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Abstract

A vertex k-ranking of a simple graph is a coloring of its vertices
with k colors in such a way that each path connecting two vertices
of the same color contains a vertex with a bigger color. Consider the
minimum vertex ranking spanning tree (MVRST) problem where the
goal is to find a spanning tree of a given graph G which has a vertex
ranking using the minimal number of colors over vertex rankings of all
spanning trees of G. K. Miyata et al. proved in [NP-hardness proof
and an approximation algorithm for the minimum vertex ranking span-
ning tree problem, Discrete Appl. Math. 154 (2006) 2402–2410] that
the decision problem: given a simple graph G, decide whether there
exists a spanning tree T of G such that T has a vertex 4-ranking, is
NP-complete. In this paper we improve this result by proving NP-
hardness of finding for a given chordal graph its spanning tree having
vertex 3-ranking. This bound is the best possible. On the other hand
we prove that MVRST problem can be solved in linear time for proper
interval graphs.
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1. Introduction

A vertex k-ranking of a graph G is a function c : V (G) → {1, . . . , k} such that
each path connecting two vertices of the same color contains a vertex with a
bigger color. The symbol χr(G) is called the vertex ranking number of G and
is equal to the smallest number k such that there exists a vertex k-ranking
of G. A vertex ranking of G is optimal if it uses χr(G) colors. Finding an
optimal vertex ranking is hard in general [15] and also for chordal graphs [7].
The problem can be solved in linear time for trees [16], in O(n3d) time for
d-trapezoid graphs [4], which implies an O(n3) time algorithm for interval
and circular-arc graphs, and an O(n6) time algorithm for permutation and
trapezoid graphs. There exists an O(n + m) time optimal algorithm for
computing vertex ranking of a starlike graph [8].

An edge k-ranking of a graph G is a function c : E(G) → {1, . . . , k} such
that each path connecting two edges of the same color contains an edge with
a bigger color. The edge ranking number of G, denoted by χ′

r(G), equals
the smallest integer k such that there exists an edge k-ranking of G.

Makino, Uno and Ibaraki introduced the Minimum Edge Ranking Span-
ning Tree (MERST) problem [11], where the goal is to find a spanning tree
T of G, such that the edge ranking number of T is minimum over all span-
ning trees of G. This problem is hard for general graphs and there exists a
polynomial time approximation algorithm with a sublinear approximation
ratio [11]. The bound for performance guarantee of this algorithm has been
improved asymptotically in [6]. There exist exact polynomial-time algo-
rithms solving the MERST problem for threshold and split graphs [10]. The
problem turns out to be NP-complete for series-parallel graphs [1]. In [9]
an approximation algorithm for series-parallel graphs is given. The MERST
problem has potential applications in parallel query processing in relational
databases [11], and a special modification of this problem has been used to
for creating search strategies in partial orders [5].

The vertex version of the MERST problem has been defined in [11].
Formally, given a simple graph G, the goal is to find a spanning tree T of
G such that the vertex ranking number of T is minimum over the vertex
ranking numbers of all spanning trees of G. The authors conjectured in [11]
that the Minimum Vertex Ranking Spanning Tree (MVRST) problem is also
hard in general and left their hypothesis as an open question. In the decision
version of the problem a graph G and an integer k are given and we ask about
the existence of a spanning tree T satisfying χr(T ) ≤ k. We use the notation
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k-MVSRT to denote the problem with a fixed k and a simple graph G as an
input. Authors in [12] proved that 4-MVRST problem is NP-complete. In
this paper we improve this result: 3-MVRST problem is also NP-complete.
Section 2 gives a polynomial time reduction form the Minimum Set Cover
problem to the MVRST problem for chordal graphs with diameter at most 6.
Few classes of graphs are know for which an optimal solution to this problem
can be computed in polynomial-time, the examples are interval graphs [13]
and outerplanar graphs [14]. In Section 3 we show a nontrivial class of graphs
(proper interval graphs) for which the MVRST problem can be solved in
linear time. Although the work of Nakayama et al. [13] implies the existence
of an optimal and polynomial-time algorithm, but the running time of their
procedure is O(n3).

2. 3-MVRST Problem is Hard for Chordal Graphs

In this section we propose a simple polynomial-time reduction from the Min-
imum Set Cover problem (MSC) to the 3-MVRST problem. The definition
of the MSC problem is as follows:

Input: a set S = {a1, . . . , an}, a collection C of subsets of S (C =
{S1, . . . , Sm}, where Si ⊆ S for each i = 1, . . . ,m) and an integer k > 0;

Question: Does it exist C ′ ⊆ C such that |C ′| ≤ k and
⋃

C′ = S?

Given an instance of the MSC problem, define a simple graph G.

V (G) = V [S] ∪ V [C] ∪ {w1, . . . , wk} ∪ {r0, . . . , r3},

where V [S] = {v[a1], . . . , v[an]} contains the vertices corresponding to the
elements in S while V [C] = {v[S1], . . . , v[Sm]} contains the vertices corre-
sponding to the sets Si. Then,

E(G) = {{v[ai], v[Sj ]} : ai ∈ Sj} ∪ {{x, y} : x, y ∈ V [C] ∪ {w1, . . . , wk}} ∪

{{r0, wi} : i = 1, . . . , k} ∪ {{ri, ri+1} : i = 0, 1, 2}.

Let us give an example of a graph G for a given instance of the MSC problem.
Let n = 6, m = 5, k = 2, S1 = {a1, a2}, S2 = {a2, a3, a4}, S3 = {a3},
S4 = {a1, a5, a6}, S5 = {a4, a5, a6}. Figure (a) depicts the corresponding
graph G.
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Figure 1. (a) a graph G and (b) a spanning tree T of G with χr(T ) = 3.

Lemma 1. If C ′ is a solution to the MSC problem satisfying |C ′| ≤ k, then

there exists such a spanning tree T of G that χr(T ) = 3.

Proof. We define a vertex 3-ranking c together with a spanning tree T .
Clearly, {ri, ri+1} ∈ E(T ) for i = 0, 1, 2. Let c(r0) = 3, c(r1) = c(r3) = 1,
c(r2) = 2. Let c(v[Sj ]) = 2 if Sj ∈ C′. All the remaining vertices of G
get color 1. Define {r0, wi} ∈ E(T ), i = 1, . . . , k. For each v[Sj ] such that
c(v[Sj ]) = 2 find a unique vertex wl and add {wl, v[Sj ]} to E(T ). Such a
definition is correct, because |C ′| ≤ k. Finally, for each i = 1, . . . , n find
j ∈ {1, . . . ,m} such that ai ∈ Sj , Sj ∈ C′, and add {v[ai], v[Sj ]} to E(T ).
If c(v[Sj ]) = 1, j ∈ {1, . . . ,m} then find any vertex v[Sl] colored with 2
and add {v[Sj ], v[Sl]} to E(T ). It is easy to see that T is a spanning tree.
Note that T − r0 is a union of stars with central vertices r2 and v[Sj ], where
Sj ∈ C′. So, the central vertex of each star has color 2 and the leaves are
colored with 1. This proves that c is a ranking.

The construction of T and its vertex 3-ranking shown in the proof of Lemma 1
are given in Figure (b). The only solution to the MSC problem in that case
is C′ = {S2, S4}.

Lemma 2. If T is a spanning tree of G such that χr(T ) = 3, then there

exists a solution to the MSC problem.

Proof. Let c be a vertex 3-ranking of T . Note that {ri, ri+1} ∈ E(T ). So,
one of the vertices r0, . . . , r3 gets color 3. If c(r0) 6= 3 then we may modify
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c in such a way that c(r0) = 3, c(r1) = c(r3) = 1 and c(r2) = 2. Clearly, c is
a valid vertex 3-ranking of T . Define C ′ = {Sj : c(v[Sj ]) = 2, j = 1, . . . ,m}.

Note that χr(T ) = 3 implies that the color 3 is unique under c, so only
r0 gets this color. It is not possible that T contains a subpath P with three
consecutive vertices v[Sj ], v[ai], v[Sl], because then v[ai] would require color
2 while c(v[Sj ]) = c(v[Sl]) = 1 and none of these vertices is connected to
r0 – a contradiction. So, the vertices v[ai], i = 1, . . . , n are leaves in T and
consequently c(v[ai]) = 1, i = 1, . . . , n. Since for each i = 1, . . . , n there
exists j ∈ {1, . . . ,m} such that {v[ai], v[Sj ]} ∈ E(T ) it must be the case
c(v[Sj ]) = 2. So,

⋃
C′ = S.

If c(v[Sj ]) = 2 then there exists l ∈ {1, . . . , k} such that {v[Sj ], wl},
{wl, r0} ∈ E(T ), because v[Sj] is not adjacent to r0, and a path connecting
v[Sj ] to r0 in T may contain at most one vertex, because this path cannot use
colors other than 1. So, for such a vertex wl we have c(wl) = 1, which implies
that for each wl there exists at most one v[Sj] such that {wl, v[Sj ]} ∈ E(T ).
This means that |C ′| ≤ k.

Let G be a simple graph. Given a cycle C ⊆ G, an edge between two
nonadjacent vertices in C is called a chord. We say that G is chordal if each
cycle of length at least 4 has a chord.

Lemma 3. The graph G is chordal.

Proof. Let Cp ⊆ G be a cycle in G. If v[ai] ∈ V (Cp) then {v[ai], v[Sj ]},
{v[ai], v[Sl]} ∈ E(Cp), j 6= l, j, l ∈ {1, . . . ,m}, and by the definition of G,
{v[Sj ], v[Sl]} is a chord of Cp. So, if Cp is chordless then v[ai] /∈ V (Cp)
for i = 1, . . . , n. Similarly one can show that r0 /∈ V (Cp). So, V (Cp) ⊆
V [C] ∪ {w1, . . . , wk} and Cp cannot be chordless, because the vertices of Cp

are pairwise adjacent. This completes the proof.

Clearly, the size of G is polynomial in n + m. Moreover, by Lemmas 1 and
2 there exists a solution to the MSC problem if and only if there exists
a spanning tree T of G with the property χr(T ) ≤ 3. By Lemma 3 G is
chordal. It is also easy to verify that the diameter of the graph G in our
reduction is bounded by 6. So, we have proved the following.

Theorem 1. The 3-MVRST problem is NP-complete for chordal graphs

with diameter at most 6.
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3. Proper Interval Graphs

An interval graph is such a graph I that for each vertex v ∈ V (I) there
exists an interval Iv = (lv , rv), lv < rv such that for any two vertices u, v of
I, {u, v} ∈ E(I) if and only if Iu ∩ Iv 6= ∅. An interval graph is proper if the
intervals Iv for v ∈ V (I) can be defined in such a way that there are no two
vertices u, v such that Iu ⊆ Iv. In the following we assume that an interval

diagram, i.e., a mapping of the intervals to the vertices, is given. This is
not a strong assumption since an interval diagram can be computed for a
given interval graph in linear time [2]. We also assume that I is connected,
because the problem for disconnected graphs reduces to solving MVRST for
each connected component separately.

We start by proving a property which is true for any graph.

Lemma 4. Let u, v be some vertices of a graph G. If P is a shortest path

between u and v in G then χr(P ) ≤ χr(T ), where T is any spanning tree

of G.

Proof. Denote by P ′ the path connecting u and v in T . Clearly, P ′

connects u and v in G which means that |V (P )| ≤ |V (P ′)|. The vertex
ranking number of a graph is not bigger than the vertex ranking number of
its supergraph which means that χr(P ) ≤ χr(P

′) ≤ χr(T ).

Given an interval graph I, define vleft ∈ V (I) (vright ∈ V (I)) so that for
each v ∈ V (I) it holds lvleft

≤ lv (rv ≤ rvright
, respectively). We have the

following

Lemma 5. If T is a minimum vertex ranking spanning tree of I and P is

a shortest path connecting vleft and vright in I then χr(P ) = χr(T ).

Proof. Lemma 4 implies that χr(P ) ≤ χr(T ). In order to prove the re-
verse inequality we construct a spanning tree T ′ such that χr(T

′) = χr(P ).
Initially let T ′ = P . Let v be any vertex in V (I) \V (P ). Since I is a proper
interval graph, v is adjacent in I to at least two vertices x, y of P . This is
true, because if v has only one neighbor x in P then it means that either
Iv ⊆ Ix or lv < lx, x = vleft or rv > rx, x = vright. All those situations lead
to a contradiction (with the definition of proper interval graphs or with the
definition of vleft or vright). Let lx < ly and we may without loss of gener-
ality assume that x and y are adjacent, because if this is not the case then
there exists a vertex z ∈ V (P ) such that lx < lz < ly and {z, y} ∈ V (P ),
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which means that rz > ly. Since v is adjacent to both x and y, we have
(rx, ly) ⊆ Iv and the fact (rx, ly) ∩ Iz 6= ∅ implies that z is adjacent to v
in I and we can use z as x. Let c be an optimal vertex ranking of P . We
have c(x) 6= c(y). Assume that c(x) > c(y) (the case when c(x) < c(y) is
analogous). Add the vertex v and the edge {v, x} to T ′ and let c(v) = 1.
Clearly, c(x) > 1 which means that c is a valid vertex ranking of the new
tree T ′. This completes the proof, because v was selected arbitrary.

The vertex ranking algorithm for proper interval graphs is as follows:

Step 1. find the vertices vleft and vright;

Step 2. compute a shortest path P connecting vleft and vright and let
T := P ;

Step 3. find an optimal vertex ranking c of P ;

Step 4. for each v ∈ V (I)\V (P ) find a vertex x ∈ V (P ) such that c(x) > 1,
{x, v} ∈ E(I) and execute V (T ) := V (T ) ∪ {v}, E(T ) := E(T ) ∪ {{v, x}};

Step 5. return T .

Now we discuss the time complexity of the second step of the algorithm.
Without loss of generality we can assume that for each v ∈ V (I), lv, rv ∈
{1, . . . , 2n}, where n = |V (I)|, see e.g. [4]. This means that we can
sort the vertices of I by the values of lv in O(n) time. Assume that
V (I) = {v1, . . . , vn}, where lvi

< lvi+1
, i = 1, . . . , n − 1. Authors in [3]

gave an efficient algorithm for computing shortest paths in interval graphs.
Assuming that the vertices of an interval graph are sorted according to the
values of lv and rv, they designed a data structure which in Θ(1) time gives
the lengths of the path between two given vertices and in O(l) time com-
putes this path, where l is the length of the path. The above data structure
can be computed in linear time O(|V (I)|).

Corollary 1 ([3]). The shortest path between the vertices vleft and vright

can be computed in linear time.

Theorem 2. There exists a linear time algorithm solving the MVRST prob-

lem for proper interval graphs.
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Proof. By Lemma 5, the algorithm is optimal. We show that it has a
linear running time. Step 1 of our algorithm can be performed in constant
time, because vleft = v1 and vright = vn (the vertices are sorted as mentioned
above). Using Corollary 1 we have that the second step can be done in linear
time. Step 3 can be done in O(|V (P )|) = O(n) time [16]. If vi and vi+j are
two vertices in V (I) \ V (P ) and {vi, vl} ∈ E(I), c(vl) > 1 where vl ∈ V (P )
then there exists a vertex vl+k ∈ V (P ), k ≥ 0 such that c(vl+k) > 1 and
{vi+j , vl+k} ∈ E(I). Thus, to perform the last step of the algorithm in linear
time we iterate over the vertices in V (I)\V (P ) according to increasing values
of their indices and we iterate over the vertices in V (P ), also according to
increasing values of the indices. From the above argument it follows that we
do not need to backtrace, so the fourth step of the algorithm can be done
in linear time.
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