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Abstract

An additive hereditary graph property is any class of simple graphs,
which is closed under isomorphisms unions and taking subgraphs. Let
La denote a class of all such properties. In the paper, we consider H-
reducible over La properties with H being a fixed graph. The finiteness
of the sets of all minimal forbidden graphs is analyzed for such prop-
erties.
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1. Introduction and Preliminaries

Let us denote by I the class of all finite simple graphs having at least one
vertex. For a given G ∈ I and V ′ ⊆ V (G) by G[V ′] we denote a subgraph
induced in G by the set V ′. If V ′ ⊆ V (G), then G−V ′ denotes G[V (G)−V ′].
V ′ ⊆ V (G) is an independent set in G if the graph G[V ′] is edgeless. For G
being isomorphic to a subgraph of G′ we write G ⊆ G′. Symbols degG(v),
δ(G) stand for a degree of a vertex v in a graph G and a minimum vertex
degree in G, respectively. G1∪G2 denotes a disjoint union of graphs G1 and
G2. G1 +G2 stands for a graph obtained from G1∪G2 by adding all possible
edges between vertices of G1 and G2. A graph property P is a subclass of
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I, closed under isomorphisms. The graph properties I, ∅ are called trivial.
A graph property P is said to be hereditary (additive) if it is closed with
respect to taking subgraphs (disjoint union of graphs). A set of all graph
properties being hereditary (additive and hereditary) will be denoted by L

(La). It was stated in [3] that (La,⊆) is a complete distributive lattice whose
join-operation will be denoted by ∨.

Let [n] = {1, . . . , n}. We call properties P1, . . . ,Pn ∈ La, n ≥ 2 incom-
parable in the lattice (La,⊆) if for each i ∈ [n], ∨j∈[n]Pj 6= ∨j∈[n]\{i}Pj .

A graph property P is ∨-reducible in (La,⊆) if P is a join of at least
two non-trivial properties, which are incomparable in (La,⊆). If P is a
hereditary graph property, then the uniquely determined set of all minimal

forbidden graphs for P is defined as follows [9]:

F(P) = {G ∈ I : G /∈ P but for each proper subgraph H of G, H ∈ P}.

A generating set for P ∈ L is a set GP ⊆ P such that each H ∈ P is a
subgraph of some G ∈ GP . GP unlike F(P), is not uniquely determined for
a given P. We say that a graph property P is generated by a given set of
graphs G if P = {H : H ⊆ F for some F ∈ G}.

The assignment of colours to vertices of a graph such that two adjacent
vertices are distinguished by their colours yields the proper graph colouring.
Replacing the adjacency condition by some other features leads to general-
ized colouring notion. This concept was first considered by Cockayne (see
[5]) and studied intensively by many researchers [3, 4, 8].

A graph property P is ◦-reducible over La if there are non-trivial proper-
ties P1, . . . ,Pn ∈ La, n ≥ 2, satisfying G ∈ P if and only if its vertex-set can
be partitioned into sets V1, . . . , Vn (empty ones are allowed) so that G[Vi]
has a property Pi for each non-empty Vi.

In 2001 Berger proved that every graph property, which is ◦-reducible
over La has infinitely many minimal forbidden graphs [1]. In this paper, we
generalize her result.

Let P1, . . . ,Pn ∈ La, G, H = ({v1, v2, . . . , vn}, E) ∈ I. An H[P1, . . . ,
Pn]-partition of G is defined as a partition (V1, . . . , Vn) of V (G) (empty
parts are allowed) such that the existence of {xi, xj} ∈ E(G) with xi ∈ Vi,
xj ∈ Vj , i 6= j implies the existence of {vi, vj} ∈ E and for each i ∈ [n], with
non-empty Vi, a graph G[Vi] has a property Pi.

The symbol H[P1, . . . ,Pn] denotes a class of all graphs possessing an
H[P1, . . . ,Pn]-partition. For P = H[P1, . . . ,Pn] with P1, . . . ,Pn ∈ La \
{I, ∅}, we say that H[P1, . . . ,Pn] is an H-factorization (factorization) of
P over La, P1,P2, . . . ,Pn are H-factors (factors) of this factorization and
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P is H-factorizable over La. Of course, each graph property that is H-
factorizable over La is in La. An H-factorization H[P1, . . . ,Pn] of P over La

is called proper if there exists a graph G ∈ P such that in each H[P1, . . . ,Pn]-
partition (V1, . . . , Vn) of G all Vi are non-empty.

It is worth pointing out that P1,P2, . . . ,Pn, n ≥ 2, are incomparable
elements in the lattice (La,⊆) if and only if K̄n[P1,P2, . . . ,Pn] is a proper
K̄n-factorization of P = P1 ∨ P2 ∨ · · · ∨ Pn over La.

For a given H ∈ I we say that a graph property P is H-reducible over

La if there exists a proper H-factorization of P over La. Otherwise, P
is called H-irreducible over La. The concept of H-reducibility over La,
introduced in [6], covers ∨-reducibility in (La,⊆) and ◦-reducibility over
La. We shall show, in Section 2 (Theorem 3), that if a graph property
P is H-reducible over La and δ(H) ≥ 1, then F(P) is infinite. Moreover,
in Theorem 7, infiniteness of F(P) shall be observed for graph properties
P that are H-reducible over La in the case δ(H) = 0. Surprisingly, the
condition δ(H) = 0 forces equivalence between H-reducibility over La and
∨-reducibility in the lattice (La,⊆). Some results on this subject can be
found in [7]. Our contribution to this topic is presented in Theorems 15
and 16.

2. H-Factorizations

Using the definitions introduced earlier we are in a position to formulate a
theorem which generalizes the result from [1]. Its proof imitates the proof
of the above mentioned result and must be preceded by two lemmas.

A cyclic block of a graph is its block containing a cycle.

Lemma 1 [1]. Let r ≥ 2 be an integer. Let P ∈ La and suppose that F(P)
is a set of graphs each with at least one cyclic block, such that the set of all

the cyclic blocks forming the graphs in F(P) is finite. Next for each graph

G ∈ P satisfying that for every F ∈ F(P) there exists a cyclic block of F
which is not an induced subgraph of G, there exists a graph H ∈ P such that

in any partition of V (H) into r parts, G is the subgraph of a graph induced

by at least one of the parts.

Lemma 2 [1]. Let F1, F2, . . . be a finite or infinite sequence of graphs, each

with at least one cyclic block, such that the set of all the cyclic blocks making

up F1, F2, . . . is finite. Then there exists a graph G of the form Fi − I, with
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I ⊆ V (Fi) independent, such that for each j ≥ 1, there is a cyclic block of

Fj not contained in G.

Theorem 3. Let H be a graph satisfying δ(H) ≥ 1 and let P be an H-

factorizable over La property. Then a set of all cyclic blocks making up the

graphs in F(P) is infinite and hence F(P) is infinite.

Proof. Let H[P1, . . . ,Pn] for n ≥ 2,P1, . . . ,Pn ∈ La be an H-factorization
of P over La. Suppose that the set of all cyclic blocks making up the graphs
in the family F(P) is finite. Because H contains at least one edge and for
each s ∈ N, K̄s ∈ Pi, i ∈ [n], we have that each bipartite graph has a
property P. Hence each graph in F(P) = {F1, . . .} (finite or infinite) is non-
bipartite and contains at least one cyclic block. Lemma 2 implies that there
exist i∗ ∈ [n] and a graph G = Fi∗ − I with independent I ⊆ V (Fi∗) such
that for each j ≥ 1 one can find a cyclic block in Fj which is not contained
in G. Of course, G ∈ P. Lemma 1 for r = n guarantees that there exists a
graph H∗ ∈ P such that in each partition of V (H∗) into n parts at least one
of them induces in H∗ a graph with a subgraph G. Consider an arbitrary
H[P1, . . . ,Pn]-partition (V1, . . . , Vn) of H∗. Now, consider a part Vj in which
G is contained. Since δ(H) ≥ 1, there exists k ∈ [n]\{j} such that {vj , vk} ∈
E(H). Therefore the graph H∗[Vj ]+K̄|I| has an H[P1, . . . ,Pn]-partition and
it is in P. On the other hand Fi∗ ⊆ H∗[Vj] + K̄|I|. The above shows that
the set of cyclic blocks making up all graphs in the family F(P) is infinite
and consequently F(P) is infinite.

In what follows Q̄ = I \ Q. For P1,P2 ∈ La and P = K̄2[P1,P2] we define
the following sets:

AP = {G ∈ F(P) : G ∈ (F(P1) ∩ P̄2) ∪ (F(P2) ∩ P̄1)},
BP = {G ∈ F(P) \ AP : for every edge e ∈ E(G), G− e ∈ P1 ∪ P2},
CP = {G ∈ F(P): there exists an edge e ∈ E(G) such that G−e ∈ P̄1∩P̄2}.
It is not difficult to see that F(P) = AP ∪BP ∪ CP [7].

Let G1v1
k
←→ v2G2 denote a graph obtained from the disjoint graphs

G1, G2 by joining selected vertices v1 of G1 and v2 of G2 by a path of length
k (with k edges). If the choice of vertices v1, v2 has no meaning, we use the

notation G1
k
←→ G2. It was observed in [7] that if P1,P2 are two graph

properties, which are incomparable in (La,⊆), then graphs in CK̄2[P1,P2] are

always of the form G1
k
←→ G2 with G1 ∈ F(P1)∩P2, G2 ∈ F(P2)∩P1, k ∈

N. From the same paper it follows that for each graph G in BK̄2[P1,P2] the
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set of its edges is a union of sets E1, E2 such that the graph G[E1] induced
in G by E1 is an element of F(P1) and similarly G[E2] ∈ F(P2).

Lemma 4. Let K̄n[P1,P2, . . . ,Pn], n ∈ N, be a factorization of P over La.

If for each F ∈ F(P1) ∪ F(P2) ∪ · · · ∪ F(Pn) the condition δ(F ) ≥ 2 is

satisfied, then δ(F ∗) ≥ 2 for each F ∗ ∈ F(K̄n[P1,P2, . . . ,Pn]).

Proof. We can assume that K̄n[P1,P2, . . . ,Pn] is the proper factorization
of P, which implies that P1, . . . ,Pn are graph properties which are incom-
parable in (La,⊆). Moreover, each F ∗ ∈ F(K̄n[P1,P2, . . . ,Pn]) is connected
because of P ∈ La. For n = 1 the assertion is obvious, for n = 2 it follows
from the definitions of AP , BP , CP and the construction of graphs in CP

and BP . In a general case, it can be obtained by the induction on n, using
associativity of the operation ∨.

Lemma 5. Let H = ({v1, . . . , vn}, E) be a connected graph on at least two

vertices and let P be a property which is H-factorizable over La. Then for

an arbitrary F ∈ F(P) the condition δ(F ) ≥ 2 is satisfied.

Proof. Recall that each F ∈ F(P) is connected because of P ∈ La. Let
us assume that F ∗ ∈ F(P) and δ(F ∗) = 1. Let v ∈ V (F ∗) be a vertex of
degree 1 in F ∗ and w be a neighbour of v in F ∗. It is clear that F ∗− v ∈ P.
Consider an arbitrary H[P1, . . . ,Pn]-partition (V1, . . . , Vn) of F ∗ − v. Let
l ∈ [n] be an index satisfying w ∈ Vl. Because degH(vl) ≥ 1, we know that
there exists an index s ∈ [n] \ {l} such that {vs, vl} ∈ E(H). It is evident
that (V1, . . . , Vs ∪ {v}, . . . , Vn) is an H[P1, . . . ,Pn]-partition of F ∗, contrary
to the assumption F ∗ ∈ F(P).

To obtain the main result of this section we have to recall the following
lemma.

Lemma 6 [7]. Let K̄2[P1,P2], be a proper factorization of P over La.

If for each F ∈ F(P1) ∪ F(P2) the condition δ(F ) ≥ 2 is satisfied, then

F(K̄2[P1,P2]) is infinite.

Theorem 7. Let H = ({v1, . . . , vn}, E) be a graph, n ≥ 2, and let H[P1,
. . . ,Pn] be a proper H-factorization of P over La satisfying that for each

i ∈ [n] with degH (vi) = 0 and arbitrary F ∈ F(Pi) the condition δ(F ) ≥ 2
holds. Then the family F(P) is infinite.
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Proof. Denote W1 = {vj : degH(vj) = 0}, W2 = V (H) \W1. The proof
will be divided into three parts:

(1) W1 = ∅

The assertion follows by Theorem 3.

(2) W2 = ∅

In this case we can apply Lemmas 4, 6 and associativity of the operation ∨.

(3) W1 6= ∅ and W2 6= ∅

Without restriction of generality assume that W1 = {v1, . . . , vj}, W2 =
{vj+1, . . . , vn} for some j ∈ [n − 1]. Let H1 = H[W1], H2 = H[W2]. The
conclusion holds by Lemmas 4, 5, 6. It is so because P = H1[P1, . . . ,Pj ] ∨
H2[Pj+1, . . . ,Pn] = P1∨P2∨· · ·∨Pj ∨H2[Pj+1, . . . ,Pn] = K̄j+1[P1,P2, . . . ,
Pj ,H2[Pj+1, . . . ,Pn]] and properties P1, . . . ,Pj ,H2[Pj+1, . . . ,Pn] are incom-
parable in (La,⊆).

Let H be a graph on at least two vertices. The only graph property P that
is H-reducible over La which is left to be considered with respect to the
finiteness of the family of all minimal forbidden graphs has the following
properties:

• P is K̄2-reducible over La (P is a join of two incomparable properties
P1,P2 in (La,⊆)),

• at least one out of the properties P1,P2 is H∗-irreducible over La for each
connected H∗ satisfying |V (H∗)| ≥ 2 and its minimal forbidden graph
family contains a graph F such that δ(F ) = 1.

In the next section, we try to give as much information as possible about
such properties in terms of families F(P1), F(P2).

3. Quasi-Orders

We are going to show a theorem which will be sharper than the one which
was proven in [7]. First, we shall recall the definitions of a ranking number
of a graph [4] and the well quasi-ordered set. Then we shall establish the
connection between these notions and the finiteness of the family of all
minimal forbidden graphs for a property P ∈ La. For all undefined notions
in the section please refer to [10].

Let A be an arbitrary set and ρ be a relation defined on it. A couple
(A, ρ) is called a quasi-ordered set if ρ is reflexive and transitive on A. Below,
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we cite a theorem giving equivalent conditions for a quasi-ordered set to be
a well-quasi-ordered set.

Theorem 8 [10]. If (A, ρ) is a quasi-ordered set, then the following condi-

tions are equivalent.

(1) A has no infinite strictly ρ-decreasing sequence and no infinite ρ-anti-

chain.

(2) For each infinite sequence a1, a2, . . . of elements in A there exist i and

j such that i < j and aiρaj.

(3) Each infinite sequence of elements in A has an infinite strictly ρ-incre-

asing subsequence.

(4) For each subset B of A, the set of ρ-minimal elements in B is finite.

For a given path P = v1, . . . , vn and a disjoint vertex u, by (u, P ), P (vi, vj),
we denote a path u, v1, v2, . . . , vn and a subpath of P joining vi and vj ,
respectively. If we are interested only in end-vertices of P , we can denote it
as (v1, vn)-path.

Given a graph G = (V,E) ∈ I, a mapping c : V −→ [k] such that
for each pair of vertices u, v satisfying c(u) = c(v) and for each (u, v)-path
in G there exists an internal vertex z of this path, such that c(z) > c(u)
is called an ordered k-colouring of G. We define a ranking number of a

graph G, χ0(G), as the smallest integer k such that G possesses an ordered
k-colouring.

Let Qi be a path with an end-vertex xi
0, i ∈ [n] and H = ({v1, . . . , vn}, E)

be a graph such that H,Q1, . . . , Qn are disjoint. Let G be a graph obtained
by identifying each xi

0 with a vertex vi, i ∈ [n]. We say that H is a core of
G. Putting G instead of H and taking all paths Q1, . . . , Qn having only one
vertex, we see that G can be a core of itself. In general, a graph G does not
have a unique core. By Bk we denote the set of all graphs G such that there
exists a core H of G satisfying χ0(H) ≤ k. All notions defined above were
introduced in [12].

Let Gi stand for a path with three vertices and a marked vertex vi

of degree two, i = 1, 2 and let the symbol Hm, m ∈ N, denote the graph
G1v1

m
←→ v2G2. It was shown in [12] that the graph Hm defined above and

the cycle Cm on m vertices are basic in the theorem whose part we formulate
below preceding it with a useful lemma.

Lemma 9 [13]. If every path of a graph G has the length at most k − 1,
then χ0(G) ≤ k.
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Theorem 10 [12]. Let k ∈ N and G /∈ Bk. Then G contains a subgraph

Hm or Cm where m is large relatively to k.

Proof. Without loss of generality we can assume that G is connected
(otherwise we can consider an arbitrary component of G). Choose a core
H of G that is minimal with respect to the subgraph relation. H does
not have an ordered k-colouring. Let P = u1, . . . , ul be the longest path
of H. By Lemma 9, k ≤ l. Let y be a neighbour of u1 in G. If y is in
V (H) \ {u1, . . . , ul} then (y, P ) is a longer path of H than P . If y is in
V (P) and the length of P (u1, y) is large relatively to k then the length of
the cycle Cm = P (u1, y), u1 is large relatively to k. Hence y ∈ V (G) \ V (H)
or y is in V (P ) and the length of P (u1, y) is small relatively to k. If u2 is
the only vertex of H adjacent to u1 and u1 is adjacent to at most one vertex
in V (G) \ V (H), then H − u1 is also a core of G, contrary to minimality of
H. Therefore u1 is adjacent to a vertex ui such that i ≥ 3 and i is small
relatively to k or u1 is adjacent to at least two vertices in V (G) \ V (H).
Similarly, ul is adjacent to at least two vertices in V (G) \ V (H). It implies
that G has an Hm subgraph such that m is large relatively to k.

Corollary 11. Let G be a set of graphs such that G * Bk for each k ∈ N.

Then there exists either an infinite family {Cni
: i ∈ N} or an infinite

family {Hni
: i ∈ N} of graphs, whose elements have the property generated

by G.

The next theorem characterizes hereditary graph properties with infinite
families of all minimal forbidden graphs. It is based on the following result.

Lemma 12 [12]. (Bk,⊆) is a well-quasi-ordered set.

Theorem 13. Let P ∈ L. The set F(P) is infinite if and only if the

graphs in F(P) contain an infinite family {Hni
; i ∈ N} or an infinite family

{Cni
; i ∈ N} as subgraphs.

Proof. Suppose that F(P) is infinite and its elements do not contain
neither an infinite family of cycles nor an infinite family of graphs Hni

,
i ∈ N, as subgraphs. Hence, in accordance to Corollary 11, the property
generated by F(P) is contained in Bk for some k ∈ N. By Theorem 8 and
Lemma 12 any subset of Bk contains only finite antichains. But F(P) creates
an antichain in Bk, a contradiction.

If F(P) is a finite set, then it contains no infinite antichains from (I,⊆),
in particular, neither {Hni

; i ∈ N} nor {Cni
; i ∈ N}.
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Lemma 14. Let P ∈ L be a property for which there exists k ∈ N such that

a path on k vertices is a minimal forbidden graph for P. Then the set F(P)
is finite.

Proof. Let us suppose that F(P) is infinite. Thus, by Theorem 13 graphs
of the family F(P) contain an infinite antichain {Hni

: i ∈ N} or {Cni
:

i ∈ N}, as subgraphs. It is not possible because there exists i ∈ N such that
for each j > i, Hnj

and Cnj
contain a path on k vertices as a subgraph,

contrary to the fact that elements of F(P) are incomparable in the sense of
the subgraph-relation.

Let Ok = {G ∈ I : each component of G has at most k + 1 vertices}.
The next theorem depends strongly on the fact which has been just

proven. It generalizes the result from [7] stating the finiteness of
F(K̄2[P1,P2]) in the language of F(P2) provided P1 ⊆ Ok for some k ∈ N

and P1,P2 are incomparable in (La,⊆) properties.

Theorem 15. Let P1,P2 ∈ La be graph properties, which are incomparable

in (La,⊆). If there exists k ∈ N such that a path on k vertices is an element

of F(P1), then F(K̄2[P1,P2]) is finite if and only if F(P2) is finite.

Proof. Suppose that F(P2) is a finite set. Because of Lemma 14, F(P1) is
a finite set, too. Hence we have the finiteness of AK̄2[P1,P2] and BK̄2[P1,P2] in
accordance with their constructions. Moreover, the parameter s in graphs
F1v1

s
←→ v2F2 of the family CK̄2[P1,P2] is bounded above, which implies the

finiteness of the set CK̄2[P1,P2] and consequently the finiteness of

F(K̄2[P1,P2]).
Let F(K̄2[P1,P2]) be finite. If F(P2) is an infinite set then, by Theorem

13, graphs of the family F(P2) contain an infinite family C = {Cni
: i ∈ N}

or H = {Hni
: i ∈ N}, as subgraphs. Next it is possible to choose an

infinite family of graphs in F(P2), whose subgraphs are elements of C or H.
These graphs, beginning with some number of vertices are the graphs of the
family AK̄2[P1,P2] simultaneously, because each of them contains a path on
k vertices as a subgraph, a contradiction.

Lemma 6 and Theorem 15 give us the possibility of constructing proper-
ties that are K̄2-reducible over La with infinitely many minimal forbidden
graphs irrespective of the finiteness of minimal forbidden graph families for
factors. Using Theorem 15 we can construct graph properties having fi-
nite families of minimal forbidden graphs that are K̄2-reducible over La.
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In this case the factors constructed properties have finite families of mini-
mal forbidden graphs too. Unfortunately, all other possibilities are permissi-
ble. For comprehensibility, we illustrate this fact by the following examples.
Let C∗

5 be a cycle on five vertices with one chord and K1,3 be a star on
four vertices. Consider properties P1,P2,Q1,Q2 ∈ La such that F(P1) =
{C5}, F(P2) = {K1,3} F(Q1) = {Cn : n is odd}∪{K1,3}, F(Q2) = {Cn : n

is even}∪{K1,3}. It is easy to verify that F(K̄2[P1,P2]) = {C∗
5 , C5

1
←→ K1}

and F(K̄2[Q1,Q2]) = {K1,3}.
The last example corresponds with a new result, presented below, which

seems to be helpful for obtaining a full characterization of properties which
are H-reducible over La in the aspect under consideration.

Theorem 16. Let P1,P2 be graph properties which are incomparable in

(La,⊆) and let sets F(P1), F(P2) be infinite. If F(K̄2[P1,P2]) is finite,

then there exist graphs F ∗∗ ∈ F(K̄2[P1,P2]) ∩ F(Pi) and F2 ∈ F(Pj) such

that δ(F ∗∗) = δ(F2) = 1 where i, j are different indices.

Proof. Suppose l = max{|V (F )| : F ∈ F(K̄2[P1,P2])}, Ai = {F ∈
F(Pi) : |V (F )| > l}, i = 1, 2. It is obvious that Ai are infinite sets for
i = 1, 2. Let Fi ∈ Ai be a fixed graph, i = 1, 2. It is clear that Fi ∈
F(Pi) ∩ Pj , i 6= j, i, j = 1, 2. Otherwise, Fi should be a minimal forbidden
graph for K̄2[P1,P2], which is impossible by the assumption |V (Fi)| > l.

Let F ∗ = F1
l+1
←→ F2. Thus F ∗ ∈ P̄1 ∩ P̄2 and consequently it contains a

graph F ∗∗ ∈ F(K̄2[P1,P2]). Obviously, F ∗∗ is neither a proper subgraph of
F1 nor F2. Moreover, because the path joining F1 and F2 in F ∗∗ is of length
l+1, it is not possible for V (F ∗∗) to overlap V (F1) and V (F2). Hence either

F ∗∗ ⊆ F1
l+1
←→ K1 or F ∗∗ ⊆ K1

l+1
←→ F2 and F ∗∗ contains at least one vertex

of the path of length l + 1. By additivity of P it means that δ(F ∗∗) = 1.

The construction F1
l+1
←→ F2 can be done infinitely many times taking

all possible graphs Fi ∈ Ai, i = 1, 2. Consider two sequences (F i
1)

∞
i=1 ⊆ A1,

(F j
2 )∞j=1 ⊆ A2 such that l + 1 ≤ |V (F 1

1 | < |V (F 2
1 | < · · · and l + 1 ≤

|V (F 1
2 )| < |V (F 2

2 )| < · · ·. The existence of such sequences follows by the
assumption |F(P1)| = |F(P2)| = ∞. Previously we showed that for each

graph F i
1

l+1
←→ F j

2 there exists F ∗∗ ∈ F(K̄2[P1,P2]) which is contained in

F i
1

l+1
←→ K1 or F j

2
l+1
←→ K1. Because the number of such graphs F ∗∗ is

finite, there exist sequences (F ni

1 )∞i=1, (F
nj

2 )∞j=1 satisfying that fixed F ∗∗ ∈

F(K̄2[P1,P2]) is a subgraph of each graph F ni

1
l+1
←→ F

nj

2 . The numbers of
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vertices of the graphs F ni

1 , F
nj

2 tend to infinity if i and j increase. Thus the
fixed F ∗∗ starting with suitable numbers i, j contains a proper subgraph of
F ni

1 or a proper subgraph of F
nj

2 as a subgraph. It implies that the minimal
forbidden subgraphs F

′

1 ∈ F(P1), F
′

2 ∈ F(P2), which are included in F ∗∗

satisfy δ(F
′

1) = δ(F
′

2) = 1. If F ∗∗ is forbidden for P1 or for P2, then the
last part of the assertion is true. If not, use graphs F

′

1, F
′

2 to construct

F3 = F
′

1
l+1
←→ F

′

2, which does not possess the property K̄2[P1,P2]. Take
again a graph F4 ∈ F(K̄2[P1,P2]) ⊆ F3, but in such a way that it uses the
biggest number of edges of l+1-path. Such a graph guarantees the assertion.
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