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Abstract

In this paper we introduce the concept of directed hypergraph. It is
a generalisation of the concept of digraph and is closely related with
hypergraphs. The basic idea is to take a hypergraph, partition its edges
non-trivially (when possible), and give a total order to such partitions.
The elements of these partitions are called levels. In order to preserve
the structure of the underlying hypergraph, we ask that only vertices
which belong to exactly the same edges may be in the same level of
any edge they belong to. Some little adjustments are needed to avoid
directed walks within a single edge of the underlying hypergraph, and
to deal with isolated vertices.

The concepts of independent set, absorbent set, and transversal set
are inherited directly from digraphs.

As a consequence of our results on this topic, we have found both
a class of kernel-perfect digraphs with odd cycles and a class of hyper-
graphs which have a strongly independent transversal set.
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1. Preliminary Results

Kernels in Digraphs

For general concepts about digraphs (resp. hypergraphs) we refer the reader
to [1, 4, 6] (resp. [3]).

Transversal sets in hypergraphs have been thoroughly studied (cf.
[3, 5]), as well as kernels in digraphs, which have applications in several
branches of mathematics. For example, in mathematical logic a kernel may
represent a minimal set of axioms for a theory, and in game theory it may
represent a minimal (in amount of moves) winning strategy for a game be-
tween two players. For examples of results on kernels of digraphs, we refer
the reader to [6, 7, 8, 9, 12, 13, 14].

Definition. Given a digraph D = (V (D), F (D)) and a set S ⊂ V (D), we
say that:

(1) S is independent iff for every pair of vertices {x, y} ⊂ S, none of the
ordered pairs (x, y) and (y, x) is in F (D);

(2) S is absorbent iff for every vertex x ∈ V \ S there exists a vertex y ∈ S
such that (x, y) ∈ F (D), and

(3) S is a kernel of D iff it is independent and absorbent.

It should be noticed that if we order the subsets of V (D) according to
containment, any kernel of D is both a maximal independent set and a
minimal absorbent set. However, it may be not so according to cardinality.

Definition. Given x ∈ V (D), the set N+(x) = {y ∈ V (D) | (x, y) ∈ F (D)}
is the set of out-neighbours of x, and the set N−(x) = {y ∈ V (D) | (y, x) ∈
F (D)} is the set of in-neighbours of x. Given S ⊂ V (D), the set N +(S) =
{y ∈ V (D) | (x, y) ∈ F (D) for some x ∈ S} is the set of out-neighbours of
S, and the set N−(S) = {y ∈ V (D) | (y, x) ∈ F (D) for some x ∈ S} is the
set of in-neighbours of S.

Definition [12]. Given a digraph D, a set S ⊂ V (D) is a semikernel of D
iff it is independent and satisfies the following statement: Given x ∈ V \ S,
if there exists s ∈ S such that (s, x) ∈ F (D), then there exists s′ ∈ S such
that (x, s′) ∈ F (D). In other words, a semikernel is an independent set of
vertices which absorbs all of its out-neighbours.
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Every kernel of a given digraph D is trivially a semikernel of D, but the
converse is not true.

Definition. A digraph D is kernel-perfect iff every induced subdigraph of
D has a kernel.

Theorem (Richardson) [13]. Every digraph without directed cycles of odd
length is kernel-perfect.

This is one of the most important theorems regarding kernels on di-
graphs. There are several well known proofs of it. We mention other classical
results without proof:

Proposition. Let D be a digraph. Every closed directed walk of odd length
in D has a directed cycle of odd length as a subsequence.

Theorem (Neumann-Lara) [12]. Let D be a digraph such that all of its
induced subdigraphs has a non-empty semikernel. Then D is kernel-perfect.

Hypergraphs

Definition. Given a finite set V = {x1, . . . , xn}, a hypergraph on V is
a family H = (E1, . . . , Em) of subsets of V such that the two following
conditions are met:

(1) ∀i ∈ {1, . . . ,m}, Ei 6= ∅,

(2)
m
⋃

i=1
Ei = V.

Notice that every isolated vertex must have a loop for the second condition
to hold. Each Ei is called an edge of H.

Definition. A hypergraph H = (E1, . . . , Em) is simple iff ∀i ∈ {1, . . . ,m},
Ei ⊂ Ej ⇒ i = j.

Definition. Given a hypergraph H = (E1, . . . , Em) on a set V , a set S ⊂ V
is independent iff @i ∈ {1, . . . ,m} such that Ei ⊂ S. The set S ⊂ V is
strongly independent iff ∀i ∈ {1, . . . ,m}, |Ei ∩ S| ≤ 1. In the case of graphs
(hypergraphs in which every edge has two vertices) both concepts coincide.

Definition. Given a hypergraph H = (E1, . . . , Em) on a set V , a set S ⊂ V
is transversal iff ∀i ∈ (1, . . . ,m}, |Ei ∩ S| ≥ 1.
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Definition. Given a hypergraph H = (E1, . . . , Em) on a set V and an
integer k ≥ 2, a cycle of length k is a sequence C = (x0, E0, x1, . . . , xk−1,
Ek−1, xk = x0) such that:

(1) ∀{i, j} ⊂ {0, . . . , k − 1}, Ei 6= Ej ,

(2) ∀{i, j} ⊂ {0, . . . , k − 1}, xi 6= xj,

(3) ∀i ∈ {0, . . . , k − 1}, xi, xi+1 ∈ Ei.

Every hypergraph H = (E1, . . . , Em) without cycles of odd length has an
independent transversal set. In fact, every hypergraph H such that every
cycle of odd length in it has an edge containing at least three vertices of
the cycle, has an independent transversal set. This follows directly from [3],
Chapter 5, Theorem 7.

The original motivation for this work was the search for families of
hypergraphs with strongly independent transversal sets. In Figure 1 we have
some examples of hypergraphs with no strongly independent transversal
sets. Examples a) and b) may suggest to look for the desired families among
simple hypergraphs without cycles of odd length, although example c) shows
that not all such hypergraphs have a set with the required properties. Here
we present one of such families.

Figure 1. Hypergraphs with no strongly independent transversal sets.

2. Directed Hypergraphs

Definitions

As has already been mentioned, we could intuitively consider a directed
hypergraph as a hypergraph with a non-trivial order relation defined on
its (non-loop) edges. Formally speaking, we may start defining a directed
hypergraph and then consider (or not) its underlying hypergraph, or we
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may take a given hypergraph, remove the loops and assign a ”direction” to
the remaining edges. The first approach is preferred for studying directed
hypergraphs as a mathematical object or when using them as a tool for
researching digraphs, and the second works better when looking for results
on hypergraphs.

To begin with, we define a concept regarding hypergraphs:

Definition. Given a hypergraph H = (E1, . . . , Em), we define a partition
P = {P1, . . . , Pk} of V (H) in the following way: {x, y} ⊂ V (H) is contained
in an element of P iff x and y belong to exactly the same edges of H. We
call this the natural partition of V (H), and the partition defined over each
edge E ∈ H as {Pi ∩ E | Pi ∈ P} is the natural partition of E.

Figure 2. a) Natural partition of a hypergraph.

b) Natural partition of an edge.

Definition. Given a finite set V , a directed hypergraph D = (X,F ) on V is
a subset X ⊂ V and a set of triples F = {A1, . . . , Am} such that for every
i ∈ {1, . . . ,m}, Ai = (Ei, Pi,≤i), where Ei ⊆ V, |Ei| > 1, Ei ∩ X = ∅; Pi

is a non-trivial partition on Ei, and ≤i is a total order on Pi. The following
conditions must also be met:

(1) X ∪
m
⋃

i=1
Ei = V .

(2) For every i ∈ {1, . . . ,m}, if {x, y} ⊂ Ei and there exists j ∈ {1, . . . ,m}
such that x ∈ Ej, y /∈ Ej, then x and y belong to different elements of
Pi. That is, if we consider the underlying hypergraph H = (E1, . . . , Em),
the partition of each edge is a refinement of its natural partition. If this
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condition is not met we may have the following situation, rather unpleasant:
Two vertices x, y and three arcs A,B,C such that x ∈ V (A) but x /∈ V (B),
y ∈ V (B) but y /∈ V (A), and both x and y are in V (C), but nevertheless
there is no directed walk from x to y, nor from y to x (see Figure 3.b). As an
additional condition, we could ask the intersection between any two levels of
any arcs to be empty, so that the set of all levels in D is a refinement of the
natural partition of H. For researching hypergraphs, we restrict ourselves
to an even narrower class of directed hypergraphs; when concerned about
digraphs, it is probably better to let levels of different arcs overlap (as long
as they remain within every arc they belong to).

(3) Given E ⊂ V , if there are arcs Ai and Aj such that Ei = E = Ej, then
Pi = Pj and either ≤i=≤j, or ∀{x, y} ⊂ E, x ≤i y ⇔ y ≤j x. This is done
to avoid the existence of directed walks of length larger than 2 ”supported”
by a single edge of the underlying hypergraph. The condition could be
changed or omitted altogether when not looking for results on hypergraphs
(see Figure 3.c).

When possible, we represent each arc as an ”earthworm”, whose segments
are its levels, following the order given. We draw an arrow from the first
level to the second, except in the case of symmetrical arcs, when we use a
two headed arrow for both arcs.

Figure 3. a) Directed hypergraph: A2 = B2, B3 = C1 = D3, C2 = D2, C3 = D1.

b) If the shaded area is only one level of A, there is neither a directed

walk from x to y nor from y to x.

c) Condition 3 omitted: (x, A, y, B, z, C, x) is a directed cycle of length 3.

We say that x ∈ V is a vertex of D, and that Ai is an arc of D. We
call X the set of isolated vertices of D, and x ∈ X an isolated vertex of D.
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We write Pi = {A1
i , . . . , A

r(i)
i }, where r(i) = |Pi| and A1

i ≤i A2
i ≤i . . . ≤i

A
r(i)
i . We say that Aj

i is the j-level of Ai. If x ∈ A1
i , x is a minimum of Ai;

if x ∈ A
r(i)
i , x is a maximum of Ai. Since trivial partitions are not allowed,

there are no arcs with only one level. If x ∈ Aj
i , y ∈ Ak

i , and j < k, we say
that Ai is an xy-arc and that y absorbs x. If x ∈ S1 ⊂ V, y ∈ S2 ⊂ V , then
Ai is an S1y-arc, an xS2-arc, and an S1S2-arc; we say also that S2 absorbs
x. If S ⊂ V absorbs all vertices in V \ S, S is an absorbent set in D.

Definition. Given a directed hypergraph D = (X,F ), where F = {A1, . . . ,
Am} and ∀i ∈ {1, . . . ,m}, Ai = (Ei, Pi,≤i), the hypergraph H = (E1, . . . ,
Em) ∪X ′ is the underlying hypergraph of D, where X ′ = {loop on x | x ∈ X}.

Definition. Given a hypergraph H = (E1, . . . , Em) ∪ {X ′}, where ∀i ∈
{1, . . . ,m}, |Ei| > 1 and X ′ = {edges whose cardinality is 1}, we say that
D = (X,F ) is a directed hypergraph generated by H iff X = {x ∈ V (H) | x
belongs only to an edge of cardinality 1} and F = {A1, . . . , Am, A′

1, . . . , A
′

m},
where V (Ai) = V (A′

i) = Ei, Pi = P ′

i = natural partition of Ei, ≤i is any
total order on Pi, and ≤′

i is the ”inverse order” of ≤i (that is, if M,N ∈ Pi =
P ′

i and M ≤i N , then N ≤′

i M). If D is a directed hypergraph generated
by H, we say that H generates D.

Notice that given a hypergraph H, there may be several directed hyper-
graphs generated by H (because there may be several non-equivalent total
orders in the natural partition), or there may be not even one. For example,
if H is not simple, is not connected, or has but one edge, the natural partition
of its edges may not generate a directed hypergraph, for arcs with only one
level are not allowed. In most cases, the directed hypergraphs generated by
a given hypergraph H are only a small subset of the directed hypergraphs
whose underlying hypergraph is H. Since they inherit its structure more
faithfully than any other, they are the best choice for studying properties of
hypergraphs.

Definition. A directed walk of length n is a sequence C = (x0, A0, x1, . . . ,
xn−1, An−1, xn) such that An−1 6= A0 and for every i ∈ {0, . . . , n − 2} we
have that Ai 6= Ai+1, and such that for every i ∈ {0, . . . , n − 1} the arc Ai

is an xixi+1-arc. The length of C is l(C) = n. Notice that the minimum
length of any directed walk is 1, for no vertex may belong to different levels
of a given arc. A closed directed walk of length n is a directed walk of length
n such that x0 = xn. A directed cycle C = (x0, A0, x1, . . . , xn−1, An−1,
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xn = x0) is a closed directed walk such that for every {i, j} ⊂ {0, . . . , n − 1}
we have that xi 6= xj and Ai 6= Aj .

Definition. Let D be a directed hypergraph. A set S ⊂ V (D) is inde-
pendent iff there are no SS-arcs (that is, there are no xy-arcs such that
{x, y} ⊂ S). Equivalently, S ⊂ V (D) is independent iff for every arc Ai in
D we have that S ∩ Aj

i 6= ∅ ⇒ S ∩ Ai ⊂ Aj
i .

Definition. Given a directed hypergraph D = (X,F ) on a set V and S ⊂ V ,
we may consider the triples Bi = (Ei ∩ S, P ′

i ,≤
′

i), where

P ′

i =
{

Aj
i ∩ S | 1 ≤ j ≤ r(i), Aj

i ∩ S 6= ∅
}

and ≤′

i is the order induced by ≤i in P ′

i . The directed subhypergraph
of D induced by S is D [S] = (S ′, F ′), where F ′ = {Bi | |P

′

i | ≥ 2} and
S′ = S \ {x ∈ Ei | Bi ∈ F ′}. When considering the induced order of an arc,
we start from the minimum and proceed increasingly. This is done to avoid
ambiguousness, as shown in Figure 4. We say that Bi is the arc induced
by Ai in D [S], and that Ai induces Bi in D [S]. Notice that if T ⊂ V is
independent in D and S is any subset of V , then T ∩ S is independent in
D[S]. It is also important to observe that if H is a hypergraph, U ⊂ V (H),
and D is a directed hypergraph generated by H, then D[U ] may not be the
directed hypergraph generated by H[U ], which does not necessarily exist
(see Figure 5).

Figure 4. There could have been ambiguousness on defining the order of A′.

Definition. Given a directed hypergraph D = (X,F ), where F = {A1, . . . ,
Am}, an arc Ai in D is symmetrical iff there exists an arc Aj in D such that
V (Ai) = V (Aj), Pi = Pj , and for every two levels {N1, N2} ⊂ V (Ai) we
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have that N1 ≤i N2 ⇔ N2 ≤j N1. If an arc A is symmetrical, we denote
by A′ the arc with the same underlying set of vertices (which also has the
same partition and the ”inverse” order). So (3) on the definiton of directed
hypergraph states that if there are two arcs with the same underlying set of
vertices, they are either equal or symmetrical.

Figure 5. Let U be the set of black vertices. H [U ] generates no directed

hypergraph.

Definition. A directed hypergraph D is symmetrical iff every arc in D is
symmetrical.

Notice that if a given directed hypergraph D is symmetrical, then
every directed subhypergraph of D is also symmetrical. Observe also
that a directed hypergraph generated by any given hypergraph is always
symmetrical.

Transversal Kernels

In this section we focus on results regarding symmetrical directed hyper-
graphs. Since the directed hypergraph generated by any given hypergraph
is always symmetrical (when it exists), we may restrict ourselves to this kind
of directed hypergraphs when looking for applications to hypergraphs.

Definition. Let D be a directed hypergraph on V . A set K ⊂ V is a kernel
iff it is independent and absorbent.

Definition. Let D be a directed hypergraph on V . A set S ⊂ V is a
semikernel iff it is independent and for every y ∈ V \ S such that there
exists an Sy-arc, there exists also a yS-arc.

Definition. Let D be a directed hypergraph. S ⊂ V (D) is a semitransversal
of D iff S is a semikernel and the following holds: for every y ∈ V \ S such
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that there exists an Sy-arc, and for every arc A such that y is a minimum
of A, we have that V (A) ∩ S 6= ∅.

Notice that if D is a symmetrical directed hypergraph, S ⊂ V (D) is
a semitransversal of D iff for every y ∈ V \ S such that there exists an
Sy-arc, and for every arc A such that y is a minimum of A, we have that
V (A) ∩ S 6= ∅.

Definition. Let D be a directed hypergraph. T ⊂ V is a transversal kernel
(k-transversal) of D iff T is independent, absorbent and transversal (T ∩
V (A) 6= ∅ for every arc A in D). Observe that, according to containment,
a transversal kernel is a maximal independent set, as well as a minimal
transversal set and a minimal absorbent set, although it is not necessarily
so according to cardinality.

Theorem 1. Let D be a symmetrical directed hypergraph. If every induced
directed subhypergraph of D has a non-empty independent semitransversal,
then D has a k-transversal.

Proof. We will proceed by induction on |V |. The theorem holds clearly
for every directed hypergraph with at most two vertices. Suppose that the
result is true for every symmetrical directed hypergraph with less than n
vertices. Let D be a symmetrical directed hypergraph such that |V | = n.

Let S be a non-empty independent semitransversal of D, S− =
{x ∈ V \ S | there exists an xS-arc in D}, and S0 = V \ (S ∪ S−). We
consider separately the two possible cases:

Case 1. S0 = ∅.
We will prove that, in this case, S is a k-transversal of D.

(i) S is an independent set, for S is a non-empty independent semitransver-
sal.

(ii) S is absorbent: V \S = S−, so that x ∈ V \S ⇒ there exists an xS-arc.

(iii) S is a transversal set: Let A ∈ D be any arc. Take a vertex x ∈ V (A)
such that x is a minimum of A. Suppose V (A) ∩ S = ∅. Then V (A) ⊂ S−,
which implies the existence of an xS-arc B. As B is a symmetrical arc,
there exists an Sx-arc in D. Then V (A)∩S 6= ∅, for S is a semitransversal.
Therefore, S is a transversal set.

Case 2. S0 6= ∅.
Let D0 = D[S0] be the directed subhypergraph of D induced by S0. As
S 6= ∅ and S ∩ S0 = ∅, we have that |S0| < n. Then D0 has a k-transversal,
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from the inductive hypothesis. Let T0 be a k-transversal of D0. We will
prove that T = S ∪ T0 is a k-transversal of D.

(i) T is independent: Suppose there is an xy-arc A such that {x, y} ⊂ T .
The set {x, y} * S, for S is independent in D. Likewise, {x, y} * T0, for
T0 is independent in D0, and D0 is an induced directed subhypergraph of D.
If x ∈ T0 and y ∈ S, then A is an xS-arc, which implies that x ∈ S−; this
is a contradiction, for x ∈ T0 ⊂ S0 and S− ∩ S0 = ∅. If x ∈ S and y ∈ T0,
we have that A is an Sy-arc, so that there exists a yS-arc B, because S is a
semitransversal; then y ∈ S−, which is a contradiction, for y ∈ T0 ⊂ S0 and
S− ∩ S0 = ∅. Therefore, T ⊂ V is an independent set in D.

(ii) T is an absorbent set in D: Remember that V = S ∪ S− ∪ S0. Take
x ∈ V \ T . If x ∈ S−, then x is absorbed by S ⊂ T , from the definition of
S−. If x ∈ S0, since T0 is a k-transversal of D0 = D[S0] and x /∈ T0, we have
that x is absorbed by T0 ⊂ T .

(iii) T is a transversal set in D:

Claim. V (A) ∩ T 6= ∅ for every arc A ∈ D such that there exists a vertex
x ∈ V (A) ∩ S− that is a minimum of A.

Proof. Let A be an arc in D, x ∈ V (A) ∩ S− such that x is a minimum
of A. Since x ∈ S−, there exists an xS-arc B. Since B is symmetrical and
there exists y ∈ S such that B is an xy-arc, we have that there also exists
a yx-arc B ′ (that is, an Sx-arc). Then, as S is a semitransversal of D and
x is a minimum of A, it follows that ∅ 6= (V (A) ∩ S) ⊂ (V (A) ∩ T ). So our
claim is proven.

Let A be any arc of D and consider the set MA = {x ∈ V (A) | x
is a minimum of A}. We have just seen that MA ∩ S− 6= ∅ implies ∅ 6=
(V (A)∩S) ⊂ (V (A)∩ T ). We may then assume MA ⊂ S0. Take x ∈ MA; if
x ∈ T0, then x ∈ (V (A) ∩ T0) ⊂ (V (A) ∩ T ). If x /∈ T0, take y ∈ V (A) such
that y is a maximum of A. If y ∈ S0, there exists an arc A0 ∈ D0 such that
A0 is induced by A in D0. Since T0 is a k-transversal of D0, V (A0)∩T0 6= ∅,
and then V (A)∩T 6= ∅. If y /∈ S0, then y ∈ S−, for A is an xy-arc and there
are no S0S-arcs. Since A is symmetrical, there exists a yx-arc A′ such that
V (A) = V (A′) and y is a minimum of A′; from our claim, V (A′) ∩ T 6= ∅,
so that V (A) ∩ T 6= ∅. Therefore, T is a k-transversal of D, and the proof
of Theorem 1 is complete.

Notice that we needed D to be symmetrical only to prove transversality,
so that by omitting (iii) in both cases we have a proof of the following:



324 H. Galeana-Sánchez and M. Manrique

Theorem 1′. Let D be a directed hypergraph. If every induced directed
subhypergraph of D has a non-empty semikernel, then D has a kernel.

Definition. A directed hypergraph D is kernel-perfect iff every induced
directed subhypergraph of D has a kernel.

Theorem 1′′. Let D be a directed hypergraph. If every induced directed
subhypergraph of D has a non-empty semikernel, then D is kernel-perfect.

Proof. The result follows directly from Theorem 1′, because every induced
directed subhypergraph of an induced directed subhypergraph of D is itself
an induced directed subhypergraph of D.

Theorem 1′′ is a generalisation of Neumann-Lara’s, for every digraph is
a directed hypergraph.

Definition. A directed hypergraph D is bipartite iff there is a partition of
V (D) in two non-empty independent sets.

Theorem 2. Let D be a symmetrical directed hypergraph. If D is bipartite
then D has a k-transversal.

Proof. Since every induced directed subhypergraph of a bipartite directed
hypergraph is itself bipartite, and considering Theorem 1, it is enough
to show that every bipartite directed hypergraph has a non-empty semi-
transversal.

Let D be a bipartite directed hypergraph and let {V1, V2} be a partition
of V (D) in two independent sets. Notice that both V1 and V2 are indepen-
dent and transversal sets. If there is a vertex x ∈ V2 that is a maximum of
every arc A of D such that x ∈ V (A), then {x} is a semitransversal of D.
If the last statement is not true, we have that for every x ∈ V2 there is an
arc Ax such that x is not a maximum of Ax. Since V2 is independent, Ax is
an xV1-arc for every x in V2. Then V1 is a k-transversal of D.

By considering Theorem 1′′ instead of Theorem 1, we obtain:

Theorem 2′. Every bipartite directed hypergraph is kernel-perfect.

We will now prove that every symmetrical directed hypergraph that has no
closed directed walks of odd length has a k-transversal. To achieve this,
some preliminary results are needed.
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Lemma 1. Let D be a directed hypergraph. Every closed directed walk of
odd length C = (x0, A0, x1, A1, x2, A2, . . . , x2k, A2k, x2k+1 = x0) in D, such
that for every {i, j} ⊂ {0, . . . , 2k} we have Ai 6= Aj, has a directed cycle of
odd length as a subsequence.

Proof. By induction on the length of the closed directed walk.

Let C = (x0, A0, x1, A1, x2, A2, x0) be a closed directed walk of length 3.
From the definition of directed walk we have that x0 6= x1, x1 6= x2, x2 6= x0,
A0 6= A1, A1 6= A2, A2 6= A0. Then C is a directed cycle of length 3.

Now suppose that every closed directed walk of length at most 2k − 1
in which all arcs are different has a directed cycle of odd length as a sub-
sequence, and let C = (x0, A0, x1, A1, x2, A2, . . . , x2k, A2k, x0) be a closed
directed walk of length 2k + 1 such that for every {i, j} ⊂ {0, . . . , 2k}
we have Ai 6= Aj. If xi 6= xj for every {i, j} ⊂ {1, . . . , 2k}, then C is
a directed cycle. If there are {i, j} ⊂ {1, . . . , 2k} such that i < j and
xi = xj, then we have two closed directed walks: C1 = (x0, A0, . . . , xi =
xj , Aj , xj+1, . . . , x2k, A2k, x0) and C2 = (xj = xi, Ai, xi+1, . . . , xj−1, Aj−1, xj).
Notice that F (C1) ∩ F (C2) = ∅, V (C1) ∩ V (C2) = {xj}, so that C1, C2 are
directed walks (since none ”uses” any arc but once). Moreover, we have that
l(C1) 6= 0, l(C2) 6= 0, and l(C1) + l(C2) = l(C), which implies that l(C1)
is odd and l(C2) is even, or the other way round. In any case, there is a
closed directed walk of odd length at most 2k − 1 which is a subsequence of
C. From the inductive hypothesis, such a directed walk has a directed cycle
of odd length as a subsequence, and that cycle is also a subsequence of C.

It is important to notice that if there exist {p, q} ⊂ {1, . . . , 2k} such
that p < q, Ap = Aq, there may be closed directed walks of odd length
with no directed cycle of odd length as a subsequence. In fact, there are
directed hypergraphs with closed directed walks of odd length and without
directed cycles of odd length at all (Figure 6). However, we can guarantee
the existence of a directed cycle of odd length under certain conditions:

Lemma 2. Let D be a directed hypergraph such that for every closed directed
walk of odd length C = (x0, A0, x1, A1, x2, A2, . . . , x2k, A2k, x0), and for every
arc A such that for {p, q} ⊂ {1, . . . , 2k} with p < q and Ap = A = Aq, we
have that xp belongs to the same level of Ap as xq, or that xp+1 belongs to
the same level of Ap as xq+1. Then the following statement holds: If D has
a closed directed walk of odd length, D has a directed cycle of odd length.
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Figure 6. Hypergraph with closed directed walks of odd length and without

directed cycles of odd length.

Proof. Let D be a directed hypergraph and let C = (x0, A0, x1, A1, x2,
A2, . . . , x2k, A2k, x0) be a closed directed walk of length 2k + 1 such that
for {p, q} ⊂ {1, . . . , 2k} we have Ap = A = Aq. If xp belongs to the
same level of Ap as xq, or xp+1 belongs to the same level of Ap as xq+1, we
have that Ap is both a xpxq+1-arc and an xqxp+1-arc. Then there are two
closed directed walks of length at most 2k−1, C1 = (x0, A0, . . . , xp, Ap, xq+1,
Aq+1, . . . , x2k, A2k, x0) and C2 = (xq, Ap, xp+1, . . . , xq−1, Aq−1, xq), such that
l(C1) 6= 0, l(C2) 6= 0, and l(C1) + l(C2) = l(C). Observe that both C1 and
C2 use the arc Ap = Aq once less than C. By repeating this procedure, we
will eventually find a closed directed walk of odd length in which all arcs are
different. According to Lemma 1, such a walk has a directed cycle of odd
length as a subsequence. It should be noticed that the cycle so found is not
necessarily a subsequence of C.

Observe that if Ap = Aq and xp belongs to the same level of Ap as
xq+1, then xq belongs to a different level of Ap than xp+1, for Ap is both
an xpxp+1-arc and an xqxq+1-arc. That is, there are at least three different
levels in Ap: xq belongs to one of them, xq+1 and xp belong to another, and
xp+1 belongs to a third one. Analogously, if xq belongs to the same level of
Ap as xp+1, there is a level to which xp belongs, a second one which contains
xp+1 and xq, and yet another with xq+1. Therefore, if the arc Ap = Aq

has only two levels, it must satisfy the conditions asked in Lemma 2. The
following result is then proven:

Lemma 3. Let D be a directed hypergraph which has a closed directed walk
of odd length but has no directed cycles of odd length, then at least one arc
in D has more than two levels.
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An additional result, which will not be used later, is the following:

Lemma 4. Let D be a symmetrical directed hypergraph such that in every
closed directed walk of odd length C = (x0, A0, x1, A1, x2, A2, . . . , x2k, A2k, x0),
and in every arc A such that for {p, q} ⊂ {1, . . . , 2k}, with p < q and
Ap = A = Aq, we have that xp belongs to a different level of Ap than xq+1

and xq belongs to a different level of Ap than xp+1. Then D has a directed
cycle of odd length.

Proof. In this case we have also two closed directed walks of length at
most 2k − 1: C1 = (x0, A0, . . . , xp, [Ap], xq+1, Aq+1, . . . , x2k, A2k, x0) and
C2 = (xq, [Ap], xp+1, . . . , xq−1, Aq−1, xq), such that l(C1) 6= 0, l(C2) 6= 0
and l(C1) + l(C2) = l(C). The symbol [Ap] means Ap or A′

p, whichever
applies. Since C1 and C2 are subsequences of C (except the possible change
from Ap to A′

p), we have two closed directed walks, one of which is of odd
length, and both using arcs whose underlying set of vertices is V (Ap) (that
is, whether Ap or A′

p) once less than C. By means of a reasoning similar to
the one used in the proof of Lemma 2, we conclude that D has a directed
cycle of odd length (which is not necessarily a subsequence of C).

Lemma 5. Let D be a directed hypergraph. If D is bipartite, then every arc
in D has exactly two levels.

Proof. Let D be a directed hypergraph, and let A be an arc in D with
more than two levels. Let N1, N2, N3 be different levels of A, and take
{x1, x2, x3} ⊂ V (A) such that for every i ∈ {1, 2, 3}, xi ∈ Ni. Suppose D
is bipartite, and let {V0, V1} be a partition of V (D) in two independent
sets. Without loss of generality, we may assume x1 ∈ V1. Since x1 and x2

belong to different levels of A, and V1 is an independent set, it follows that
x2 does not belong to V1; then it belongs to V0. In a similar way, since x1

and x3 belong to different levels of A and V1 is an independent set, x3 does
not belong to V1; since x2 and x3 belong to different levels of A and V0 is
an independent set, x3 does not belong to V0. Therefore D is not bipartite.
This is a contradiction, so Lemma 5 is proven.

Definition. A directed hypergraph D is strong iff for every {x, y} ⊂ V (D)
there are both an xy-directed walk and a yx-directed walk.

Definition. A directed hypergraph D is connected iff for every {x, y} ⊂
V (D) there is either an xy-directed walk or a yx-directed walk.
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Definition. Let D be a directed hypergraph, and let D ′ be a strong directed
subhypergraph of D which is not contained in any other strong directed
subhypergraph of D. Then D′ is a strong component of D.

Definition. Let D be a directed hypergraph, and let D ′ be a connected
directed subhypergraph of D which is not contained in any other connected
directed subhypergraph of D. Then D ′ is a connected component of D.

Remark. A symmetrical directed hypergraph is connected iff it is strong.
Moreover, given any directed hypergraph D, D has a k-transversal T iff
all of its connected components have a k-transversal; in that case, T is the
union of the k-transversals of every connected component of D. Therefore,
a symmetrical directed hypergraph has a k-transversal iff all of its strong
components have one.

Theorem 3. A strong directed hypergraph D such that |V (D)| ≥ 2 is
bipartite iff it has no closed directed walks of odd length.

Proof. To begin with, we will prove that a bipartite directed hypergraph
has no directed cycles of odd length: Let D be a bipartite directed hyper-
graph, let {V0, V1} be a partition of V (D) in two independent sets, and let
C = (x0, A0, . . . , xk−1, Ak−1, xk = x0) be a directed cycle of length k. We
may assume x0 ∈ V0. Since C is a cycle, and both V0 and V1 are independent
sets, it follows that x1 ∈ V1 and, in general, for every i ∈ {1, . . . , k − 1} and
j ∈ {0, 1}, we have that xi ∈ Vj iff i ≡ j (mod 2). Therefore, k ≡ 0 (mod2)
for xk = x0 ∈ V0.

Let D be a directed hypergraph, and let C be a closed directed walk
of odd length. As we have seen, if D has a cycle of odd length, it is not
bipartite. If D has no cycle of odd length, Lemma 3 states that there is
at least an arc in F (D) with more than two levels, so D is not bipartite,
according to Lemma 5.

Conversely, let D be a strong directed hypergraph without closed
directed walks of odd length and such that |V (D)| ≥ 2. Take x ∈ V (D)
and define V0 = {x} ∪ {y ∈ V (D) | there exists an xy-directed walk of even
length in D}, V1 = {y ∈ V (D) | there exists an xy-directed walk of
odd length in D}. Then {V0, V1} is a partition of V (D) in two independent
sets:

(i) V (D) = V0 ∪ V1, for D is strong.
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(ii) V0 6= ∅ 6= V1: Since x ∈ V0, we have that V0 6= ∅. There exists at
least a vertex y ∈ V (D) such that y 6= x. If y /∈ V1 then y ∈ V0, for D
is strong, so there is an xy-directed walk C such that l(C) is even, that is,
such that l(C) ≥ 2. Then C = (x = x0, A0, x1, . . . , Ak−1, xk = y) contains
the subsequence C ′ = (x = x0, A0, x1), which is an xx1-directed walk of
length 1. Therefore, x1 ∈ V1.

(iii) V0 ∩ V1 = ∅: Suppose there exists y ∈ V0 ∩ V1. Then there are xy-
directed walks C0 and C1 such that l(C0) is even and l(C1) is odd. Since D
is strong, there is a yx-directed walk C ′. If l(C ′) is odd, then C ′ ∪ C0 is a
closed directed walk of odd length. If l(C ′) is even, then C ′ ∪C1 is a closed
directed walk of odd length. Therefore, @ y ∈ V0 ∩ V1.

(iv) V0 and V1 are independent sets: Suppose there exists {y, z} ⊂ V0 such
that there is a yz-arc A in D. Since y ∈ V0, there is an xy-directed walk
of even length C = (x = x0, A0, x1, . . . , Ak−1, xk = y), so that the length of
the xz-directed walk C ′ = (x = x0, A0, x1, . . . , Ak−1, y, A, z) is odd. Then
z ∈ V0 ∩ V1, which is impossible. It follows that V0 is an independent set.
We may see that V1 is independent by means of a similar reasoning.

Theorem 4. Every symmetrical directed hypergraph D with no closed di-
rected walks of odd length has a k-transversal.

Proof. As stated in the remark preceding Theorem 3, a symmetrical di-
rected hypergraph has a k-transversal iff all of its strong components have
one, so we may assume D to be strong. Since D is strong, by Theorem 3 D
is bipartite, and then Theorem 2 states that D has a k-transversal.

Corollary 1. Let H be a hypergraph such that there exists a directed hyper-
graph D generated by H with no closed directed walks of odd length. Then
H has a strongly independent transversal set.

Proof. Let H be a hypergraph satisfying the conditions of the corollary,
and let D be a directed hypergraph generated by H without closed directed
walks of odd length. Theorem 4 states that D has a k-transversal T . Since
the partition of every arc is the natural partition of the edges of H, the
intersection between any two levels of D is empty. Let N1, . . . , Nk be the
levels of arcs in D such that ∀i ∈ {1, . . . , k}, Ni ∩ T 6= ∅. Consider a set
N = {x1, . . . , xk}, where ∀i ∈ {1, . . . , k}, xi ∈ Ni. On the other hand,
notice that the set of isolated vertices X of D is contained in T . Then
L = X ∪N is a strongly independent transversal set in H: Since every level
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intersected by T is as well intersected by L, we have that L is a transversal
set of H; since T is independent (that is, there are not two levels Np and
Nq such that Np ∩T 6= ∅ 6= Nq ∩T and {Np, Nq} ⊂ V (A) for some arc A in
D) and we take only one vertex from each level, it follows that L is strongly
independent in H.

Corollary 2. Let H = {E1, . . . , Em} be a hypergraph with no cycles of
odd length and such that the natural partition of all its edges has two ele-
ments. Then H has a strongly independent transversal set. In particular,
every multigraph with no loops nor cycles of odd length has an independent
transversal set.

Proof. Let H = {E1, . . . , Em} be a hypergraph satisfying the conditions of
the corollary. Since the natural partition of every edge of H has two levels,
H generates a directed hypergraph D. Since H has no cycles of odd length,
D has no directed cycles of odd length (for every arc has but two levels), so
that according to Lemma 3 D has no closed directed walks of odd length.
Then Corollary 1 states that H has a strongly independent transversal set.

Notice that in such a case, H is always simple, because the follow-
ing holds for every hypergraph G: If {Ei, Ej} ∈ G, Ei ⊂ Ej , Ei 6= Ej ,
then the natural partition of Ej has at least one more element than that
of Ei. Also, for every E ∈ H there is a partition B = (B1, B2) of the
set IE = {F ∈ H | E ∩ F 6= ∅}, possibly with empty elements, such that
∀i ∈ {1, 2}, ∀Fa, Fb ∈ Bi, E ∩ Fa = E ∩ Fb; if B1 6= ∅ 6= B2, then E ⊂ IE .
Moreover, Lemma 5 implies that every hypergraph H such that there ex-
ists a bipartite directed hypergraph generated by it, does have a strongly
independent transversal set.

Corollary 3. Let H = {E1, . . . , Em} be a simple hypergraph with no cycles
of odd length and such that the natural partition of all its edges has at most
two elements. Then H has a strongly independent transversal set.

Proof. Let H = {E1, . . . , Em} be a hypergraph satisfying the conditions of
the corollary. Since H is simple, every edge whose natural partition has only
one element intersects no other edge. Then we may take one vertex from
each of such edges and consider the remaining hypergraph, all of whose edges
have exactly two levels: without loss of generality, let H ′ = {E1, . . . , Ek} be
the set of edges of H whose natural partition has one element, and consider
the set T ′ = {x1, . . . , xk}, where for every i ∈ {1, . . . , k}, xi ∈ Ei. The
natural partition of every edge of H ′′ = H \H ′ has two elements, so we may



Directed Hypergraphs: A Tool for Researching ... 331

apply Corollary 2, obtaining a strongly independent transversal set T ′′ of
H ′′. Then T ′ ∪ T ′′ is a strongly independent transversal set of H.

As a consequence, every (multi)graph with loops only in ”isolated” ver-
tices and without odd cycles has an independent transversal set.

Open Problem. Caracterise all hypergraphs H such that there exists a
directed hypergraph D generated by H with no closed directed walks of odd
length. Figure 7 shows a hypergraph with cycles of odd length such that the
only directed hypergraph generated by it has no directed cycles altogether.

Figure 7. There are k arcs, k vertices in the level which is the minimum of all

arcs, and one vertex in all other levels. D has no closed directed

walks, while the underlying hypergraph has cycles of every length

no greater than k.

We will now see that every directed hypergraph without closed directed
walks of odd length is kernel-perfect:

Definition. A strong component T of a directed hypergraph D on a set V
is terminal iff ∀x ∈ V \ V (T ), there are no V (T )x-arcs.

Observe that every directed hypergraph has a terminal strong
component.

Definition. A directed hypergraph which is not kernel-perfect is called
kernel-imperfect. A kernel-imperfect directed hypergraph such that all of its
proper induced directed subhypergraphs are kernel-perfect is called critical-
kernel-imperfect (CKI).
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Notice that given a kernel-imperfect directed hypergraph D, there is always
an induced directed subhypergraph of D which is CKI, for every directed
hypergraph on a set of one or two vertices is kernel-perfect.

Lemma 6. Every CKI directed hypergraph is strong.

Proof. Let D be a CKI directed hypergraph on a set V . Suppose D is
not strong, and consider a strong terminal component T of D. Since D is
not strong, T is a proper induced directed subhypergraph of D, so it has a
kernel K1. Since D has no kernel, ∅ 6= U = V \ (K1 ∪ N−(K1)) 6= V , which
implies that D[U ] has a kernel K2.

We will see that K1 ∪ K2 is independent: There are no K1K2-arcs, for
T is terminal; there are no K2K1-arcs, from the definition of U . We also
have that K2 ∪ N−(K2) = U and K1 ∪ N−(K1) = V \ U , so that K1 ∪ K2

is a kernel of D. This is a contradiction. Then D must be strong.

Theorem 5. Every directed hypergraph D without closed directed walks of
odd length is kernel-perfect.

Proof. Let D be a kernel-imperfect directed hypergraph without closed
directed walks of odd length, and let D ′ be an induced directed subhyper-
graph of D which is CKI. Since D′ is strong and has no directed walks of
odd length, Theorem 3 states D′ is bipartite. Then, from Theorem 2′, D′ is
kernel-perfect. This is a contradiction, so Theorem 5 is proven.

Corollary. Let D be a directed hypergraph without directed cycles of odd
length, and such that none of its arcs has more than two levels. Then D is
kernel-perfect.

Proof. This follows from Lemma 3 and Theorem 5.
The Corollary is a generalisation of Richardson’s Theorem, for every arc

on a (multi)digraph has at most 2 levels.

Associated Digraphs

We may associate a digraph Q to any directed hypergraph D in the following
way: V (Q) = V (D), and for every {x, y} ⊂ V (Q) = V (D) there is an xy-
arrow in Q iff there is an xy-arc in D. This resembles the 2-section graph
of a hypergraph, defined by Berge in [3] and studied by Borowiecki (cf. [5]).
Given a directed hypergraph D, to each arc Ai of D corresponds an r(i)-
partite tournament. If we ask the intersection of any two levels of D to be
empty and k is the total number of levels in D, then Q is a k-partite digraph.
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Figure 8. Associated digraph.

Notice that a given digraph may be associated to several directed hyper-
graphs (to begin with, to itself). From the definition of Q, we have that
S ⊂ V (D) = V (Q) is independent in D iff it is independent in Q, and that
S is absorbent en D iff it is absorbent in Q. So, any result on (not neces-
sarily transversal) kernels of directed hypergraphs corresponds to a result
on kernels of digraphs. If Q has no closed directed walks of odd length, D
has none either. However, there are directed hypergraphs without closed di-
rected walks of odd length whose associated digraphs do have closed directed
walks of odd length (that is, directed cycles of odd length), as shown on Fig-
ure 8.b. Theorem 5 implies that the associated digraph of every directed
hypergraph without closed directed walks of odd length is kernel-perfect.

Open problem. Caracterise all digraphs with directed cycles (that is,
closed directed walks) of odd length which are associated to directed hy-
pergraphs without closed directed walks of odd length. It is easy to show
that every directed cycle of odd length C of such a digraph Q has at least
one ”jump” of length 2: If C = (x0, x1, x2, . . . , x2k+1 = x0) is a directed
cycle of odd length in Q, whether (x2k, x1) is an arrow of Q, or there exists
i ∈ {1, . . . , 2k − 1} such that (xi, xi+2) is an arrow of Q.

Remark. We may say that a directed hypergraph D is k-transversal-perfect
iff every induced directed subhypergraph of D has a k-transversal. Since ev-
ery directed subhypergraph of a symmetrical directed hypergraph is itself
symmetrical, theorems 1, 2, and 4 can be easily extended to results resem-
bling theorems 1′′, 2′, and 5. However, we already mentioned that induced
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directed subhypergraphs of a directed hypergraph D generated by a hyper-
graph H are not necessarily generated by induced subhypergraphs of H, so
the concept is not useful for researching hypergraphs.

Up to now, our efforts have been focused on the study of transversal
kernels (that is, sets which are independent, absorbent, and transversal)
in directed hypergraphs. However, we think that the concept of directed
hypergraph may be useful for studying other aspects of digraphs and hyper-
graphs.
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