) < `(γ) contradict-
ing the choice of γ.

6. If Ti and Ti+1 have different colours then there is no ui+2ui-monochro-
matic path and there is no uiui+2-monochromatic path either.

This follows the same way as (3) and (5).

7. If Ti and Ti+1 have different colours and `(Ti) = 1, for some i ∈ {0, . . . , n},
then `(Ti+1) = 1.

W.l.o.g. suppose that `(T0) = 1. Suppose by contradiction that
`(T1) ≥ 2. If `(T1) = 2, let T1 = (u1, z, u2). In this case (u0, u1, z, u2)
is a u0u2-path of length 3. Since D is a 3-quasitransitive digraph then
(u0, u2) ∈ A(D) or (u2, u0) ∈ A(D), contradicting (5) or (3) respectively.
We may assume that `(T1) > 2. Let T1 = (u1 = z0, z1, . . . , zk = u2). Then
(u0, u1, z1, z2) is a u0z2-path of length 3. Since D is a 3-quasitransitive
digraph (u0, z2) ∈ A(D) or (z2, u0) ∈ A(D). If (u0, z2) ∈ A(D) then it
is coloured 1 and D[{u0, u1, z1, z2}] contains a T̃4 that is not quasi-mono-
chromatic, a contradiction. If (z2, u0) ∈ A(D) then it is coloured 2 and
(u1, z1, z2, u0) is a u1u2-monochromatic path contradicting that γ is a γ-
cycle. We conclude that `(T1) = 1.

8. If Ti and Ti+1 have different colours and `(Ti) = 1 then Ti+2 is coloured
with the same colour of Ti.

W.l.o.g. suppose that i = 0, T0 is coloured 1 and T1 is coloured 2.
`(T0) = 1 and assertion (7) imply that `(T1) = 1. Let T2 = (u2, x1, . . . , xt =
u3). Then C = (u0, u1, u2, x1) is a u0x1-walk of length 3. The definition of
γ-cycle implies that x1 6= u1 and from assertion (3) we obtain that x1 6= u0.
So C is a u0x1-path of length 3. Since D is a 3-quasitransitive digraph
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(u0, x1) ∈ A(D) or (x1, u0) ∈ A(D). From the hypothesis that every C4

and T̃4 in D is quasi-monochromatic, then the arc between x1 and u0 and
(u2, x1) have the same colour. If (x1, u0) ∈ A(D) then (u2, x1, u0) is a
u2u0-monochromatic path contradicting assertion (3). We may assume that
(u0, x1) ∈ A(D). Then (u0, x1) and (u2, x1) are coloured 1. Hence T2 is
coloured 1.

To conclude the proof of the theorem we will analyze 5 possible cases.

Case 1. Suppose that `(T0) = 1.

Applying assertions (7) and (8) repeatedly we have that `(Ti) = 1 for every
i ∈ {0, . . . , n}, Ti is coloured 1 if i is even and Ti is coloured 2 if i is odd.
This implies that γ = (u0, u1, . . . , un, u0) is a 2-coloured cycle in D such
that the colours of its arcs are alternated, so n is odd.

We will prove by induction that (u0, ui) ∈ A(D) for every odd i, i ∈
{1, . . . , n}. For i = 1, (u0, u1) ∈ A(D), since γ is a cycle. Suppose that
(u0, u2k−1) ∈ A(D) for i = 2k − 1, where k ≥ 1. Now, we will prove that
(u0, u2k+1) ∈ A(D). We have that {(u0, u1), (u0, u2k−1), (u2k, u2k+1)} are
coloured 1 and (u2k−1, u2k) is coloured 2. Let T = (u0, u2k−1, u2k, u2k+1).
Then T is a u0u2k+1-path of length 3. Since D is a 3-quasitransitive digraph
(u0, u2k+1) ∈ A(D) or (u2k+1, u0) ∈ A(D). Hence D[V (T )] contains a T̃4 or
a C4. Since every T̃4 and C4 contained in D is quasi-monochromatic then
the arc between u0 and u2k+1 is coloured 1. If (u2k+1, u0) ∈ A(D) then
(u2k, u2k+1, u0, u2k−1) is a u2ku2k−1-monochromatic path, contradicting the
definition of γ-cycle, so (u0, u2k+1) ∈ A(D). We conclude that (u0, ui) ∈
A(D) for every odd i ∈ {1, . . . , n}. Since n is odd (u0, un) ∈ A(D), but this
contradicts the definition of γ-cycle.

Case 2. Suppose that `(T0) = 2 and `(T1) = 1.

Let T0 = (u0, x, u1). Then C = T0 ∪ T1 is a walk of length 3. Assertion (5)
implies that x 6= u2, so C is a path of length 3. Since D is a 3-quasitransitive
digraph (u0, u2) ∈ A(D) or (u2, u0) ∈ A(D). In any case we obtain a
contradiction to assertion (5) or (3) respectively.

Case 3. `(T0) = 2 and `(T1) ≥ 2.

Let T0 = (u0, x, u1) and T1 = (u1, y1, y2, . . . , yt = u2) where, t ≥ 2. Then
C = T0 ∪ (u1, y1) is a path of length 3. Since D is a 3-quasitransitive
digraph then (u0, y1) ∈ A(D) or (y1, u0) ∈ A(D). So, D[V (C)] contains
a C4 or a T̃4, by the hypothesis it should be quasi-monochromatic. Then
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the arc between u0 and y1 is coloured 1. Hence (y1, u0) /∈ A(D) (A+(y1) is
coloured 2) and (u0, y1) ∈ A(D). Also C ′ = (x, u1, y1, y2) is a path of length
3, (y2, x) ∈ A(D) and it is coloured 2. Now, D[{u0, y1, y2, x}] contains a T̃4

that is not quasi-monochromatic, a contradiction.

Case 4. `(T0) ≥ 4 and `(T1) = 1.

Let T0 = (u0, x1, x2, . . . , xt−1, xt = u1) with t ≥ 4. We have C = (xt−2, xt−1,
xt = u1, u2) is a path of length 3 (the definition of γ-cycle implies that there
is no u2u1-monochromatic path). Since D is a 3-quasitransitive digraph
(xt−2, u2) ∈ A(D) or (u2, xt−2) ∈ A(D). So, D[V (C)] contains a T̃4 or a
C4, by hypothesis it should be quasi-monochromatic. Then the arc between
xt−2 and u2 is coloured 1. If (u2, xt−2) ∈ A(D) then (u2, xt−2, xt−1, u1)
is a u2u1-monochromatic path contradicting the definition of γ-cycle. So
(xt−2, u2) ∈ A(D). Hence (u0, x1, . . . , xt−2, u2) is a u0u2-monochromatic
path contradicting assertion (5).

Case 5. `(T0) ≥ 4 and `(T1) ≥ 2.

Let T0 = (u0, x1, x2, . . . , xt−1, xt = u1) and T1 = (u1, y1, y2, . . . , y` = u2).
Then C = (xt−2, xt−1, xt = u1, y1) is an xt−2y1-path of length 3 (Remark
2.1). Since D is a 3-quasitransitive digraph then (xt−2, y1) ∈ A(D) or
(y1, xt−2) ∈ A(D). Then D[V (C)] contains a T̃4 or a C4, by hypothesis
it should be quasi-monochromatic. Then the arc between xt−2 and y1 is
coloured 1. Hence (y1, xt−2) /∈ A(D) (A+(y1) is coloured 2), (xt−2, y1) ∈
A(D) and it is coloured 1. Also, C ′ = (xt−1, u1, y1, y2) is a xt−1y2-path
of length 3. Then (xt−1, y2) ∈ A(D) or (y2, xt−1) ∈ A(D). Since every
T̃4 and C4 is quasi-monochromatic, we have that (y2, xt−1) ∈ A(D) and it
is coloured 2. Then D[{xt−2, y1, y2, xt−1}] contains a T̃4 that is not quasi-
monochromatic, a contradiction.

We conclude that D contains no γ-cycles.

Theorem 3.3. Let D be an m-coloured 3-quasitransitive digraph such that

for every u ∈ V (D), A+(u) is monochromatic. If every C3, C4 and T̃4 con-

tained in D is quasi-monochromatic, then C(D) is a kernel-perfect digraph.

Proof. By Theorem 1.3 we will prove that every cycle in C(D) contains
a symmetrical arc. Let C a cycle in C(D). Assume for a contradiction,
that C has no symmetrical arcs. Then C is a γ-cycle in D contradicting
Theorem 3.2.
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Corollary 3.4. Let D be an m-coloured 3-quasitransitive digraph such that

for every u ∈ V (D), A+(u) is monochromatic. If every C3, C4 and T̃4 con-

tained in D is quasi-monochromatic, then D has a kernel by monochromatic

paths.

Corollary 3.5. Let T be an m-coloured tournament such that for every

u ∈ V (D), A+(u) is monochromatic. If every C3, C4 and T̃4 contained in

D is quasi-monochromatic, then T has a kernel by monochromatic paths.

Corollary 3.6. Let D be an m-coloured bipartite tournament such that for

every u ∈ V (D), A+(u) is monochromatic. If every C4 and T̃4 contained in

D is quasi-monochromatic, then D has a kernel by monochromatic paths.

Remark 3.1. The condition that D contains no C3 3-coloured in Theorem
3.3 cannot be dropped. Let Dn be the digraph obtained from Dn−1 (D0

is a 3-coloured C3) by adding the vertex vn and arcs (vn, v) for every v ∈
V (Dn−1), all arcs coloured with some colour j. Dn is an m-coloured 3-
quasitransitive digraph with A+(z) monochromatic for every z ∈ V (Dn),
every C4 and T̃4 are quasi-monochromatic, Dn contains a γ-cycle (C3) and
Dn has no kernel by monochromatic paths.

Remark 3.2. The condition that every C4 of D is quasi-monochromatic
in Theorem 3.2 is tight. Let D be a 3-quasitransitive digraph 2-coloured
with V (D) = {u, v, w, x} and A(D) = {(u, v), (v, w), (w, x), (x, u)} such that
(u, v), (w, x) are coloured 1 and (v, w), (x, u) are coloured 2. In D A+(z) is
monochromatic for every z ∈ V (D), D has a γ-cycle. Moreover, for each n
we give a digraph Dn, obtained from D0 = D, that satisfies all the conditions
of Theorem 3.2 except the one over C4 and has a γ-cycle. Dn is obtained
from Dn−1 by adding the vertex vn and the arcs (vn, x) and (v, vn) with
colours j (for some j) and 2 respectively.
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