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Abstract

A normal partition of the edges of a cubic graph is a partition into
trails (no repeated edge) such that each vertex is the end vertex of
exactly one trail of the partition. We investigate this notion and give
some results and problems.
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1. Introduction and Notations

Following Bondy [1], a walk in a graph G is sequence W := v0e1v1 . . . ekvk,
where v0, v1, . . . , vk are vertices of G, and e1, e2, . . . , ek are edges of G and
vi−1 and vi are the ends of ei, 1 ≤ i ≤ k. v0 and vk are the end vertices and
e1 and ek are the end edges of this walk, while v1, . . . , vk−1 are the internal

vertices and e2, . . . , ek−1 are the internal edges. The length l(W ) of W is
the number of edges (namely k). W is odd whenever k is odd and even

otherwise. The walk W is a trail if its edges e1, e2, . . . , ek are distincts and
a path if its vertices v0, v1, . . . , vk are distincts. If W := v0e1v1 . . . ekvk, is a
walk of G W ′ := viei+1 . . . ejvj (0 ≤ i ≤ j ≤ k) is a subwalk of W (subtrails

and subpaths are defined analogously). If v is an internal vertex of a walk
W with ends x and y, W (x, v) and W (v, y) are the subwalks of W obtained
in cutting W in v. Conversely if W1 and W2 have a common end v, the
concatenation of these two walks on v gives rise to a new walk (denoted by
W1 + W2) with v as an internal vertex. When no confusion, is possible, it
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will be convenient to omit the edges in the description of a walk, that is
W := v0e1v1 . . . ekvk will be shorten in W := v0v1 . . . vk.

Let G = (V,E) be a cubic graph (loops and multiple edges are allowed)
and let T = {T1, T2, . . . , Tk} be a partition of E(G) into trails. Every vertex
v ∈ V (G) is either an end vertex three times in the partition and we shall
say that v is an eccentric vertex, or an end vertex exactly once, and we
shall say that v is a normal vertex. To each vertex, we can associate a set
ET (v) containing the end vertices of the unique trail with v as an internal
vertex, when such a trail exists in T . When v is eccentric we obviously have
ET (v) = ∅. It must be clear that we can have v ∈ ET (v) since we consider
a partition of trails.

Definition 1.1. A partition T = {T1, T2, . . . , Tk} of E(G) into trails is
normal when every vertex is normal.

When T is a normal partition, we can associate to each vertex the unique
edge with end v which is the end edge of a trail of T . We shall denote this
edge by eT (v) and it will be convenient to say that eT (v) is the marked edge
associated to v. When it will be neces sary to illustrate our purpose by a
figure the marked edge associated to a vertex will be figurate by a ` close
to this vertex.

Definition 1.2. A partition T = {T1, T2, . . . , Tk} of E(G) into trails is odd

when every trail in T is odd.

Definition 1.3. A partition T = {T1, T2, . . . , Tk} of E(G) where each trail
is a path will be called a path partition.

Definition 1.4. A partition P = {P1, P2, . . . , Pk} of V (G) into paths is a
perfect path partition when every vertex of G is contained in P (let us note
that k ≥ n

2
). A perfect matching is thus a perfect path partition where each

path has length 1.

When F ⊆ E(G), V (F ) is the set of vertices which are incident with some
edges of F and G−F is the graph obtained from G in deleting the edges of
F . A strong matching C in a graph G is a matching C such that there is no
edge of E(G) connecting any two edges of C, or, equivalently, such that C

is the edge-set of the subgraph of G induced on the vertex-set V (C).
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2. Elementary Properties

Proposition 2.1. Let G be a cubic graph. Then we can find a normal

partition of E(G) within a linear time.

Proof. We can easily obtain a partition T = {T1, T2, . . . , Tk} of E(G) into
trails via a greedy algorithm. If every vertex is normal then T is normal
and we are done. If v is an eccentric vertex then v is the end vertex of two
distinct trails T1 and T2. Let T ′ be the trail obtained by concatenation of
T1 and T2 on v. v is an internal vertex of T ′ and T − {T1, T2} + T ′ is a
partition of E(G) into trails with one eccentric vertex less (namely v). This
operation can be repeated as long as the current partition into trails has
an eccentric vertex and we end with a normal partition in at most O(n)
steps.

Proposition 2.2. A partition T of G is normal if and only if |T | = n

2
.

Proof. Assume that T is normal, then every vertex is the end of exactly
one trail. Hence |T | = n

2
.

Conversely, let T be a partition of the edge set of G into trails. Assume
that |T | = n

2
and T is not normal. Then, performing the operation described

in Proposition 2.1 on eccentric vertices leads to a normal partition T ′ such
that |T ′| < n

2
, since the concatenation of two trails on a vertex decreases

the number of trails in the partition, a contradiction.

We shall denote by nT (i) the number of trails of length i and by µ(T ) the
mean length of trails in a normal partition.

Proposition 2.3. Let T be a normal partition of a cubic graph G on n

vertices. Then

• µ(T ) = 3,

•
∑i=n+1

i=1
(3 − i)ni

T = 0.

Proof. T being normal, we have |T | = n
2

by Proposition 2.2. Since
|E(G)| = 3n

2
we have obviously µ(T ) = 3.

We have
i=n+1
∑

i=1

i × nT (i) =
3n

2
= 3

i=n+1
∑

i=1

nT (i)
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and hence
i=n+1
∑

i=1

(3 − i)nT (i) = 0.

The length of a normal partition T (denoted by l(T )) is the length of the
longest trail in T .

Proposition 2.4. A cubic graph G on n vertices has an hamiltonian path

if and only if G has a normal partition T such that l(T ) = n + 1.

Proof. Assume that P = v1v2 . . . vn is an hamiltonian path of G. We
shall consider that vi is joined to vi+1 by the edge ei in P . Let w1 (wn,
respectively) a vertex adjacent to v1 (w1, respectively) by the edge e′1 (e′n,
respectively) not in E(P )( e′1 6= e′n). Let T1 be the trail w1e

′
1v1e1v2e2 . . .

en−1vne′nwn. E(G) − T1 is reduced to a matching of size n−2

2
and it can be

easily checked that this matching together with T1 is a normal partition of
G of length n + 1.

Conversely, let T be a normal partition of G of length n + 1 and let
T1 = w1e1v1e1v2e2 . . . en−1vnenwn be a trail of maximum length in T . Since
the only vertices which can appear twice in T1 are precisely w1 and wn,
P = v1v2 . . . vn is an hamiltonian path of G.

Theorem 2.5. Let G be a cubic graph having a perfect path partition P =
{P1, P2, . . . , Pk}. Assume that the ends of Pi are xi and yi (∀i = 1, . . . , k).
Then G has a normal partitions T = {T1, T2, . . . , Tn

2

} such that Ti is ob-

tained from Pi in adding one edge incident to xi and one edge incident to

yi (∀i = 1, . . . , k).

Proof. The subgraph of G obtained in deleting the edges of each Pi is a
set of disjoint paths. Let us give an arbitrary orientation to these paths. We
get a normal partition T in adding the outgoing edge incident to xi and to
yi (∀i = 1, . . . , k), the remaining edges being a set of trails of length 1 in T .

Let l1, l2, . . . , ln

2

be a set of integers (li ≥ 1) such that

n

2
∑

i=1

li =
3n

2
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can we find a normal partition T = {T1, T2, . . . , Tn

2

} where l(Ti) = li ∀i =
1, . . . , n

2
? There is no complete answer in general, however, when G has an

hamiltonian cycle we have the following result (see [2]):

Theorem 2.6. Let G be a cubic hamiltonian graph. Let l1, l2, . . . , ln

2

be a

set of integers such that

•
∑

n

2

i=1
li = 3n

2
,

• li ≥ 1 li 6= 2 ∀i = 1, . . . , n
2
.

Then G has a normal partition T = {T1, T2, . . . , Tn

2

} where l(Ti) = li ∀i =
1, . . . , n

2
.

Proof. Let λi = li − 2 and assume that λ1 ≥ λ2 ≥ · · · ≥ λn

2

. The first
k values (for some k ≤ n

2
) are greater than 1, and the remaining values are

−1, since li 6= 2 for all i = 1, . . . , n
2
. We have

k
∑

i=1

λi =
k

∑

i=1

(li − 2) =
k

∑

i=1

li − 2k,

k
∑

i=1

li − 2k =

k
∑

i=1

li − 2k +

n

2
∑

j=k+1

lj −
(n

2
− k + 1

)

since
∑k

i=1
li +

∑

n

2

j=k+1
lj = 3n

2
we get that

k
∑

i=1

λi = n − k + 1.

Let C be an hamiltonian cycle of G, we can thus arrange a set P of vertex
disjoint paths Pi of length λi (i = 1, . . . , k) along this cycle. P is a perfect
path partition and, applying theorem 2.5 we have a normal partition of G

as claimed.

Let T be a normal partition of a cubic graph G and let v be any vertex
of G. ET (v) contains exactly two vertices, namely x and y and one of
them, at least, must be distinct from v (we may assume that v 6= x). Let
T1 be the trail with ends x and y such that v is an internal vertex of T1.
Since T is normal, there is a trail T2 ending in v (with the edge eT (v)).
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If T ′
1 denotes the trail obtained by concatenation of T1(x, v) and T2 on v,

then T − {T1, T2} + T ′
1 + T1(v, y) is a new normal partition of G. We shall

say that the above operation is a switch on v. When v 6∈ ET (v) two such
switchings are allowed (see Figure 1), but when v ∈ ET (v) only one switching
is possible (see Figure 2). A switch on a vertex v (leading from a normal
partition T to the normal partition T ′ = T ∗ v) does not change the edge
marked associated to w when w 6= v. That is eT (w) = eT ′(w). On the other
hand, the sets ET ′(w) may have changed for vertices of T1 and T2. When
T is a normal odd partition and when T ′ = T ∗ v remains to be an odd
partition, the switch on v is said to be an odd switch. It is not difficult to
see that, given a normal odd partition, an odd switch is always possible on
every vertex.

V

x U2 U3U1

T1

T2

U1

T’2

T’1

x U2 U3

V

Figure 1. Switching on v with two distinct trails.

V

U2 U3U1

T’1

U2

T1

U1 U3

V

Figure 2. Switching on v with one trail.
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We shall say that T and T ′ are switching equivalent (resp. odd switching

equivalent) whenever T ′ can be obtained from T by a sequence of switchings
(resp. odd switchings). The switching class (resp. odd switching class) of
T is the set of normal partitions which are switching equivalent (resp. odd
switching equivalent) to T .

Theorem 2.7. Let G be a cubic graph and let T and T ′ be any two normal

(resp. odd ) partitions. Then T ′ can be obtained from T by a sequence of

(resp. odd ) switchings of length at most 2n.

Proof. Let AT T ′ = {v| v ∈ V (G) eT (v) = eT ′(v)} and assume that
V (G)−A 6= ∅. We want to pick a vertex in V (G)−A and try to switch the
normal partition T in this vertex (or T ′) in order to increase the size of A.
We can suppose that T ′ is not in the switching class of T and, moreover,
among the switching equivalent normal partitions of T and those of T ′,
AT T ′ has maximum cardinality.

Let v ∈ AT T ′ and let u1, u2 and u3 be its neighbors. Assume that
eT (v) = vu1 and eT ′(v) = vu2. Recall that in both partitions a switch
(resp. odd switch) is always possible on v.

Consider first a possible switch (resp. odd switch) on v in T , if eT ∗v =
vu2 then AT ∗v,T ′ = AT ,T ′ ∪ {v}, a contradiction. If in switching (resp.
odd switching) T ′ on v we have eT ′∗v = vu1 then AT ,T ′∗v = AT ,T ′ ∪ {v},
a contradiction. Finally, if eT ∗v 6= vu2 and eT ′∗v 6= vu1 that means that
eT ∗v = vu3 and eT ′∗v = vu3, thus AT ∗v,T ′∗v = AT ,T ′ ∪ {v}, a contradiction.

Hence any two normal partitions are switching equivalent (resp. odd
switching equivalent). In order to increase the size of AT T ′ , we have seen
that we eventually are obliged to proceed to two switchings on the same
vertex (one with T and one with T ′). It is thus clear that we need at most
2n such switching on the road leading to T ′ from T .

Theorem 2.7 suggests a simulated annealing approach in order to search for
a longest path in a cubic graph. We have got results in that direction in
[3] when considering linear partitions (partitions of the edge set of a cubic
graph into two forests of paths). Instead of using a switching on a vertex
the elementary operation involved was a switching on an edge, but, in that
case, it is not true that any two linear partitions are switching equivalent.

Theorem 2.8. Let G be a cubic graph. Then G has an odd normal partition

if and only if G has a perfect matching.
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Proof. Let M be a perfect matching in G. Then G − M is a 2-factor of
G. Let us give any orientation to the cycles of this 2-factor and for each
vertex v let us denote the outgoing edge o(v). For each edge e = uv ∈
M , let Puv be the path of length 3 obtained in concatenating o(u) uv and
o(v). Then T = {Puv |uv ∈ M} is a normal odd partition (of length 3)
of G.

Conversely, let T = {T1, T2, . . . , Tn

2

} be a normal odd partition of G.
For each trail Ti ∈ T let us say that en edge e = uv of Ti is odd whenever
the subtrails of Ti obtained in deleting e have odd lengths (an even edge
being defined in the obvious way). A vertex v ∈ V (G) is internal in exactly
one trail of T . The edges of this trail being alternatively odd and even, v is
incident to exactly one odd edge. Hence the odd edges so defined induce a
perfect matching of G.

Given a set of edges F = {ev |v ∈ V (G)}, where each vertex of V (G) appears
exactly once as the end of an edge of F . Under which condition can we say
that this set of edges is the set of marked edges associated to a normal
partition?

Theorem 2.9. Let F = {ev |v ∈ V (G)} be a set of edges of G, where each

vertex of V (G) appears exactly once as the end of an edge of F . Then there

exists a normal partition T such that F = {eT (v)|v ∈ V (G)} if and only if

F is a transversal of the cycles of G.

Proof. Let T be a normal partition, the set of marked edges {eT (v)|v ∈
V (G)} is obviously a transversal of the cycles of G, since T is partitioned
into trails. Conversely, assume that F = {ev |v ∈ V (G)} is a transversal
of the cycles of G. Then the spanning subgraph G − F is a set of paths
{P1, P2, . . . , Pk} (some of them being eventually reduced to a vertex). Let
ui and vi be the end vertices of Pi (1 ≤ i ≤ k) (when Pi is reduced to a
single vertex, we have ui = vi). We add to each path Pi the edges of F which
are incident to ui and vi and distinct from eui

and evi
. We get thus a set

of trails T = {T1, T2, . . . , Tk} which partition the edge set. We claim that
T is a normal partition. Indeed, let v be any vertex of G. v is contained
in some path Pi of G − F and Ti must contain the two edges incident to v

and distinct from the unique edge associated to v in F . Hence v must be
an internal vertex of Ti which implies that v is normal.
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3. On Compatible Normal Partitions

Definition 3.1. Two partitions T = {T1, T2, . . . , Tk} and T ′ = {T ′
1, T

′
2, . . . ,

T ′
k} of E(G) into trails are compatible when eT (v) 6= eT ′(v) for every vertex

v ∈ V (G).

Theorem 3.2 below was previously stated in [2]:

Theorem 3.2. Let G be a cubic graph having a perfect matching M . Then

G has 2 compatible normal odd partitions of length 3.

Proof. Let us give an orientation to the 2-factor of G − M . We get a
normal partition T with all paths of length 3 when the edges of M are
concatenated with the outgoing edges of the 2-factor (see Theorem 4.9. If
we change the orientations on each cycle of the 2-factor we obtain a second
normal partition T ′. These two partitions are easily seen compatible.

Compatible perfect path double covers

When we can find two compatible normal path partitions in a cubic graph
we have, in fact a particular PPDC of its edge set.

Definition 3.3. A Perfect Path Double Cover (PPDC for short) is a col-
lection P of paths such that each edge of G belongs to exactly two members
of P and each vertex occurs exactly twice as an end path of P.

This notion has been introduced by Bondy (see [1]) who conjectured that
every simple graph admits a PPDC. This conjecture was proved by Li [9].
When dealing with two compatible normal path partitions P and P ′ in a
cubic graph, we have a particular PPDC. Indeed every edge belongs to
exactly one path of P and one path of P ′ and every vertex occurs exactly
once as an end vertex of a path in P and as an end vertex of a path in P ′.
The qualifying adjective compatible says that the two end edges are distinct
for each vertex.

As a refinement of the notion of PPDC we can define a CPPDC for a
simple graph.

Definition 3.4. A Compatible Perfect Path Double Cover (CPPDC for
short) is a collection P of paths such that each edge of G belongs to exactly
two members of P and each vertex occurs exactly twice as an end path of
P and these two ends are distinct.
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A natural question is thus to know which graphs admits a CPPDC. If we
restrict ourself to connected graphs, we immediately can see that as soon
as a graph as a pendant edge, a CPPDC does not exist. We need thus to
consider graphs with a certain connectivity condition. It can be proved that
a simple minimal 2-edge connected graph admits a CPPDC.

And we propose as an open Problem.

Problem 3.5. Every 2-edge connected graph admits a CPPDC.

Remark 3.6. Assume that a connected graph G admits CPPDC. In dou-
bling every edge e in e′ and e′′ (let G2 the graph so obtained), this CPPDC

leads to an Euler tour of G2. This Euler tour is compatible (in the sense
given by Kotzig [8]) with the set of transitions defined by e′ and e′′ in each
vertex.

4. On Three Compatible Normal Partitions

We shall say that G has 3 compatible normal partitions T , T ′ and T
′′

whenever these partitions are pairwise compatibles.

Theorem 4.1. A cubic graph G has three compatible normal partitions if

and only if G has no loop.

Proof. Let G be a cubic graph with three compatible normal partitions
T , T ′ and T

′′

. Assume that G contains a loop vv, let w 6= v be the vertex
adjacent to v then one of these normal partitions, say T , would be such that
eT (v) = vw. In that case vv would be the trail containing v as an internal
vertex, impossible.

u v

T1u v
T2u v

T3

Figure 3. Cubic graph on 2 vertices with 3 compatible normal partitions.
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Conversely, assume that G has no loop and G can not be provided with 3
compatible normal partitions. We can suppose that G has been chosen with
the minimum number of vertices for that property. Figure 3 shows that G

has certainly at least 4 vertices.

Claim 1. If u and v are joined by two edges e1 and e2, then there is a third
vertex w adjacent to u and v.

Proof. Assume that u is adjacent to u′ and v to v′ with u′ 6= u and v′ 6= v.
Let G′ be the cubic graph obtained from G in deleting u and v and joining
u′ and v′ by a new edge. G′ is obviously a cubic graph with no loop and
|V (G)| < |V (G′)|. We can thus find 3 compatible normal partitions T , T ′

and T
′′

in G′.
The edge u′v′ of G′ is contained into T ∈ T , T ′ ∈ T ′ and T ′′ ∈ T ′′. For

convenience, T1 and T2 will the subtrails of T we have obtained in deleting
u′v′, with u′ an end of T1 and v′ an end of T2. Following the same trick we
get T ′

1 and T ′
2, T ′′

1 and T ′′
2 when considering T ′ and T ′′. It can be noticed

that some of these subtrails may have length 0, which means that, following
the cases, uv is the marked edge associated to u or (and) v in T , T ′ or T ′′.

Let P1 = T1+u′u, P2 = T2+v′ve1ue2v and Q = T −P+{P1, P2}. We can
easily check that Q is a normal partition of G where eQ(x) = eT (x) ∀x 6= u, v

and eQ(u) = uu′, eQ(v) = e2.
In the same way, let P ′

1 = T ′
1 + u′ue2ve1u, P ′

2 = T ′
2 + v′v and Q′ =

T ′ − P ′ + {P ′
1, P

′
2}. Then eQ′(x) = eT ′(x) ∀x 6= u, v and eQ′(u) = e′1,

eQ′(v) = vv′. Hence Q′ is a normal partition compatible with Q.
Finally, let P ′′

1 = T ′′
1 + u′ue1v, P ′′

2 = T ′
2 + v′ve2u and Q′′ = T ′′ − P ′′ +

{P ′′
1 , P ′′

2 }. Then eQ′′(x) = eT ′′(x) ∀x 6= u, v and eQ′′(u) = e′2, eQ′′(v) = e′1.
Hence Q, Q′ and Q′′ are 3 compatible normal partitions of G, a contradic-
tion.

Claim 2. If uv ∈ E(G), then |N(u)| = 2 or |N(v)| = 2.

Proof. Assume that |N(u)| = 3 and |N(v)| = 3 and let u′ and u′′ the two
neighbors of u and v′ and v′′ those of v. Let G′ be the graph obtained from G

by deleting u and v and joining u′ and u′′ by a new edge as well as joining v′

and v′′. G′ is obviously a cubic graph with no boucle and |V (G)| < |V (G′)|.
We can thus find 3 compatible normal partitions T , T ′ and T

′′

in G′.
The edge u′u′′ of G′ is contained into T ∈ T , T ′ ∈ T ′ and T ′′ ∈ T ′′ and

we denote, as in the previous claim by T1, T2, T
′
1, T

′
2, T

′′
1 and T ′′

2 the subtrails
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of T, T ′ and T ′′ obtained in deleting u′u′′ (with u′ an end of trails with
subscript 1 and u′′ an end of trails with subscript 2). If R ∈ T , R′ ∈ T ′ and
R′′ ∈ T ′′ are the trails using v′v′′, we can define also R1, R2, R

′
1, R

′
2, R

′′
1 and

R′′
2 .

We are going to construct 3 normal partition Q, Q′ and Q′′ of G in
transforming locally T , T ′ and T ′′ in such a way that eQ(x) = eT (x)
eQ′(x) = eT ′(x) and eQ′′(x) = eT ′′(x) ∀x 6= u, v. The verification of this
point, left to the reader, is immediate.
Let P ′′

1 = T ′′
1 + u′uu′′ + T ′′

2 , P ′′
2 = R′′

1 + v′vv′′ + R′′
2 and P ′′

3 = uv. Q′′ is then
T ′′ − {P ′′, R′′} + {P ′′

1 , P ′′
2 , P ′′

3 }. We can remark that we have subdivided
P ′′ and R′′ an we have add a trail of length one (uv). We have hence,
eQ′′(u) = uv and eQ′′(v) = uv.

It must be clear that we may have T = R in T , which means that u′u′′

and v′v′′ are contained in the same trail of T . But we certainly have either
T1 6= R1 or T1 6= R2 since R1 and R2 are two disjoint trails. Let us consider
the following partitions of the edge set of G:

Q1 = T − {T1, T2} + {T1 + u′uvv′ + R1, T2 + u′′u,R2 + v′′v},

Q2 = T − {T1, T2} + {T1 + u′uvv′′ + R2, T2 + u′′u,R2 + v′v},

Q3 = T − {T1, T2} + {T1 + u′u,R1 + v′vuu′′ + T2, R2 + v′′v},

Q4 = T − {T1, T2} + {T1 + u′u,R1 + v′v, T2 + u′′uvv′′ + R2}.

Q1 is a normal partition of G as soon as T1 6= R1 and we can check, in that
case, that Q2, Q3 and Q4 are normal partitions of G. In the same way, Q2 is
a normal partition of G as soon as T1 6= R2 and we can check, in that case,
that Q1, Q3 and Q4 are normal partitions of G. Q3 is a normal partition of
G as soon as T2 6= R1 and, in that case, Q1, Q2 and Q4 are normal partitions
of G. Q4 is a normal partition of G as soon as T2 6= R2 and, in that case,
Q1, Q2 and Q3 are normal partitions of G.

We can define analogously Q′
1, Q

′
2, Q

′
3 and Q′

4 when considering T ′.
We can check moreover that these normal partitions (when they are well

defined) Q1, Q2, Q3, Q4, Q
′
1, Q

′
2, Q

′
3 and Q′

4 are compatible with Q′′ since

eQi
(u) = uu′ or eQi

(u) = uu′′ i = 1, 2, 3, 4,

eQi
(v) = vv′ or eQi

(v) = vv′′ i = 1, 2, 3, 4,

eQ′

i
(u) = uu′ or eQ′

i
(u) = uu′′ i = 1, 2, 3, 4,

eQ′

i
(v) = vv′ or eQ′

i
(v) = vv′′ i = 1, 2, 3, 4.
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We can verify that in each case to be considered with T (T1 = R1 and
T2 6= R2, T2 = R2 and T1 6= R1, T1 = R2 and T2 6= R1, T2 = R1 and
T1 6= R2, T1, T2, R1, R2 all distinct) together with the similar cases for T ′ we
can choose a normal partition Q in {Q1,Q2,Q3,Q4} and a normal partition
Q′ in {Q′

1,Q
′
2,Q

′
3,Q

′
4} which are compatible and hence 3 normal partitions

compatible Q,Q′ and Q′′ for G, a contradiction.

Assume that u and v are joined by two edges in G, then, from Claim 1, there
is unique new vertex w joined to u and v. This vertex is adjacent to x 6= u, v

which have itself a neighbor z 6= u, v. Le z ′ and z′′ be the neighbors of z

distinct from x. Then from Claim 2 z ′ = z′′. But, in that case, z is joined
to z′ by two edges and the remaining neighbors of z and z ′ are distinct, a
contradiction with Claim 1. Hence, we can assume that G has no multiple
edge, but, in that case, every edge contradicts Claim 2, impossible. Hence
G does not exist and the proof is complete.

Proposition 4.2. Let G be a cubic graph having 3 compatible normal par-

titions. Then every edge e ∈ E(G) verifies exactly one of the followings

• e is an internal edge in exactly one partition,

• e is an internal edge in exactly two partitions.

Moreover, in the second case, the edge e itself is a trail of the third partition.

Proof. Let e = xy be any edge of G and let T , T ′ and T ′′ three compatible
normal partitions. If e is not an internal edge in T , T ′ or T ′′ then e is an
end edge for a trail of T , T ′ and T ′′. In x or y we should have two partitions
(say T and T ′) for which eT (x) = eT ′(x) (eT (y) = eT ′(y) respectively), a
contradiction. If e is an internal edge in T , T ′ and T ′′. Let a and b the two
other neighbors of x. We should have then

• eT (x) = xa or xb,

• eT ′(x) = xa or xb,

• eT ′′(x) = xa or xb,

which is impossible since the three partitions are compatible. Assume now
that e is an internal edge of a trail in T and in T ′ and let a and b the two
other neighbors of x. Up to the names of vertices we have

• eT (x) = xa,

• eT ′(x) = xb.
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From the third partition T ′′, we must have eT ′′(x) = xy. In the same way
we should obtain eT ′′(y) = yx. Hence the trail containing e = xy is reduced
to e, as claimed.

It can be noticed that whenever a cubic graph can be provided with 3
compatible normal partitions at least one edge is the internal edge in exactly
one partition.

Proposition 4.3. Let G be a cubic graph having 3 compatible normal par-

titions. Then at least one edge e ∈ E(G) is the internal edge in exactly one

partition.

Proof. Let T , T ′ and T ′′ be three compatible normal partitions of G. The
set of trails of length 1 in T is a matching of G which means that T has
at most n

2
such trails. If each edge of G is the internal edge in exactly two

partitions we must have

|E(G)| = n1
T + n1

T ′ + n1
T ′′ ≤ 3

n

2
= |E(G)|.

Hence the set of edges which are trails of length 1 in T is a perfect matching
M of G. In that case, the marked edges associated to T is precisely this
set M , which is not transversal of the cycles of G, a contradiction with
Theorem 2.9.

Theorem 4.4. Let G be a 3-edge colourable cubic graph . Then G has three

compatible normal partitions T , T ′ and T
′′

such that

• T is odd,

• T ′ has length 3,

• T ′′ has length 4.

Proof. We shall prove first this result for simple graphs. In [6], it is
proved that, given a 3-edge colouring of G with α, β and γ then there
exists a strong matching intersecting every cycle belonging to the 2-factor
induced by the two colours (α and β). Assume that C = {C1, C2, . . . , Ck}
is such 2-factor (G − C is a perfect matching) and let F = {uivi ∈ Ci| 1 ≤
i ≤ k)(minimal for the inclusion) be a strong matching intersecting this
2-factor.

For each uivi, xi is the vertex in the neighborhood of ui which is not
one of its neighbor on Ci while yi is defined similarly for vi (note that xi
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and yi may be vertices of Ci or not). Let Ti be the trail obtained from Ci

in adding the edge uixi and considering that this trail ends with viui (Note
that ui is an internal vertex of Ti).

Let T be the trail partition containing every trail Ti (1 ≤ i ≤ k) and all
the edges of the perfect matching G − C which are not in some Ti. We can
check that T is a normal odd partition for which the followings hold

• eT (ui) = uivi,

• eT (xi) = xiui,

• eT (v) is the edge of G − C.

We construct now T ′ in giving an orientation to each cycle of C. This
orientation is such that the successor of ui is vi. For each vertex v, o(v)
denotes the successor of v in that orientation and p(v) its predecessor. As in
Theorem 2.8 we get hence a normal partition T ′ where each trail is a path
of length 3. Moreover eT ′(v) = vp(v).

Before constructing T ′′, we construct T ′′′ in using the reverse orientation
on each cycle of C. This normal partition of length 3 is such that eT ′′′(v) =
vo(v).

For each vertex v 6= ui 1 ≤ i ≤ k we have eT (v) 6= eT ′(v) 6= eT ′′′(v).

For v = ui 1 ≤ i ≤ k, we have eT (ui) = uivi, eT ′(ui) = uip(ui)) (where
p(ui) 6= vi) and eT ′′′(ui) = uivi. Since eT (ui) = eT ′′′(ui), T and T ′ are not
compatible.

Our goal now is to proceed to switchings on T ′′′ in each vertex ui in order
to get T ′′ where these incompatibilities are dropped. For this purpose, the
path of length 3 of T ′′′ ending with viui is augmented with the edge uip(ui).
We get hence of path of length 4 and, since F is a strong matching, we are
sure that we cannot extend this path in the other direction. The path of
T ′′′ ending with uip(ui) is shorten in deleting the edge uip(ui), we get hence
of path of length 2 ending with xiui, and we are sure that this path cannot
be shorten at the other end, since F is a strong matching. Let T ′′ be the
partition so obtained. T ′′′ being normal and T ′′ having the same number of
trails T ′′ is also normal by Proposition 2.2.

For each vertex v 6= ui 1 ≤ i ≤ k, eT ′′′(v) = eT ′′(v) and we have thus
eT (v) 6= eT ′(v) 6= eT ′′(v). For v = ui 1 ≤ i ≤ k, we have eT (ui) = uivi,
eT ′(ui) = uip(ui) and eT ′′(ui) = uixi).

T , T ′ and T
′′

are thus compatible, T is odd, T ′ has length 3 and T ′′ has
length 4 as claimed.



308 J.L. Fouquet and J.M. Vanherpe

Theorem 4.5. Let G be a cubic graph then the followings are equivalent

(i) G can be provided with 3 compatible normal partitions of length 3,

(ii) G can be provided with 3 compatible normal odd partitions where each

edge is an internal edge in exactly one partition,

(iii) G is bipartite.

Proof. Assume first that G can be provided with three compatible nor-
mal partitions of length 3, say T , T ′ and T ′′. Since the mean length of
each partition is 3 (Proposition 2.3), each trail of each partition has length
exactly 3. T , T ′ and T ′′ are thus three normal odd partitions and from
Proposition 4.2, each edge is the internal edge of one trail in exactly one
partition. Conversely assume that G can be provided with 3 compatible
normal odd partitions where each edge is an internal edge in exactly one
partition, then from Proposition 4.2 there is no trail of length 1 in any of
these partitions. Since the mean length of each partition is 3, that means
that each trail in each partition has length exactly 3. Hence (i) ≡ (ii).

We prove now that (i) ≡ (iii). Let T , T ′ and T ′′ three compatible normal
partitions of length 3. Following the proof of Theorem 2.8 the internal edges
of trails of T (T ′ and T ′′ respectively) constitute a perfect matching (say
M M ′ and M ′′ respectively).

Let a0a1a2a3 be a trail of T and let b1 and b2 the third neighbors of a1

and a2 respectively. By definition, we have eT (a1) = a1b1 and eT (a2) = a2b2.
Since a0a1 and a2a3 must be internal edges in a trail of T ′ or (exclu-

sively) T ′′, assume w.l.o.g. that a0a1 is an internal edge of a trail T ′
1 of

T ′. T ′
1 does not use a1a2 otherwise eT ′(a1) = a1b1, a contradiction with

eT (a1) = a1b1 since T and T ′ are compatible. Hence T ′
1 uses a1b1 and

eT ′(a1) = a1a2.
Assume now that a2a3 is an internal edge of a trail T ′

2 of T ′. Reasoning
in the same way, we get that eT ′(a2) = a2a1. These two results leads to the
fact that a1a2 must be a trail in T ′, which is impossible since each trail has
length exactly 3.

Hence, whenever a0a1 is supposed to be an internal edge in a trail of
T ′, we must have a2a3 as an internal edge in a trail of T ′′. The two internal
vertices of a0a1a2a3 can be thus distinguished, following the fact that the
end edge of T to whom they are incident is internal in T ′ (say red vertices)
or T ′′ (say blue vertices). The same holds for each trail in T (and incidently
for each partition T ′ and T ′′). The edge a1b1 as end-edge of T cannot be
an internal edge in T ′ since the trail of length 3 going through a0a1 ends
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with a1b1. Hence a1b1 is an internal edge in T ′′ and b1 is a blue vertices.
Considering now a0, this vertex is the internal vertex of a trail of length 3 of
T . Since a0a1 ∈ M ′ and M ′ is a perfect matching, a0 cannot be incident to
an other internal edge of a trail in T ′ and a0 must be a blue vertex. Hence a1

is a red vertex and its neighbors are all blue vertices. Since we can perform
this reasoning in each vertex, G is bipartite as claimed.

Conversely, assume that G is bipartite and let V (G) = {W,B} be the
bipartition of its vertex set. In the following, a vertex in W will be repre-
sented by a circle (◦) while a vertex in B will be represented by a bullet (•).
From König’s Theorem [7] G is a 3-edge colourable cubic graph . Let us
consider a coloring of its edge set with three colors {α, β, γ}. Let us denote
by α • β ◦ γ a trail of length 3 which is obtained in considering an edge uv

(u ∈ B and v ∈ W ) colored with β together with the edge colored α incident
with u and the edge colored with γ incident with v. It can be easily checked
that the set T of α • β ◦ γ trails of length 3 is a normal odd partition of
length 3. We can define in the same way T ′ as the set of β • γ ◦ α trails of
length 3 and T ′′ as the set of γ • α ◦ β trails of length 3.

Hence T , T ′ and T ′′ is a set of three normal odd partitions of length
3. We claim that these partitions are compatible. Indeed, let v ∈ W be a
vertex and u1, u2 and u3 its neighbors. Assume that u1v is colored with α,
u2v is colored with β and u3v is colored with γ. Hence u1v is internal in
an γ • α ◦ β trail of T ′′ and eT ′′(v) = vu3. The edge u2v is internal in an
α • β ◦ γ trail of T and eT (v) = vu1. The edge u3v is internal in an β • γ ◦α

trail of T ′ and eT ′(v) = vu2. Since the same reasoning can be performed in
each vertex of G, the three T , T ′ and T ′′ partitions are compatible.

Theorem 4.6. Let G be a cubic graph with three compatible normal parti-

tions T , T ′ and T
′′

such that

• T has length 3,

• T ′ and T ′′ are odd.

Then G is a 3-edge colourable cubic graph.

Proof. Since T has length 3, every trail of T has length 3. Hence there
is no edge which can be an internal edge of a trail of T ′ and a trail of T ′′,
since, by Proposition 4.2 such an edge would be a trail of length 1 in T .
The perfect matchings associated to T ′ and T ′′ (see Theorem 2.8) are thus
disjoint and induce an even 2-factor of G, which means that G is a 3-edge
colourable cubic graph, as claimed.
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Proposition 4.7. Let G be a cubic graph which can be provided with 3
compatible normal odd partitions then G′, the graph obtained in replacing

a vertex by a triangle, can also be provided with 3 compatible normal odd

partitions.

Proof. Let u be a vertex of G and v1, v2, v3 its neighbors (not necessarily
distinct). Assume that T , T ′ and T

′′

is a set of 3 compatible normal odd
partitions of G such that, eT (u) = uv1, eT ′(u) = uv2 and eT ′′(u) = uv3.
Let T1 and T2 the two trails of T such that u is an end of T1 and an internal
vertex of T2. T 1

1 ending in v1, T 2
1 ending in v2 and T 2

2 ending in v3 denote
the subtrails of T1 and T2 obtained in deleting u. We define similarly T ′1

1

ending in v2, T ′2
1 ending in v1 and T ′2

2 ending in v3 when considering T ′
1 and

T ′
2 in T ′ as well as T ′′1

1 ending in v3, T ′′2
1 ending in v2 and T ′′2

2 ending in v1

when considering T ′′
1 and T ′′

2 in T ′′.

When we transform G in G′ the vertex u is deleted and replaced by the
triangle u1, u2, u3 with ui joined to vi (i = 1, 2, 3).

Let Q, Q′ and Q′′ be defined in G′ by

Q = T − {T1, T2} + {T 1
1 + v1u1, T

2
1 + v2u2u1u3v3 + T 2

2 , u2u3},

Q′ = T ′ − {T ′
1, T

′
2} + {T ′1

1 + v2u2, T
′2
1 + v1u1u2u3v3 + T ′2

2 , u1u3},

Q′′ = T ′′ − {T ′′
1 , T ′′

2 } + {T ′′1
1 + v3u3, T

′′2
1 + v2u2u1u3v3 + T ′′2

2 , u2u1}.

It is a routine matter to check that Q,Q′ and Q′′ are 3 compatible normal
odd partitions.

It can be pointed out that cubic graphs with with 3 compatible normal odd
partitions are bridgeless.

Proposition 4.8. Let G be a cubic graph with 3 compatible normal odd

partitions. Then G is bridgeless.

Proof. Assume that xy is a bridge of G and let C be the connected
component of G − xy containing x. Since G has 3 compatible normal odd
partitions, one of these partitions, say T , is such that eT (x) = xy. The
edges of C are thus partitioned into odd trails (namely the trace of T on
C). We have

m = |E(C)| =
3(|C| − 1) + 2

2
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(a) (b)

U

(c)

Figure 4. Normal odd partitions of the Petersen’s graph.

and m is even whenever |C| ≡ 3 mod 4 while m is odd whenever |C| ≡ 1

mod 4. The trace of T on C is a set of |C|−1

2
trails and this number is odd

when |C| ≡ 3 mod 4 and even otherwise. Hence, when |C| ≡ 3 mod 4 we
must have an odd number of odd trails partitioning E(C) but, in that case
m is even and when |C| ≡ 1 mod 4 we must have an even number of odd
trails partitioning E(C) but, in that case m is odd, contradiction.

Fan and Raspaud [3] conjectured that any bridgeless cubic graph can be
provided with three perfect matching with empty intersection.

Theorem 4.9. Let G be a cubic graph with 3 compatible normal odd par-

titions. Then there exist 3 perfect matching M , M ′ and M ′′ such that

M ∩ M ′ ∩ M ′′ = ∅.

Proof. Following the proof of Theorem 2.8 the odd edges of trails of T
(T ′ and T ′′ respectively) constitute a perfect matching (say M M ′ and M ′′

respectively). Let v be any vertex and u1, u2 and u3 its neighbors. T , T ′

and T ′′ being compatible, we can suppose that eT (v) = vu1, eT ′(v) = vu2

and eT ′′(v) = vu3. vu1 is an end edge of a trail in T , this edge is not an odd
edge in T and thus vu1 6∈ M ′. In the same way vu2 6∈ M ′ and vu3 6∈ M ′′.
Hence, any edge incident to v is contained in at most two perfect matchings
among M,M ′ and M ′′. Which means that M ∩ M ′ ∩ M ′′ = ∅.

Theorem 4.9 above implies that the Fan Raspaud Conjecture is true for
graphs with 3 compatible normal odd partitions. By the way, this conjec-
ture seems to be originated independently by Jackson. Goddyn [4] indeed
mentioned this problem proposed by Jackson for r-graphs (r-regular graphs



312 J.L. Fouquet and J.M. Vanherpe

with an even number of vertices such that all odd cuts have size at least r,
as defined by Seymour [10]) in the proceedings of a joint summer research
conference on graphs minors which dates back 1991. It seems difficult to
characterize the class of cubic graphs with 3 compatible normal odd parti-
tions. The Petersen’s graph has this property (see Figure 4). In a forthcom-
ing paper we prove that 3-edge colorable graphs also have this property as
well as the flower snarks.
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