ON NORMAL PARTITIONS IN CUBIC GRAPHS

Jean-Luc Fouquet and Jean-Marie Vanherpe
L.I.F.O., Faculté des Sciences, B.P. 6759
Université d'Orléans
45067 Orléans Cedex 2, France

Abstract

A normal partition of the edges of a cubic graph is a partition into trails (no repeated edge) such that each vertex is the end vertex of exactly one trail of the partition. We investigate this notion and give some results and problems.

Keywords: cubic graph; edge-partition.
2000 Mathematics Subject Classification: 05C70, 05C38.

1. Introduction and Notations

Following Bondy [1], a walk in a graph G is sequence $W:=v_{0} e_{1} v_{1} \ldots e_{k} v_{k}$, where $v_{0}, v_{1}, \ldots, v_{k}$ are vertices of G, and $e_{1}, e_{2}, \ldots, e_{k}$ are edges of G and v_{i-1} and v_{i} are the ends of $e_{i}, 1 \leq i \leq k . v_{0}$ and v_{k} are the end vertices and e_{1} and e_{k} are the end edges of this walk, while v_{1}, \ldots, v_{k-1} are the internal vertices and e_{2}, \ldots, e_{k-1} are the internal edges. The length $l(W)$ of W is the number of edges (namely k). W is odd whenever k is odd and even otherwise. The walk W is a trail if its edges $e_{1}, e_{2}, \ldots, e_{k}$ are distincts and a path if its vertices $v_{0}, v_{1}, \ldots, v_{k}$ are distincts. If $W:=v_{0} e_{1} v_{1} \ldots e_{k} v_{k}$, is a walk of $G W^{\prime}:=v_{i} e_{i+1} \ldots e_{j} v_{j}(0 \leq i \leq j \leq k)$ is a subwalk of W (subtrails and subpaths are defined analogously). If v is an internal vertex of a walk W with ends x and $y, W(x, v)$ and $W(v, y)$ are the subwalks of W obtained in cutting W in v. Conversely if W_{1} and W_{2} have a common end v, the concatenation of these two walks on v gives rise to a new walk (denoted by $W_{1}+W_{2}$) with v as an internal vertex. When no confusion, is possible, it
will be convenient to omit the edges in the description of a walk, that is $W:=v_{0} e_{1} v_{1} \ldots e_{k} v_{k}$ will be shorten in $W:=v_{0} v_{1} \ldots v_{k}$.

Let $G=(V, E)$ be a cubic graph (loops and multiple edges are allowed) and let $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a partition of $E(G)$ into trails. Every vertex $v \in V(G)$ is either an end vertex three times in the partition and we shall say that v is an eccentric vertex, or an end vertex exactly once, and we shall say that v is a normal vertex. To each vertex, we can associate a set $E_{\mathcal{T}}(v)$ containing the end vertices of the unique trail with v as an internal vertex, when such a trail exists in \mathcal{T}. When v is eccentric we obviously have $E_{\mathcal{T}}(v)=\emptyset$. It must be clear that we can have $v \in E_{\mathcal{T}}(v)$ since we consider a partition of trails.

Definition 1.1. A partition $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ of $E(G)$ into trails is normal when every vertex is normal.

When \mathcal{T} is a normal partition, we can associate to each vertex the unique edge with end v which is the end edge of a trail of \mathcal{T}. We shall denote this edge by $e_{\mathcal{T}}(v)$ and it will be convenient to say that $e_{\mathcal{T}}(v)$ is the marked edge associated to v. When it will be neces sary to illustrate our purpose by a figure the marked edge associated to a vertex will be figurate by a \vdash close to this vertex.

Definition 1.2. A partition $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ of $E(G)$ into trails is odd when every trail in \mathcal{T} is odd.

Definition 1.3. A partition $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ of $E(G)$ where each trail is a path will be called a path partition.

Definition 1.4. A partition $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ of $V(G)$ into paths is a perfect path partition when every vertex of G is contained in \mathcal{P} (let us note that $k \geq \frac{n}{2}$). A perfect matching is thus a perfect path partition where each path has length 1 .

When $F \subseteq E(G), V(F)$ is the set of vertices which are incident with some edges of F and $G-F$ is the graph obtained from G in deleting the edges of F. A strong matching C in a graph G is a matching C such that there is no edge of $E(G)$ connecting any two edges of C, or, equivalently, such that C is the edge-set of the subgraph of G induced on the vertex-set $V(C)$.

2. Elementary Properties

Proposition 2.1. Let G be a cubic graph. Then we can find a normal partition of $E(G)$ within a linear time.

Proof. We can easily obtain a partition $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ of $E(G)$ into trails via a greedy algorithm. If every vertex is normal then \mathcal{T} is normal and we are done. If v is an eccentric vertex then v is the end vertex of two distinct trails T_{1} and T_{2}. Let T^{\prime} be the trail obtained by concatenation of T_{1} and T_{2} on $v . v$ is an internal vertex of T^{\prime} and $T-\left\{T_{1}, T_{2}\right\}+T^{\prime}$ is a partition of $E(G)$ into trails with one eccentric vertex less (namely v). This operation can be repeated as long as the current partition into trails has an eccentric vertex and we end with a normal partition in at most $O(n)$ steps.

Proof. Assume that \mathcal{T} is normal, then every vertex is the end of exactly one trail. Hence $|\mathcal{T}|=\frac{n}{2}$.

Conversely, let \mathcal{T} be a partition of the edge set of G into trails. Assume that $|\mathcal{T}|=\frac{n}{2}$ and T is not normal. Then, performing the operation described in Proposition 2.1 on eccentric vertices leads to a normal partition \mathcal{T}^{\prime} such that $\left|\mathcal{T}^{\prime}\right|<\frac{n}{2}$, since the concatenation of two trails on a vertex decreases the number of trails in the partition, a contradiction.

We shall denote by $n_{\mathcal{T}}(i)$ the number of trails of length i and by $\mu(T)$ the mean length of trails in a normal partition.

Proposition 2.3. Let T be a normal partition of a cubic graph G on n vertices. Then

- $\mu(\mathcal{T})=3$,
- $\sum_{i=1}^{i=n+1}(3-i) n_{\mathcal{T}}^{i}=0$.

Proof. \mathcal{T} being normal, we have $|\mathcal{T}|=\frac{n}{2}$ by Proposition 2.2. Since $|E(G)|=\frac{3 n}{2}$ we have obviously $\mu(\mathcal{T})=3$.

We have

$$
\sum_{i=1}^{i=n+1} i \times n_{\mathcal{T}}(i)=\frac{3 n}{2}=3 \sum_{i=1}^{i=n+1} n_{\mathcal{T}}(i)
$$

and hence

$$
\sum_{i=1}^{i=n+1}(3-i) n_{\mathcal{T}}(i)=0 .
$$

The length of a normal partition \mathcal{T} (denoted by $l(T)$) is the length of the longest trail in \mathcal{T}.

Proposition 2.4. A cubic graph G on n vertices has an hamiltonian path if and only if G has a normal partition \mathcal{T} such that $l(\mathcal{T})=n+1$.

Proof. Assume that $P=v_{1} v_{2} \ldots v_{n}$ is an hamiltonian path of G. We shall consider that v_{i} is joined to v_{i+1} by the edge e_{i} in P. Let $w_{1}\left(w_{n}\right.$, respectively) a vertex adjacent to v_{1} (w_{1}, respectively) by the edge $e_{1}^{\prime}\left(e_{n}^{\prime}\right.$, respectively) not in $E(P)\left(e_{1}^{\prime} \neq e_{n}^{\prime}\right)$. Let T_{1} be the trail $w_{1} e_{1}^{\prime} v_{1} e_{1} v_{2} e_{2} \ldots$ $e_{n-1} v_{n} e_{n}^{\prime} w_{n} . E(G)-T_{1}$ is reduced to a matching of size $\frac{n-2}{2}$ and it can be easily checked that this matching together with T_{1} is a normal partition of G of length $n+1$.

Conversely, let \mathcal{T} be a normal partition of G of length $n+1$ and let $T_{1}=w_{1} e_{1} v_{1} e_{1} v_{2} e_{2} \ldots e_{n-1} v_{n} e_{n} w_{n}$ be a trail of maximum length in T. Since the only vertices which can appear twice in T_{1} are precisely w_{1} and w_{n}, $P=v_{1} v_{2} \ldots v_{n}$ is an hamiltonian path of G.

Theorem 2.5. Let G be a cubic graph having a perfect path partition $\mathcal{P}=$ $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$. Assume that the ends of P_{i} are x_{i} and $y_{i}(\forall i=1, \ldots, k)$. Then G has a normal partitions $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{\frac{n}{2}}\right\}$ such that T_{i} is obtained from P_{i} in adding one edge incident to x_{i} and one edge incident to $y_{i}(\forall i=1, \ldots, k)$.

Proof. The subgraph of G obtained in deleting the edges of each P_{i} is a set of disjoint paths. Let us give an arbitrary orientation to these paths. We get a normal partition \mathcal{T} in adding the outgoing edge incident to x_{i} and to $y_{i}(\forall i=1, \ldots, k)$, the remaining edges being a set of trails of length 1 in \mathcal{T}.

Let $l_{1}, l_{2}, \ldots, l_{\frac{n}{2}}$ be a set of integers $\left(l_{i} \geq 1\right)$ such that

$$
\sum_{i=1}^{\frac{n}{2}} l_{i}=\frac{3 n}{2}
$$

can we find a normal partition $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ where $l\left(T_{i}\right)=l_{i} \forall i=$ $1, \ldots, \frac{n}{2}$? There is no complete answer in general, however, when G has an hamiltonian cycle we have the following result (see [2]):

Theorem 2.6. Let G be a cubic hamiltonian graph. Let $l_{1}, l_{2}, \ldots, l_{\frac{n}{2}}$ be a set of integers such that

- $\sum_{i=1}^{\frac{n}{2}} l_{i}=\frac{3 n}{2}$,
- $l_{i} \geq 1 \quad l_{i} \neq 2 \forall i=1, \ldots, \frac{n}{2}$.

Then G has a normal partition $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{\frac{n}{2}}\right\}$ where $l\left(T_{i}\right)=l_{i} \forall i=$ $1, \ldots, \frac{n}{2}$.

Proof. Let $\lambda_{i}=l_{i}-2$ and assume that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. The first k values (for some $k \leq \frac{n}{2}$) are greater than 1 , and the remaining values are -1 , since $l_{i} \neq 2$ for all $i=1, \ldots, \frac{n}{2}$. We have

$$
\begin{gathered}
\sum_{i=1}^{k} \lambda_{i}=\sum_{i=1}^{k}\left(l_{i}-2\right)=\sum_{i=1}^{k} l_{i}-2 k \\
\sum_{i=1}^{k} l_{i}-2 k=\sum_{i=1}^{k} l_{i}-2 k+\sum_{j=k+1}^{\frac{n}{2}} l_{j}-\left(\frac{n}{2}-k+1\right)
\end{gathered}
$$

since $\sum_{i=1}^{k} l_{i}+\sum_{j=k+1}^{\frac{n}{2}} l_{j}=\frac{3 n}{2}$ we get that

$$
\sum_{i=1}^{k} \lambda_{i}=n-k+1
$$

Let C be an hamiltonian cycle of G, we can thus arrange a set \mathcal{P} of vertex disjoint paths P_{i} of length $\lambda_{i}(i=1, \ldots, k)$ along this cycle. \mathcal{P} is a perfect path partition and, applying theorem 2.5 we have a normal partition of G as claimed.

Let \mathcal{T} be a normal partition of a cubic graph G and let v be any vertex of $G . \quad E_{\mathcal{T}}(v)$ contains exactly two vertices, namely x and y and one of them, at least, must be distinct from v (we may assume that $v \neq x$). Let T_{1} be the trail with ends x and y such that v is an internal vertex of T_{1}. Since \mathcal{T} is normal, there is a trail T_{2} ending in v (with the edge $e_{\mathcal{T}}(v)$).

If T_{1}^{\prime} denotes the trail obtained by concatenation of $T_{1}(x, v)$ and T_{2} on v, then $\mathcal{T}-\left\{T_{1}, T_{2}\right\}+T_{1}^{\prime}+T_{1}(v, y)$ is a new normal partition of G. We shall say that the above operation is a switch on v. When $v \notin E_{\mathcal{T}}(v)$ two such switchings are allowed (see Figure 1), but when $v \in E_{\mathcal{T}}(v)$ only one switching is possible (see Figure 2). A switch on a vertex v (leading from a normal partition \mathcal{T} to the normal partition $\mathcal{T}^{\prime}=\mathcal{T} * v$) does not change the edge marked associated to w when $w \neq v$. That is $e_{\mathcal{T}}(w)=e_{\mathcal{T}^{\prime}}(w)$. On the other hand, the sets $E_{\mathcal{T}^{\prime}}(w)$ may have changed for vertices of T_{1} and T_{2}. When \mathcal{T} is a normal odd partition and when $\mathcal{T}^{\prime}=\mathcal{T} * v$ remains to be an odd partition, the switch on v is said to be an odd switch. It is not difficult to see that, given a normal odd partition, an odd switch is always possible on every vertex.

Figure 1. Switching on v with two distinct trails.

Figure 2. Switching on v with one trail.

We shall say that \mathcal{T} and \mathcal{T}^{\prime} are switching equivalent (resp. odd switching equivalent) whenever \mathcal{T}^{\prime} can be obtained from \mathcal{T} by a sequence of switchings (resp. odd switchings). The switching class (resp. odd switching class) of \mathcal{T} is the set of normal partitions which are switching equivalent (resp. odd switching equivalent) to \mathcal{T}.

Theorem 2.7. Let G be a cubic graph and let \mathcal{T} and \mathcal{T}^{\prime} be any two normal (resp. odd) partitions. Then \mathcal{T}^{\prime} can be obtained from \mathcal{T} by a sequence of (resp. odd) switchings of length at most $2 n$.

Proof. Let $A_{\mathcal{T} \mathcal{T}^{\prime}}=\left\{v \mid v \in V(G) \quad e_{\mathcal{T}}(v)=e_{\mathcal{T}^{\prime}}(v)\right\}$ and assume that $V(G)-A \neq \emptyset$. We want to pick a vertex in $V(G)-A$ and try to switch the normal partition \mathcal{T} in this vertex (or \mathcal{T}^{\prime}) in order to increase the size of A. We can suppose that \mathcal{T}^{\prime} is not in the switching class of \mathcal{T} and, moreover, among the switching equivalent normal partitions of \mathcal{T} and those of \mathcal{T}^{\prime}, $A_{\mathcal{T} \mathcal{I}^{\prime}}$ has maximum cardinality.

Let $v \in A_{\mathcal{T}^{\prime}}$ and let u_{1}, u_{2} and u_{3} be its neighbors. Assume that $e_{\mathcal{T}}(v)=v u_{1}$ and $e_{\mathcal{T}^{\prime}}(v)=v u_{2}$. Recall that in both partitions a switch (resp. odd switch) is always possible on v.

Consider first a possible switch (resp. odd switch) on v in \mathcal{T}, if $e_{\mathcal{T}_{* v}}=$ $v u_{2}$ then $A_{\mathcal{T} * v, \mathcal{T}^{\prime}}=A_{\mathcal{T}, \mathcal{T}^{\prime}} \cup\{v\}$, a contradiction. If in switching (resp. odd switching) \mathcal{T}^{\prime} on v we have $e_{\mathcal{T}^{\prime} * v}=v u_{1}$ then $A_{\mathcal{T}, \mathcal{T}^{\prime} * v}=A_{\mathcal{T}, \mathcal{T}^{\prime}} \cup\{v\}$, a contradiction. Finally, if $e_{\mathcal{T}_{* v}} \neq v u_{2}$ and $e_{\mathcal{T}^{\prime} * v} \neq v u_{1}$ that means that $e_{\mathcal{T} * v}=v u_{3}$ and $e_{\mathcal{T}^{\prime} * v}=v u_{3}$, thus $A_{\mathcal{T} * v, \mathcal{T}^{\prime} * v}=A_{\mathcal{T}, \mathcal{T}^{\prime}} \cup\{v\}$, a contradiction.

Hence any two normal partitions are switching equivalent (resp. odd switching equivalent). In order to increase the size of $A_{\mathcal{T} \mathcal{T}^{\prime}}$, we have seen that we eventually are obliged to proceed to two switchings on the same vertex (one with \mathcal{T} and one with \mathcal{T}^{\prime}). It is thus clear that we need at most $2 n$ such switching on the road leading to \mathcal{T}^{\prime} from \mathcal{T}.

Theorem 2.7 suggests a simulated annealing approach in order to search for a longest path in a cubic graph. We have got results in that direction in [3] when considering linear partitions (partitions of the edge set of a cubic graph into two forests of paths). Instead of using a switching on a vertex the elementary operation involved was a switching on an edge, but, in that case, it is not true that any two linear partitions are switching equivalent.

Theorem 2.8. Let G be a cubic graph. Then G has an odd normal partition if and only if G has a perfect matching.

Proof. Let M be a perfect matching in G. Then $G-M$ is a 2 -factor of G. Let us give any orientation to the cycles of this 2 -factor and for each vertex v let us denote the outgoing edge $o(v)$. For each edge $e=u v \in$ M, let $P_{u v}$ be the path of length 3 obtained in concatenating $o(u) u v$ and $o(v)$. Then $T=\left\{P_{u v} \mid u v \in M\right\}$ is a normal odd partition (of length 3) of G.

Conversely, let $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{\frac{n}{2}}\right\}$ be a normal odd partition of G. For each trail $T_{i} \in T$ let us say that en edge $e=u v$ of T_{i} is odd whenever the subtrails of T_{i} obtained in deleting e have odd lengths (an even edge being defined in the obvious way). A vertex $v \in V(G)$ is internal in exactly one trail of \mathcal{T}. The edges of this trail being alternatively odd and even, v is incident to exactly one odd edge. Hence the odd edges so defined induce a perfect matching of G.

Given a set of edges $F=\left\{e_{v} \mid v \in V(G)\right\}$, where each vertex of $V(G)$ appears exactly once as the end of an edge of F. Under which condition can we say that this set of edges is the set of marked edges associated to a normal partition?

Theorem 2.9. Let $F=\left\{e_{v} \mid v \in V(G)\right\}$ be a set of edges of G, where each vertex of $V(G)$ appears exactly once as the end of an edge of F. Then there exists a normal partition \mathcal{T} such that $F=\left\{e_{T}(v) \mid v \in V(G)\right\}$ if and only if F is a transversal of the cycles of G.

Proof. Let \mathcal{T} be a normal partition, the set of marked edges $\left\{e_{T}(v) \mid v \in\right.$ $V(G)\}$ is obviously a transversal of the cycles of G, since \mathcal{T} is partitioned into trails. Conversely, assume that $F=\left\{e_{v} \mid v \in V(G)\right\}$ is a transversal of the cycles of G. Then the spanning subgraph $G-F$ is a set of paths $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ (some of them being eventually reduced to a vertex). Let u_{i} and v_{i} be the end vertices of $P_{i}(1 \leq i \leq k)$ (when P_{i} is reduced to a single vertex, we have $u_{i}=v_{i}$). We add to each path P_{i} the edges of F which are incident to u_{i} and v_{i} and distinct from $e_{u_{i}}$ and $e_{v_{i}}$. We get thus a set of trails $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ which partition the edge set. We claim that \mathcal{T} is a normal partition. Indeed, let v be any vertex of $G . v$ is contained in some path P_{i} of $G-F$ and T_{i} must contain the two edges incident to v and distinct from the unique edge associated to v in F. Hence v must be an internal vertex of T_{i} which implies that v is normal.

3. On Compatible Normal Partitions

Definition 3.1. Two partitions $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ and $\mathcal{T}^{\prime}=\left\{T_{1}^{\prime}, T_{2}^{\prime}, \ldots\right.$, $\left.T_{k}^{\prime}\right\}$ of $E(G)$ into trails are compatible when $e_{T}(v) \neq e_{T^{\prime}}(v)$ for every vertex $v \in V(G)$.

Theorem 3.2 below was previously stated in [2]:
Theorem 3.2. Let G be a cubic graph having a perfect matching M. Then G has 2 compatible normal odd partitions of length 3.

Proof. Let us give an orientation to the 2-factor of $G-M$. We get a normal partition \mathcal{T} with all paths of length 3 when the edges of M are concatenated with the outgoing edges of the 2 -factor (see Theorem 4.9. If we change the orientations on each cycle of the 2-factor we obtain a second normal partition \mathcal{T}^{\prime}. These two partitions are easily seen compatible.

Compatible perfect path double covers

When we can find two compatible normal path partitions in a cubic graph we have, in fact a particular $P P D C$ of its edge set.

Definition 3.3. A Perfect Path Double Cover (PPDC for short) is a collection \mathcal{P} of paths such that each edge of G belongs to exactly two members of \mathcal{P} and each vertex occurs exactly twice as an end path of \mathcal{P}.

This notion has been introduced by Bondy (see [1]) who conjectured that every simple graph admits a PPDC. This conjecture was proved by Li [9]. When dealing with two compatible normal path partitions \mathcal{P} and \mathcal{P}^{\prime} in a cubic graph, we have a particular $P P D C$. Indeed every edge belongs to exactly one path of \mathcal{P} and one path of \mathcal{P}^{\prime} and every vertex occurs exactly once as an end vertex of a path in \mathcal{P} and as an end vertex of a path in \mathcal{P}^{\prime}. The qualifying adjective compatible says that the two end edges are distinct for each vertex.

As a refinement of the notion of $P P D C$ we can define a $C P P D C$ for a simple graph.

Definition 3.4. A Compatible Perfect Path Double Cover (CPPDC for short) is a collection \mathcal{P} of paths such that each edge of G belongs to exactly two members of \mathcal{P} and each vertex occurs exactly twice as an end path of \mathcal{P} and these two ends are distinct.

A natural question is thus to know which graphs admits a $C P P D C$. If we restrict ourself to connected graphs, we immediately can see that as soon as a graph as a pendant edge, a $C P P D C$ does not exist. We need thus to consider graphs with a certain connectivity condition. It can be proved that a simple minimal 2-edge connected graph admits a $C P P D C$.

And we propose as an open Problem.
Problem 3.5. Every 2 -edge connected graph admits a $C P P D C$.
Remark 3.6. Assume that a connected graph G admits $C P P D C$. In doubling every edge e in e^{\prime} and $e^{\prime \prime}$ (let G_{2} the graph so obtained), this CPPDC leads to an Euler tour of G_{2}. This Euler tour is compatible (in the sense given by Kotzig [8]) with the set of transitions defined by e^{\prime} and $e^{\prime \prime}$ in each vertex.

4. On Three Compatible Normal Partitions

We shall say that G has 3 compatible normal partitions $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ whenever these partitions are pairwise compatibles.

Theorem 4.1. A cubic graph G has three compatible normal partitions if and only if G has no loop.

Proof. Let G be a cubic graph with three compatible normal partitions $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$. Assume that G contains a loop $v v$, let $w \neq v$ be the vertex adjacent to v then one of these normal partitions, say \mathcal{T}, would be such that $e_{\mathcal{T}}(v)=v w$. In that case $v v$ would be the trail containing v as an internal vertex, impossible.

Figure 3. Cubic graph on 2 vertices with 3 compatible normal partitions.

Conversely, assume that G has no loop and G can not be provided with 3 compatible normal partitions. We can suppose that G has been chosen with the minimum number of vertices for that property. Figure 3 shows that G has certainly at least 4 vertices.

Claim 1. If u and v are joined by two edges e_{1} and e_{2}, then there is a third vertex w adjacent to u and v.

Proof. Assume that u is adjacent to u^{\prime} and v to v^{\prime} with $u^{\prime} \neq u$ and $v^{\prime} \neq v$. Let G^{\prime} be the cubic graph obtained from G in deleting u and v and joining u^{\prime} and v^{\prime} by a new edge. G^{\prime} is obviously a cubic graph with no loop and $|V(G)|<\left|V\left(G^{\prime}\right)\right|$. We can thus find 3 compatible normal partitions $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ in G^{\prime}.

The edge $u^{\prime} v^{\prime}$ of G^{\prime} is contained into $T \in \mathcal{T}, T^{\prime} \in \mathcal{T}^{\prime}$ and $T^{\prime \prime} \in \mathcal{T}^{\prime \prime}$. For convenience, T_{1} and T_{2} will the subtrails of T we have obtained in deleting $u^{\prime} v^{\prime}$, with u^{\prime} an end of T_{1} and v^{\prime} an end of T_{2}. Following the same trick we get T_{1}^{\prime} and $T_{2}^{\prime}, T_{1}^{\prime \prime}$ and $T_{2}^{\prime \prime}$ when considering T^{\prime} and $T^{\prime \prime}$. It can be noticed that some of these subtrails may have length 0 , which means that, following the cases, $u v$ is the marked edge associated to u or (and) v in $\mathcal{T}, \mathcal{T}^{\prime}$ or $\mathcal{T}^{\prime \prime}$.

Let $P_{1}=T_{1}+u^{\prime} u, P_{2}=T_{2}+v^{\prime} v e_{1} u e_{2} v$ and $\mathcal{Q}=\mathcal{T}-P+\left\{P_{1}, P_{2}\right\}$. We can easily check that \mathcal{Q} is a normal partition of G where $e_{\mathcal{Q}}(x)=e_{\mathcal{T}}(x) \forall x \neq u, v$ and $e_{\mathcal{Q}}(u)=u u^{\prime}, e_{\mathcal{Q}}(v)=e_{2}$.

In the same way, let $P_{1}^{\prime}=T_{1}^{\prime}+u^{\prime} u e_{2} v e_{1} u, P_{2}^{\prime}=T_{2}^{\prime}+v^{\prime} v$ and $\mathcal{Q}^{\prime}=$ $\mathcal{T}^{\prime}-P^{\prime}+\left\{P_{1}^{\prime}, P_{2}^{\prime}\right\}$. Then $e_{\mathcal{Q}^{\prime}}(x)=e_{\mathcal{T}^{\prime}}(x) \forall x \neq u, v$ and $e_{\mathcal{Q}^{\prime}}(u)=e_{1}^{\prime}$, $e_{\mathcal{Q}^{\prime}}(v)=v v^{\prime}$. Hence \mathcal{Q}^{\prime} is a normal partition compatible with \mathcal{Q}.

Finally, let $P_{1}^{\prime \prime}=T_{1}^{\prime \prime}+u^{\prime} u e_{1} v, P_{2}^{\prime \prime}=T_{2}^{\prime}+v^{\prime} v e_{2} u$ and $\mathcal{Q}^{\prime \prime}=\mathcal{T}^{\prime \prime}-P^{\prime \prime}+$ $\left\{P_{1}^{\prime \prime}, P_{2}^{\prime \prime}\right\}$. Then $e_{\mathcal{Q}^{\prime \prime}}(x)=e_{\mathcal{T}^{\prime \prime}}(x) \forall x \neq u, v$ and $e_{\mathcal{Q}^{\prime \prime}}(u)=e_{2}^{\prime}, e_{\mathcal{Q}^{\prime \prime}}(v)=e_{1}^{\prime}$. Hence $\mathcal{Q}, \mathcal{Q}^{\prime}$ and $\mathcal{Q}^{\prime \prime}$ are 3 compatible normal partitions of G, a contradiction.
of T, T^{\prime} and $T^{\prime \prime}$ obtained in deleting $u^{\prime} u^{\prime \prime}$ (with u^{\prime} an end of trails with subscript 1 and $u^{\prime \prime}$ an end of trails with subscript 2). If $R \in \mathcal{T}, R^{\prime} \in \mathcal{T}^{\prime}$ and $R^{\prime \prime} \in \mathcal{T}^{\prime \prime}$ are the trails using $v^{\prime} v^{\prime \prime}$, we can define also $R_{1}, R_{2}, R_{1}^{\prime}, R_{2}^{\prime}, R_{1}^{\prime \prime}$ and $R_{2}^{\prime \prime}$.

We are going to construct 3 normal partition $\mathcal{Q}, \mathcal{Q}^{\prime}$ and $\mathcal{Q}^{\prime \prime}$ of G in transforming locally $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ in such a way that $e_{\mathcal{Q}}(x)=e_{\mathcal{T}}(x)$ $e_{\mathcal{Q}^{\prime}}(x)=e_{\mathcal{T}^{\prime}}(x)$ and $e_{\mathcal{Q}^{\prime \prime}}(x)=e_{\mathcal{T}^{\prime \prime}}(x) \forall x \neq u, v$. The verification of this point, left to the reader, is immediate.
Let $P_{1}^{\prime \prime}=T_{1}^{\prime \prime}+u^{\prime} u u^{\prime \prime}+T_{2}^{\prime \prime}, P_{2}^{\prime \prime}=R_{1}^{\prime \prime}+v^{\prime} v v^{\prime \prime}+R_{2}^{\prime \prime}$ and $P_{3}^{\prime \prime}=u v . \mathcal{Q}^{\prime \prime}$ is then $\mathcal{T}^{\prime \prime}-\left\{P^{\prime \prime}, R^{\prime \prime}\right\}+\left\{P_{1}^{\prime \prime}, P_{2}^{\prime \prime}, P_{3}^{\prime \prime}\right\}$. We can remark that we have subdivided $P^{\prime \prime}$ and $R^{\prime \prime}$ an we have add a trail of length one (uv). We have hence, $e_{\mathcal{Q}^{\prime \prime}}(u)=u v$ and $e_{\mathcal{Q}^{\prime \prime}}(v)=u v$.

It must be clear that we may have $T=R$ in \mathcal{T}, which means that $u^{\prime} u^{\prime \prime}$ and $v^{\prime} v^{\prime \prime}$ are contained in the same trail of \mathcal{T}. But we certainly have either $T_{1} \neq R_{1}$ or $T_{1} \neq R_{2}$ since R_{1} and R_{2} are two disjoint trails. Let us consider the following partitions of the edge set of G :

$$
\begin{aligned}
& \mathcal{Q}_{1}=\mathcal{T}-\left\{T_{1}, T_{2}\right\}+\left\{T_{1}+u^{\prime} u v v^{\prime}+R_{1}, T_{2}+u^{\prime \prime} u, R_{2}+v^{\prime \prime} v\right\}, \\
& \mathcal{Q}_{2}=\mathcal{T}-\left\{T_{1}, T_{2}\right\}+\left\{T_{1}+u^{\prime} u v v^{\prime \prime}+R_{2}, T_{2}+u^{\prime \prime} u, R_{2}+v^{\prime} v\right\}, \\
& \mathcal{Q}_{3}=\mathcal{T}-\left\{T_{1}, T_{2}\right\}+\left\{T_{1}+u^{\prime} u, R_{1}+v^{\prime} v u u^{\prime \prime}+T_{2}, R_{2}+v^{\prime \prime} v\right\}, \\
& \mathcal{Q}_{4}=\mathcal{T}-\left\{T_{1}, T_{2}\right\}+\left\{T_{1}+u^{\prime} u, R_{1}+v^{\prime} v, T_{2}+u^{\prime \prime} u v v^{\prime \prime}+R_{2}\right\} .
\end{aligned}
$$

\mathcal{Q}_{1} is a normal partition of G as soon as $T_{1} \neq R_{1}$ and we can check, in that case, that $\mathcal{Q}_{2}, \mathcal{Q}_{3}$ and \mathcal{Q}_{4} are normal partitions of G. In the same way, \mathcal{Q}_{2} is a normal partition of G as soon as $T_{1} \neq R_{2}$ and we can check, in that case, that $\mathcal{Q}_{1}, \mathcal{Q}_{3}$ and \mathcal{Q}_{4} are normal partitions of G. \mathcal{Q}_{3} is a normal partition of G as soon as $T_{2} \neq R_{1}$ and, in that case, $\mathcal{Q}_{1}, \mathcal{Q}_{2}$ and \mathcal{Q}_{4} are normal partitions of G. \mathcal{Q}_{4} is a normal partition of G as soon as $T_{2} \neq R_{2}$ and, in that case, $\mathcal{Q}_{1}, \mathcal{Q}_{2}$ and \mathcal{Q}_{3} are normal partitions of G.

We can define analogously $\mathcal{Q}_{1}^{\prime}, \mathcal{Q}_{2}^{\prime}, \mathcal{Q}_{3}^{\prime}$ and \mathcal{Q}_{4}^{\prime} when considering \mathcal{T}^{\prime}.
We can check moreover that these normal partitions (when they are well defined) $\mathcal{Q}_{1}, \mathcal{Q}_{2}, \mathcal{Q}_{3}, \mathcal{Q}_{4}, \mathcal{Q}_{1}^{\prime}, \mathcal{Q}_{2}^{\prime}, \mathcal{Q}_{3}^{\prime}$ and \mathcal{Q}_{4}^{\prime} are compatible with $\mathcal{Q}^{\prime \prime}$ since

$$
\begin{aligned}
& e_{\mathcal{Q}_{i}}(u)=u u^{\prime} \text { or } e_{\mathcal{Q}_{i}}(u)=u u^{\prime \prime} i=1,2,3,4, \\
& e_{\mathcal{Q}_{i}}(v)=v v^{\prime} \text { or } e_{\mathcal{Q}_{i}}(v)=v v^{\prime \prime} i=1,2,3,4, \\
& e_{\mathcal{Q}_{i}^{\prime}}(u)=u u^{\prime} \text { or } e_{\mathcal{Q}_{i}^{\prime}}(u)=u u^{\prime \prime} i=1,2,3,4, \\
& e_{\mathcal{Q}_{i}^{\prime}}(v)=v v^{\prime} \text { or } e_{\mathcal{Q}_{i}^{\prime}}(v)=v v^{\prime \prime} i=1,2,3,4 .
\end{aligned}
$$

We can verify that in each case to be considered with \mathcal{T} ($T_{1}=R_{1}$ and $T_{2} \neq R_{2}, T_{2}=R_{2}$ and $T_{1} \neq R_{1}, T_{1}=R_{2}$ and $T_{2} \neq R_{1}, T_{2}=R_{1}$ and $T_{1} \neq R_{2}, T_{1}, T_{2}, R_{1}, R_{2}$ all distinct) together with the similar cases for \mathcal{T}^{\prime} we can choose a normal partition \mathcal{Q} in $\left\{\mathcal{Q}_{1}, \mathcal{Q}_{2}, \mathcal{Q}_{3}, \mathcal{Q}_{4}\right\}$ and a normal partition \mathcal{Q}^{\prime} in $\left\{\mathcal{Q}_{1}^{\prime}, \mathcal{Q}_{2}^{\prime}, \mathcal{Q}_{3}^{\prime}, \mathcal{Q}_{4}^{\prime}\right\}$ which are compatible and hence 3 normal partitions compatible $\mathcal{Q}, \mathcal{Q}^{\prime}$ and $\mathcal{Q}^{\prime \prime}$ for G, a contradiction.

Assume that u and v are joined by two edges in G, then, from Claim 1, there is unique new vertex w joined to u and v. This vertex is adjacent to $x \neq u, v$ which have itself a neighbor $z \neq u, v$. Le z^{\prime} and $z^{\prime \prime}$ be the neighbors of z distinct from x. Then from Claim $2 z^{\prime}=z^{\prime \prime}$. But, in that case, z is joined to z^{\prime} by two edges and the remaining neighbors of z and z^{\prime} are distinct, a contradiction with Claim 1. Hence, we can assume that G has no multiple edge, but, in that case, every edge contradicts Claim 2, impossible. Hence G does not exist and the proof is complete.

Proposition 4.2. Let G be a cubic graph having 3 compatible normal partitions. Then every edge $e \in E(G)$ verifies exactly one of the followings

- e is an internal edge in exactly one partition,
- e is an internal edge in exactly two partitions.

Moreover, in the second case, the edge e itself is a trail of the third partition.
Proof. Let $e=x y$ be any edge of G and let $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ three compatible normal partitions. If e is not an internal edge in $\mathcal{T}, \mathcal{T}^{\prime}$ or $\mathcal{T}^{\prime \prime}$ then e is an end edge for a trail of $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$. In x or y we should have two partitions (say \mathcal{T} and \mathcal{T}^{\prime}) for which $e_{\mathcal{T}}(x)=e_{\mathcal{T}^{\prime}}(x)\left(e_{\mathcal{T}}(y)=e_{\mathcal{T}^{\prime}}(y)\right.$ respectively), a contradiction. If e is an internal edge in $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$. Let a and b the two other neighbors of x. We should have then

- $e_{\mathcal{T}}(x)=x a$ or $x b$,
- $e_{\mathcal{T}^{\prime}}(x)=x a$ or $x b$,
- $e_{T^{\prime \prime}}(x)=x a$ or $x b$,
which is impossible since the three partitions are compatible. Assume now that e is an internal edge of a trail in \mathcal{T} and in \mathcal{T}^{\prime} and let a and b the two other neighbors of x. Up to the names of vertices we have
- $e_{\mathcal{T}}(x)=x a$,
- $e_{\mathcal{T}^{\prime}}(x)=x b$.

From the third partition $\mathcal{T}^{\prime \prime}$, we must have $e_{\mathcal{T} \prime \prime}(x)=x y$. In the same way we should obtain $e_{\mathcal{T}^{\prime \prime}}(y)=y x$. Hence the trail containing $e=x y$ is reduced to e, as claimed.

It can be noticed that whenever a cubic graph can be provided with 3 compatible normal partitions at least one edge is the internal edge in exactly one partition.

Proposition 4.3. Let G be a cubic graph having 3 compatible normal partitions. Then at least one edge $e \in E(G)$ is the internal edge in exactly one partition.

Proof. Let $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ be three compatible normal partitions of G. The set of trails of length 1 in \mathcal{T} is a matching of G which means that \mathcal{T} has at most $\frac{n}{2}$ such trails. If each edge of G is the internal edge in exactly two partitions we must have

$$
|E(G)|=n_{\mathcal{T}}^{1}+n_{\mathcal{T}^{\prime}}^{1}+n_{\mathcal{T}^{\prime \prime}}^{1} \leq 3 \frac{n}{2}=|E(G)| .
$$

Hence the set of edges which are trails of length 1 in \mathcal{T} is a perfect matching M of G. In that case, the marked edges associated to \mathcal{T} is precisely this set M, which is not transversal of the cycles of G, a contradiction with Theorem 2.9.

Theorem 4.4. Let G be a 3-edge colourable cubic graph. Then G has three compatible normal partitions $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ such that

- \mathcal{T} is odd,
- \mathcal{T}^{\prime} has length 3 ,
- $\mathcal{T}^{\prime \prime}$ has length 4 .

Proof. We shall prove first this result for simple graphs. In [6], it is proved that, given a 3 -edge colouring of G with α, β and γ then there exists a strong matching intersecting every cycle belonging to the 2 -factor induced by the two colours (α and β). Assume that $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ is such 2 -factor ($G-\mathcal{C}$ is a perfect matching) and let $F=\left\{u_{i} v_{i} \in C_{i} \mid 1 \leq\right.$ $i \leq k)$ (minimal for the inclusion) be a strong matching intersecting this 2 -factor.

For each $u_{i} v_{i}, x_{i}$ is the vertex in the neighborhood of u_{i} which is not one of its neighbor on C_{i} while y_{i} is defined similarly for v_{i} (note that x_{i}
and y_{i} may be vertices of C_{i} or not). Let T_{i} be the trail obtained from C_{i} in adding the edge $u_{i} x_{i}$ and considering that this trail ends with $v_{i} u_{i}$ (Note that u_{i} is an internal vertex of T_{i}).

Let \mathcal{T} be the trail partition containing every trail $T_{i}(1 \leq i \leq k)$ and all the edges of the perfect matching $G-\mathcal{C}$ which are not in some T_{i}. We can check that \mathcal{T} is a normal odd partition for which the followings hold

- $e_{\mathcal{T}}\left(u_{i}\right)=u_{i} v_{i}$,
- $e_{\mathcal{T}}\left(x_{i}\right)=x_{i} u_{i}$,
- $e_{\mathcal{T}}(v)$ is the edge of $G-\mathcal{C}$.

We construct now \mathcal{T}^{\prime} in giving an orientation to each cycle of \mathcal{C}. This orientation is such that the successor of u_{i} is v_{i}. For each vertex $v, o(v)$ denotes the successor of v in that orientation and $p(v)$ its predecessor. As in Theorem 2.8 we get hence a normal partition \mathcal{T}^{\prime} where each trail is a path of length 3. Moreover $e_{\mathcal{T}^{\prime}}(v)=v p(v)$.

Before constructing $\mathcal{T}^{\prime \prime}$, we construct $\mathcal{T}^{\prime \prime \prime}$ in using the reverse orientation on each cycle of \mathcal{C}. This normal partition of length 3 is such that $e_{\mathcal{T} \prime \prime \prime}(v)=$ $v o(v)$.

For each vertex $v \neq u_{i} 1 \leq i \leq k$ we have $e_{\mathcal{T}}(v) \neq e_{\mathcal{T}^{\prime}}(v) \neq e_{\mathcal{T}^{\prime \prime \prime}}(v)$.
For $v=u_{i} 1 \leq i \leq k$, we have $e_{\mathcal{T}}\left(u_{i}\right)=u_{i} v_{i}, e_{\mathcal{T}^{\prime}}\left(u_{i}\right)=u_{i} p\left(u_{i}\right)$) (where $\left.p\left(u_{i}\right) \neq v_{i}\right)$ and $e_{\mathcal{T} \prime \prime \prime}\left(u_{i}\right)=u_{i} v_{i}$. Since $e_{\mathcal{T}}\left(u_{i}\right)=e_{\mathcal{T} \prime \prime \prime}\left(u_{i}\right), \mathcal{T}$ and \mathcal{T}^{\prime} are not compatible.

Our goal now is to proceed to switchings on $\mathcal{T}^{\prime \prime \prime}$ in each vertex u_{i} in order to get $\mathcal{T}^{\prime \prime}$ where these incompatibilities are dropped. For this purpose, the path of length 3 of $\mathcal{T}^{\prime \prime \prime}$ ending with $v_{i} u_{i}$ is augmented with the edge $u_{i} p\left(u_{i}\right)$. We get hence of path of length 4 and, since F is a strong matching, we are sure that we cannot extend this path in the other direction. The path of $\mathcal{T}^{\prime \prime \prime}$ ending with $u_{i} p\left(u_{i}\right)$ is shorten in deleting the edge $u_{i} p\left(u_{i}\right)$, we get hence of path of length 2 ending with $x_{i} u_{i}$, and we are sure that this path cannot be shorten at the other end, since F is a strong matching. Let $\mathcal{T}^{\prime \prime}$ be the partition so obtained. $\mathcal{T}^{\prime \prime \prime}$ being normal and $\mathcal{T}^{\prime \prime}$ having the same number of trails $\mathcal{T}^{\prime \prime}$ is also normal by Proposition 2.2.

For each vertex $v \neq u_{i} 1 \leq i \leq k, e_{\mathcal{T}^{\prime \prime \prime}}(v)=e_{\mathcal{T}^{\prime \prime}}(v)$ and we have thus $e_{\mathcal{T}}(v) \neq e_{\mathcal{T}^{\prime}}(v) \neq e_{\mathcal{T} \prime \prime}(v)$. For $v=u_{i} 1 \leq i \leq k$, we have $e_{\mathcal{T}}\left(u_{i}\right)=u_{i} v_{i}$, $e_{\mathcal{T}^{\prime}}\left(u_{i}\right)=u_{i} p\left(u_{i}\right)$ and $\left.e_{\mathcal{T}^{\prime \prime}}\left(u_{i}\right)=u_{i} x_{i}\right)$.
$\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ are thus compatible, \mathcal{T} is odd, \mathcal{T}^{\prime} has length 3 and $\mathcal{T}^{\prime \prime}$ has length 4 as claimed.

Theorem 4.5. Let G be a cubic graph then the followings are equivalent
(i) G can be provided with 3 compatible normal partitions of length 3,
(ii) G can be provided with 3 compatible normal odd partitions where each edge is an internal edge in exactly one partition,
(iii) G is bipartite.

Proof. Assume first that G can be provided with three compatible normal partitions of length 3 , say $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$. Since the mean length of each partition is 3 (Proposition 2.3), each trail of each partition has length exactly 3. $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ are thus three normal odd partitions and from Proposition 4.2, each edge is the internal edge of one trail in exactly one partition. Conversely assume that G can be provided with 3 compatible normal odd partitions where each edge is an internal edge in exactly one partition, then from Proposition 4.2 there is no trail of length 1 in any of these partitions. Since the mean length of each partition is 3, that means that each trail in each partition has length exactly 3 . Hence (i) \equiv (ii).

We prove now that $(\mathrm{i}) \equiv(\mathrm{iii})$. Let $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ three compatible normal partitions of length 3 . Following the proof of Theorem 2.8 the internal edges of trails of \mathcal{T} (\mathcal{T}^{\prime} and $\mathcal{T}^{\prime \prime}$ respectively) constitute a perfect matching (say $M M^{\prime}$ and $M^{\prime \prime}$ respectively).

Let $a_{0} a_{1} a_{2} a_{3}$ be a trail of \mathcal{T} and let b_{1} and b_{2} the third neighbors of a_{1} and a_{2} respectively. By definition, we have $e_{\mathcal{T}}\left(a_{1}\right)=a_{1} b_{1}$ and $e_{\mathcal{T}}\left(a_{2}\right)=a_{2} b_{2}$.

Since $a_{0} a_{1}$ and $a_{2} a_{3}$ must be internal edges in a trail of \mathcal{T}^{\prime} or (exclusively) $\mathcal{T}^{\prime \prime}$, assume w.l.o.g. that $a_{0} a_{1}$ is an internal edge of a trail T_{1}^{\prime} of \mathcal{T}^{\prime}. T_{1}^{\prime} does not use $a_{1} a_{2}$ otherwise $e_{\mathcal{T}^{\prime}}\left(a_{1}\right)=a_{1} b_{1}$, a contradiction with $e_{\mathcal{T}}\left(a_{1}\right)=a_{1} b_{1}$ since \mathcal{T} and \mathcal{T}^{\prime} are compatible. Hence T_{1}^{\prime} uses $a_{1} b_{1}$ and $e_{\mathcal{T}^{\prime}}\left(a_{1}\right)=a_{1} a_{2}$.

Assume now that $a_{2} a_{3}$ is an internal edge of a trail T_{2}^{\prime} of \mathcal{T}^{\prime}. Reasoning in the same way, we get that $e_{\mathcal{T}^{\prime}}\left(a_{2}\right)=a_{2} a_{1}$. These two results leads to the fact that $a_{1} a_{2}$ must be a trail in \mathcal{T}^{\prime}, which is impossible since each trail has length exactly 3 .

Hence, whenever $a_{0} a_{1}$ is supposed to be an internal edge in a trail of \mathcal{T}^{\prime}, we must have $a_{2} a_{3}$ as an internal edge in a trail of $\mathcal{T}^{\prime \prime}$. The two internal vertices of $a_{0} a_{1} a_{2} a_{3}$ can be thus distinguished, following the fact that the end edge of \mathcal{T} to whom they are incident is internal in \mathcal{T}^{\prime} (say red vertices) or $\mathcal{T}^{\prime \prime}$ (say blue vertices). The same holds for each trail in \mathcal{T} (and incidently for each partition \mathcal{T}^{\prime} and $\left.\mathcal{T}^{\prime \prime}\right)$. The edge $a_{1} b_{1}$ as end-edge of \mathcal{T} cannot be an internal edge in T^{\prime} since the trail of length 3 going through $a_{0} a_{1}$ ends
with $a_{1} b_{1}$. Hence $a_{1} b_{1}$ is an internal edge in $\mathcal{T}^{\prime \prime}$ and b_{1} is a blue vertices. Considering now a_{0}, this vertex is the internal vertex of a trail of length 3 of \mathcal{T}. Since $a_{0} a_{1} \in M^{\prime}$ and M^{\prime} is a perfect matching, a_{0} cannot be incident to an other internal edge of a trail in \mathcal{T}^{\prime} and a_{0} must be a blue vertex. Hence a_{1} is a red vertex and its neighbors are all blue vertices. Since we can perform this reasoning in each vertex, G is bipartite as claimed.

Conversely, assume that G is bipartite and let $V(G)=\{W, B\}$ be the bipartition of its vertex set. In the following, a vertex in W will be represented by a circle (\circ) while a vertex in B will be represented by a bullet (\bullet). From König's Theorem [7] G is a 3 -edge colourable cubic graph. Let us consider a coloring of its edge set with three colors $\{\alpha, \beta, \gamma\}$. Let us denote by $\alpha \bullet \beta \circ \gamma$ a trail of length 3 which is obtained in considering an edge $u v$ ($u \in B$ and $v \in W$) colored with β together with the edge colored α incident with u and the edge colored with γ incident with v. It can be easily checked that the set \mathcal{T} of $\alpha \bullet \beta \circ \gamma$ trails of length 3 is a normal odd partition of length 3. We can define in the same way \mathcal{T}^{\prime} as the set of $\beta \bullet \gamma \circ \alpha$ trails of length 3 and $\mathcal{T}^{\prime \prime}$ as the set of $\gamma \bullet \alpha \circ \beta$ trails of length 3 .

Hence $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ is a set of three normal odd partitions of length 3. We claim that these partitions are compatible. Indeed, let $v \in W$ be a vertex and u_{1}, u_{2} and u_{3} its neighbors. Assume that $u_{1} v$ is colored with α, $u_{2} v$ is colored with β and $u_{3} v$ is colored with γ. Hence $u_{1} v$ is internal in an $\gamma \bullet \alpha \circ \beta$ trail of $\mathcal{T}^{\prime \prime}$ and $e_{\mathcal{T}^{\prime \prime}}(v)=v u_{3}$. The edge $u_{2} v$ is internal in an $\alpha \bullet \beta \circ \gamma$ trail of \mathcal{T} and $e_{\mathcal{T}}(v)=v u_{1}$. The edge $u_{3} v$ is internal in an $\beta \bullet \gamma \circ \alpha$ trail of \mathcal{T}^{\prime} and $e_{\mathcal{T}^{\prime}}(v)=v u_{2}$. Since the same reasoning can be performed in each vertex of G, the three $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ partitions are compatible.

Theorem 4.6. Let G be a cubic graph with three compatible normal partitions $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ such that

- \mathcal{T} has length 3 ,
- \mathcal{T}^{\prime} and $\mathcal{T}^{\prime \prime}$ are odd.

Then G is a 3-edge colourable cubic graph.
Proof. Since \mathcal{T} has length 3, every trail of \mathcal{T} has length 3. Hence there is no edge which can be an internal edge of a trail of \mathcal{T}^{\prime} and a trail of $\mathcal{T}^{\prime \prime}$, since, by Proposition 4.2 such an edge would be a trail of length 1 in \mathcal{T}. The perfect matchings associated to \mathcal{T}^{\prime} and $\mathcal{T}^{\prime \prime}$ (see Theorem 2.8) are thus disjoint and induce an even 2 -factor of G, which means that G is a 3 -edge colourable cubic graph, as claimed.

Proposition 4.7. Let G be a cubic graph which can be provided with 3 compatible normal odd partitions then G^{\prime}, the graph obtained in replacing a vertex by a triangle, can also be provided with 3 compatible normal odd partitions.

Proof. Let u be a vertex of G and v_{1}, v_{2}, v_{3} its neighbors (not necessarily distinct). Assume that $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ is a set of 3 compatible normal odd partitions of G such that, $e_{\mathcal{T}}(u)=u v_{1}, e_{\mathcal{T}^{\prime}}(u)=u v_{2}$ and $e_{\mathcal{T}^{\prime \prime}}(u)=u v_{3}$. Let T_{1} and T_{2} the two trails of \mathcal{T} such that u is an end of T_{1} and an internal vertex of $T_{2} . T_{1}^{1}$ ending in v_{1}, T_{1}^{2} ending in v_{2} and T_{2}^{2} ending in v_{3} denote the subtrails of T_{1} and T_{2} obtained in deleting u. We define similarly $T_{1}^{\prime 1}$ ending in $v_{2}, T_{1}^{\prime 2}$ ending in v_{1} and $T_{2}^{\prime 2}$ ending in v_{3} when considering T_{1}^{\prime} and T_{2}^{\prime} in \mathcal{T}^{\prime} as well as $T_{1}^{\prime \prime 1}$ ending in $v_{3}, T_{1}^{\prime \prime 2}$ ending in v_{2} and $T_{2}^{\prime \prime 2}$ ending in v_{1} when considering $T_{1}^{\prime \prime}$ and $T_{2}^{\prime \prime}$ in $\mathcal{T}^{\prime \prime}$.

When we transform G in G^{\prime} the vertex u is deleted and replaced by the triangle u_{1}, u_{2}, u_{3} with u_{i} joined to $v_{i}(i=1,2,3)$.

Let $\mathcal{Q}, \mathcal{Q}^{\prime}$ and $\mathcal{Q}^{\prime \prime}$ be defined in G^{\prime} by

$$
\begin{aligned}
& \mathcal{Q}=\mathcal{T}-\left\{T_{1}, T_{2}\right\}+\left\{T_{1}^{1}+v_{1} u_{1}, T_{1}^{2}+v_{2} u_{2} u_{1} u_{3} v_{3}+T_{2}^{2}, u_{2} u_{3}\right\}, \\
& \mathcal{Q}^{\prime}=\mathcal{T}^{\prime}-\left\{T_{1}^{\prime}, T_{2}^{\prime}\right\}+\left\{T_{1}^{\prime 1}+v_{2} u_{2}, T_{1}^{\prime 2}+v_{1} u_{1} u_{2} u_{3} v_{3}+T_{2}^{\prime 2}, u_{1} u_{3}\right\}, \\
& \mathcal{Q}^{\prime \prime}=\mathcal{T}^{\prime \prime}-\left\{T_{1}^{\prime \prime}, T_{2}^{\prime \prime}\right\}+\left\{T_{1}^{\prime \prime 1}+v_{3} u_{3}, T_{1}^{\prime \prime 2}+v_{2} u_{2} u_{1} u_{3} v_{3}+T_{2}^{\prime \prime 2}, u_{2} u_{1}\right\} .
\end{aligned}
$$

It is a routine matter to check that $\mathcal{Q}, \mathcal{Q}^{\prime}$ and $\mathcal{Q}^{\prime \prime}$ are 3 compatible normal odd partitions.

It can be pointed out that cubic graphs with with 3 compatible normal odd partitions are bridgeless.

Proposition 4.8. Let G be a cubic graph with 3 compatible normal odd partitions. Then G is bridgeless.

Proof. Assume that $x y$ is a bridge of G and let C be the connected component of $G-x y$ containing x. Since G has 3 compatible normal odd partitions, one of these partitions, say \mathcal{T}, is such that $e_{\mathcal{T}}(x)=x y$. The edges of C are thus partitioned into odd trails (namely the trace of \mathcal{T} on $C)$. We have

$$
m=|E(C)|=\frac{3(|C|-1)+2}{2}
$$

Figure 4. Normal odd partitions of the Petersen's graph.
and m is even whenever $|C| \equiv 3 \bmod 4$ while m is odd whenever $|C| \equiv 1$ $\bmod 4$. The trace of \mathcal{T} on C is a set of $\frac{|C|-1}{2}$ trails and this number is odd when $|C| \equiv 3 \bmod 4$ and even otherwise. Hence, when $|C| \equiv 3 \bmod 4$ we must have an odd number of odd trails partitioning $E(C)$ but, in that case m is even and when $|C| \equiv 1 \bmod 4$ we must have an even number of odd trails partitioning $E(C)$ but, in that case m is odd, contradiction.
Fan and Raspaud [3] conjectured that any bridgeless cubic graph can be provided with three perfect matching with empty intersection.

Theorem 4.9. Let G be a cubic graph with 3 compatible normal odd partitions. Then there exist 3 perfect matching M, M^{\prime} and $M^{\prime \prime}$ such that $M \cap M^{\prime} \cap M^{\prime \prime}=\emptyset$.

Proof. Following the proof of Theorem 2.8 the odd edges of trails of \mathcal{T} (\mathcal{T}^{\prime} and $\mathcal{T}^{\prime \prime}$ respectively) constitute a perfect matching (say $M M^{\prime}$ and $M^{\prime \prime}$ respectively). Let v be any vertex and u_{1}, u_{2} and u_{3} its neighbors. $\mathcal{T}, \mathcal{T}^{\prime}$ and $\mathcal{T}^{\prime \prime}$ being compatible, we can suppose that $e_{\mathcal{T}}(v)=v u_{1}, e_{\mathcal{T}^{\prime}}(v)=v u_{2}$ and $e_{\mathcal{T} \prime \prime}^{\prime \prime}(v)=v u_{3} . v u_{1}$ is an end edge of a trail in \mathcal{T}, this edge is not an odd edge in \mathcal{T} and thus $v u_{1} \notin M^{\prime}$. In the same way $v u_{2} \notin M^{\prime}$ and $v u_{3} \notin M^{\prime \prime}$. Hence, any edge incident to v is contained in at most two perfect matchings among M, M^{\prime} and $M^{\prime \prime}$. Which means that $M \cap M^{\prime} \cap M^{\prime \prime}=\emptyset$.

Theorem 4.9 above implies that the Fan Raspaud Conjecture is true for graphs with 3 compatible normal odd partitions. By the way, this conjecture seems to be originated independently by Jackson. Goddyn [4] indeed mentioned this problem proposed by Jackson for r-graphs (r-regular graphs
with an even number of vertices such that all odd cuts have size at least r, as defined by Seymour [10]) in the proceedings of a joint summer research conference on graphs minors which dates back 1991. It seems difficult to characterize the class of cubic graphs with 3 compatible normal odd partitions. The Petersen's graph has this property (see Figure 4). In a forthcoming paper we prove that 3 -edge colorable graphs also have this property as well as the flower snarks.

References

[1] J.A. Bondy, Basic graph theory: Paths and circuits, in: M. Grötschel, R.L. Graham and L. Lovász, eds, Handbook of Combinatorics, vol. 1, pages 3-112 (Elsevier, North-Holland, 1995).
[2] A. Bouchet and J.L. Fouquet, Trois types de dcompositions d'un graphe chaînes, Annals of Discrete Math. 17 (1983) 131-141.
[3] G. Fan and A. Raspaud, Fulkerson's conjecture and circuit covers, J. Combin. Theory (B) 61 (1994) 133-138.
[4] L. Goddyn, Cones, lattices and Hilbert base of circuits and perfect matching, in: N. Robertson and P. Seymour, eds, Graph Structure Theory, Contemporary Mathematics Volume 147, pages 419-439 (American Mathematical Society, 1993).
[5] R. Halin, A theorem on n-connected graphs, J. Combin. Theory (1969) 150-154.
[6] J.M. Vanherpe, J.L. Fouquet, H. Thuillier and A.P. Wojda, On odd and semiodd linear partitions of cubic graphs, preprint, 2006.
[7] D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 (1916) 453-465.
[8] A. Kotzig, Moves without forbidden transitions, Mat.-Fyz. Časopis 18 (1968) 76-80, MR 39\#4038.
[9] H. Li, Perfect path double covers in every simple graphs, J. Graph. Theory $\mathbf{1 4}$ (1990) 645-650, MR 91h\#05052.
[10] P. Seymour, On multi-colourings of cubic graphs and conjectures of Fulkerson and Tutte, Proc. London Math. Soc. (3) 38 (1979) 423-460.

Received 3 December 2007
Revised 20 June 2008
Accepted 17 December 2008

