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Abstract

For a given graph G and a sequence P1,P2, . . . ,Pn of additive
hereditary classes of graphs we define an acyclic (P1,P2, . . . ,Pn)-
colouring of G as a partition (V1, V2, . . . , Vn) of the set V (G) of vertices
which satisfies the following two conditions:

1. G[Vi] ∈ Pi for i = 1, . . . , n,

2. for every pair i, j of distinct colours the subgraph induced in G
by the set of edges uv such that u ∈ Vi and v ∈ Vj is acyclic.

A class R = P1 �P2 � · · · � Pn is defined as the set of the graphs
having an acyclic (P1,P2, . . . ,Pn)-colouring. If P ⊆ R, then we say
that R is an acyclic reducible bound for P.

In this paper we present acyclic reducible bounds for the class
of outerplanar graphs.

Keywords: graph, acyclic colouring, additive hereditary class, outer-
planar graph.
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1. Introduction

We consider finite undirected graphs without loops or multiple edges. Let
I denote the class of all such graphs. For a graph G ∈ I we denote its
vertex set by V (G) and its edge set by E(G). For a vertex v ∈ V (G) its
degree is denoted by dG(v), while the maximum degree of G is denoted by
∆(G). A block of a graph G is defined as a maximal connected subgraph
of G without a cut-vertex.

A graph G is called outerplanar if it can be embedded in the plane so that
no edges intersect and all the vertices belong to one face. An outerplanar
graph G is called maximal, if for any edge e from the set E(G), the graph
G + e is not outerplanar, G stands here for the complement of G.

Following Borowiecki et al. [3], we define a class of graphs to be any
nonempty subset of I which is closed under isomorphism. A class of graphs
P is called hereditary if G ∈ P and H ⊆ G then also H ∈ P , and additive

if it is closed under disjoint union, i.e., if every component of G belongs to
P , then G ∈ P . We list some additive hereditary classes:

O = {G ∈ I : E(G) = ∅},

Sk = {G ∈ I : ∆(G) ≤ k},

T 2 = {G ∈ I : G is outerplanar}.

A hereditary class P can be uniquely determined by the set of minimal

forbidden subgraphs defined as follows:

F (P) = {G ∈ I : G 6∈ P , but each proper subgraph H of G belongs to P}.

Therefore we can define, for an arbitrary set F of graphs, a class P =
Forb(F) as the set of all graphs having no subgraph isomorphic to any
graph from F . Clearly, P is a hereditary class of graphs. If F = {H} then
we will write Forb(H) instead of Forb({H}).

Let P1,P2, . . . ,Pn be additive hereditary classes of graphs. A partition
(V1, V2, . . . , Vn) of the vertex set V of G is called an acyclic (P 1,P2, . . . ,Pn)-
colouring of G, if G[Vi] ∈ P i for i = 1, . . . , n, and for every pair i, j (1 ≤
i, j ≤ n) of distinct colours the subgraph induced in G by the set of edges
uv such that u ∈ Vi and v ∈ Vj is acyclic. By P1 � P2 � · · · � Pn we
denote the set of all graphs having an acyclic (P 1,P2, . . . ,Pn)-colouring. If
R = P1 � · · · � Pn and P ⊆ R, then we say that R is an acyclic reducible

bound for P .
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The other specific terminology will be introduced in the text. The general
concepts not defined in the paper can be found in [8, 10].

One can observe that the above presented definition of an acyclic
(P1, . . . , Pn)-colouring corresponds to one presented in [1] and is a generali-
sation of a definition of an acyclic colouring of a graph, given by Grünbaum
in [9] (it is enough to put each P i equal to O).

After being introduced by Grünbaum in 1973, the acyclic colouring has
been widely studied over past thirty years by Burstein, see [7], Borodin [5],
Borodin, Kostochka and Woodall [6], and many others. In 1999 Boiron,
Sopena and Vignal considered the acyclic (P 1, . . . ,Pn)-colouring of planar
and outerplanar graphs, see [1], and also of graphs with bounded degree,
see [2]. In [1] it was proved that T 2 ⊆ S5 � S5. In [4] another four acyclic
reducible bounds for the class T 2 were presented. The aim of our paper is to
provide new acyclic reducible bounds for the class of outerplanar graphs. To
do this we propose a construction of special families of outerplanar graphs.
This construction is presented in Section 2, while Section 3 contains main
results. In Section 4 we discuss the relationship between acyclic reducible
bounds given in [1] and [4], and ours.

2. Construction of Hi and its Basic Properties

Let G = (V,E;L, S), L : V → {0, 1, . . .}, S : E → {0, 1, . . .} × {+, 0,−} be
a graph with labels assigned to its vertices and edges. If S(e) = (k, ·), then
we say that the edge e has level k (· stands for any of the signs from the set
{+, 0,−}). Similarly, the vertex v has level k, if L(v) = k. Moreover, we
write S(e) = (·,+), if we mean that S(e) = (i,+), but the value i is not
important or unknown yet.

Let G = (V,E;L, S) and G′ = (V ′, E′;L′, S′) be labelled graphs. If there
is an isomorphism f : G → G′ such that L(v) = L′(f(v)) for each v ∈ V and
S(uv) = S′(f(u)f(v)) for each uv ∈ E, then we say that the graphs are LS-

isomorphic. Moreover, if F is a (labelled) graph and A is a set of (labelled)
graphs, then by F ∈ A we mean F is (LS-)isomorphic to a member of A.
Let us remark that taking (induced) subgraphs preserves labels L and S.

We have introduced the labels L and S just for the technical purposes
of the construction and the simplicity of the proofs, but because the main
result of this paper concerns colouring of unlabelled graphs we must define
an operator ˜ which transforms a given labelled graph into unlabelled one.
So, for a labelled graph G = (V,E;L, S) by G̃ we mean the unlabelled graph
(V,E).



222 M. Borowiecki, A. Fiedorowicz and M. Ha luszczak

Similarly, if A is a set of labelled graphs, then the set Ã is defined as follows:
a graph G ∈ Ã if and only if G ' H̃ for some H ∈ A.

Let us define a family H0 of labelled graphs as follows: H0 = {H1
0 ,H2

0 ,H3
0},

where

H1
0 = ({u, v}, {uv};L1 , S1) and L1(u) = L1(v) = 0, S1(uv) = (0,+),

H2
0 = ({u, v, w}, {uv, uw, vw}; L2 , S2) and L2(u) = L2(v) = L2(w) = 0,

S2(uv) = (0, 0), S2(uw) = S2(vw) = (0,+),

H3
0 = ({u, v, w}, {uv, uw, vw}; L3 , S3) and L3(u) = L3(v) = L3(w) = 0,

S3(uv) = S3(vw) = (0, 0), S3(uw) = (0,+).

The family H0 is presented in Figure 1, labels of all the vertices are 0 and
they are omitted.

t t

(0, +)

H1
0

(0, 0)

H2
0

(0, +) (0, +)

t

t

t

(0, 0)

H3
0
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t

t

t

Figure 1. The family H0 of graphs.

In order to define the family Hi, for i ≥ 1, we need to introduce the notion
of a child of a labelled graph G. Namely, if G = (V,E;L, S) is a labelled
graph, then we say that a graph G′ = (V ′, E′;S′, L′) is a child of G, if G′

is constructed in the following way:

(a) set V ′ = V,E′ = E,S′ = S and L′ = L;

(b) for each edge uv ∈ E ′ such that S ′(uv) = (i,+)

(b.0) set S ′(uv) = (i,−);

(b.1) if deg(u) = deg(v) = 1, then add to G′ vertices u′, v′, w′, edges

u′u, v′u, v′v, w′v and set L′(u′) = L′(v′) = L′(w′) = i+1, S′(u′u) =

S′(w′v) = (i + 1,+) and
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([S′(v′u) = (i + 1,+), S ′(v′v) = (i + 1, 0)] or

[S′(v′u) = (i + 1, 0), S ′(v′v) = (i + 1,+)] or

[S′(v′u) = S′(v′v) = (i + 1,+)]);

(b.2) if deg(u) = 1 and deg(v) > 1, then add to G′ vertices u′, v′, edges

u′u, v′u, v′v and set L′(u′) = L′(v′) = i + 1,

S′(u′u) = (i + 1,+) and

([S′(v′u) = (i + 1,+), S ′(v′v) = (i + 1, 0)] or

[S′(v′u) = (i + 1, 0), S ′(v′v) = (i + 1,+)] or

[S′(v′u) = S′(v′v) = (i + 1,+)]);

(b.3) if deg(u) > 1 and deg(v) > 1, then add to G′ a vertex v′, edges

v′u, v′v and set L′(v′) = i + 1; let B be the block of G′ which

contains the edge uv,

(b.3.1) if B has an edge e, e 6=uv, such that S ′(e)=(· ,+), then set

([S′(v′u) = (i + 1,+), S ′(v′v) = (i + 1, 0)] or

[S′(v′u) = (i + 1, 0), S ′(v′v) = (i + 1,+)] or

[S′(v′u) = (i + 1, 0), S ′(v′v) = (i + 1, 0)]);

(b.3.2) in the other case set

[S′(v′u) = (i + 1,+), S ′(v′v) = (i + 1, 0)] or

[S′(v′u) = (i + 1, 0), S ′(v′v) = (i + 1,+)];

(c) for each edge uv ∈ E ′ such that S ′(uv) = (i − 1, 0) add to G′ vertices

u′, v′, edges u′u, v′v and set

L′(u′) = L′(v′) = i + 1, S′(u′u) = S′(v′v) = (i + 1,+).

Let us remark that if an edge has label (·,+) in a labelled graph G, then it
means that this edge plays a special role in G — it is used in the construction
of a child of G.

If G is a labelled graph, then by child(G) we denote the set of all non-
LS-isomorphic graphs being the children of G. If a graph G′ ∈ child(G),
then we say that the graph G is a parent of G′.
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The family Hi, for i ≥ 1, is defined as follows:

Hi =
⋃

H∈Hi−1

child(H).

The family H1 is presented in Figure 2, the vertices with label 1 are coloured
white, while the vertices with label 0 are coloured black. Let us remark that
the first two graphs on the picture are the children of H 1

0 , the next five —
the children of H2

0 , the last one is the child of H3
0 .
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Figure 2. The family H1 of graphs.
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One can observe that if H ∈ Hi, then H is outerplanar and each its block
is maximal outerplanar.

In the next two lemmas we list another two properties of the graphs
from Hi, i ≥ 1. Both follows from the construction of Hi and will be used
in the proofs in Section 3.

Lemma 1. Let H ∈ Hi, i ≥ 1, and let B be a block of H. Then

1. if B̃ ' K2, then e ∈ E(B) has label (i,+);
2. if B̃ ' K3, then the edges of B have labels (i,+), (i,+), (i − 1,−) or

(i,+), (i, 0), (i − 1,−);
3. if B has more than three edges, then one of the following cases holds:

(a) B contains two adjacent edges e1, e2 such that S(e1) = (i,+) and

S(e2) = (i, 0) and all the other edges of B have labels neither (i, ·) nor (·,+),
(b) B contains two adjacent edges e1, e2 such that S(e1) = (i,+) and

S(e2) = (i, 0) and another two adjacent edges e3, e4 such that S(e3) = (i, 0)
and S(e4) = (i, 0) and all the other edges of B have labels neither (i, ·) nor

(·,+),
(c) B contains two adjacent edges e1, e2 such that S(e1) = (i,+) and

S(e2) = (i, 0) and another two adjacent edges e3, e4 such that S(e3) = (i,+),
S(e4) = (i, 0) and all the other edges of B have labels neither (i, ·) nor (·,+).

Lemma 2. Let H = (V,E;L, S) ∈ Hi, i ≥ 1, and let B be a block of H.

Then

1. if B̃ ' K3 with E(B) = {e1, e2, e3} and S(e1) = (i − 1,−), then there

are graphs H1 = (V,E;L, S1) ∈ Hi, H2 = (V,E;L, S2) ∈ Hi and H3 =
(V,E;L, S3) ∈ Hi such that S1(e) = S2(e) = S3(e) = S(e) for each edge

e ∈ E different from e2, e3 and S1(e2) = S1(e3) = (i,+), S2(e2) = (i,+)
and S2(e3) = (i, 0), S3(e2) = (i, 0) and S3(e3) = (i,+); moreover, there

is a graph H ′ ∈ Hi−1 such that H,H1,H2,H3 ∈ child(H ′);
2. if B has more than three edges, then

(a) if B contains exactly two edges of level i, say e1, e2, then there

are graphs H1 = (V,E;L, S1) ∈ Hi and H2 = (V,E;L, S2) ∈ Hi such

that S1(e) = S2(e) = S(e) for each edge e ∈ E different from e1, e2 and

S1(e1) = (i,+) and S1(e2) = (i, 0), S2(e1) = (i, 0) and S2(e2) = (i,+);
moreover, there is a graph H ′ ∈ Hi−1 such that H,H1,H2 ∈ child(H ′);

(b) if B contains exactly four edges of level i, say e1, e2, e3, e4, and

if e1, e2 are adjacent, and e3, e4 are adjacent, then there are graphs H j =
(V,E;L, Sj) ∈ Hi for j = 1, . . . , 8 such that Sj(e) = S(e) for j = 1, . . . , 8
and for each edge e ∈ E different from e1, e2, e3, e4, each of the edges
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e1, e2, e3, e4 has either label (i,+) or (i, 0) and at least one of them has

label (i,+); moreover, if e1 has label (i,+), then e2 has label (i, 0), and vice

versa; the same holds for e3 and e4; furthermore, there is a graph H ′ ∈ Hi−1

such that H,H1, . . . ,H8 ∈ child(H ′).

3. Results

We start this section by reminding a special family of labelled graphs. In [4]
it was proved that this family is a generator of the class of outerplanar
graphs.

Let A0 = (V0, E0;L0, S0) be a labelled graph such that V0 = {v1, v2, v3},
E0 = {v1v2, v2v3, v1v3}, L0(v) = 0 for all v ∈ V0 and S0(e) = (0, 0) for
all e ∈ E0. The graph Ai+1 = (Vi+1, Ei+1;Li+1, Si+1) is obtained from
Ai = (Vi, Ei;Li, Si) by adding for each edge e = uv of level i one new vertex
we and joining we with both u and v. The vertex we has level i + 1 and
both new added edges have labels (i + 1, 0).

It is worth to mention that each Ai is maximal outerplanar and it has
such an embedding in a plane in which all vertices belong to the outer face
and only the edges of level i belong to the outer face. Therefore, when we talk
about the graph Ai or its subgraphs, we always deal with this embedding.

The following lemma states that the family {Ã0, Ã1, . . .} of graphs is
a generator of the class T 2 and render us possible to consider in our proofs
only the graphs Ai instead of the whole class T 2.

Lemma 3. [4] For every G ∈ T 2 there exists an index i ≥ 0 such that

G ⊆ Ãi.

In [4] it was proved that each outerplanar graph G has an acyclic colour-

ing (V1, V2) such that G[V1] ∈ O and G[V2] ∈ Forb(Ã1).

Lemma 4. [4] T 2 ⊆ O � Forb(Ã1).

In the following lemmas, which easily follows from the construction
of the graphs Ai, we present more properties of such graphs, which will
be used later.

Lemma 5. Let B be a 2-connected induced subgraph of Ai, i ≥ 0. Then B
cannot contain any induced cycle of length greater than 3.
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Lemma 6. An edge e ∈ E(Ai) belongs to the outer cycle of Ai if and only

if Si(e) = (i, 0). Moreover, every vertex v ∈ V (Ai) such that Li(v) = i
is of degree 2.

Lemma 7. If H ∈ Hi, i ≥ 0, then H̃ cannot contain a subgraph isomorphic

to Ã1.

Next we prove that if P is an additive hereditary class such that Ã1 6∈ P
and (V1, V2) is an acyclic (O,P)-colouring of Ai, i ≥ 0, then there is a graph

Hi ∈ Hi such that Ãi[V2] = H̃i.
Now we present some properties of such a colouring.

Lemma 8. Let P be an additive hereditary class and assume Ã1 6∈ P. If

(V1, V2) is an acyclic (O,P)-colouring of Ai, C is the outer cycle of Ai and

B is a block of Ai[V2], then one of the following situations occurs:

1. E(B) ∩ E(C) contains exactly four edges: uv, vw, u′v′ and v′w′;

moreover, Li(v) = Li(v
′) = i and uw, u′w′ ∈ E(Ai),

2. E(B) ∩ E(C) contains exactly two edges: uv, vw; moreover, Li(v) = i
and uw ∈ E(Ai)

3. E(B) ∩ E(C) contains exactly one edge.

Proof. First observe that if B is a trivial block of Ai[V2], it means, if B̃ '
K2, then from the construction of Ai and the fact that the colouring is acyclic
it clearly follows that |E(B) ∩ E(C)| = 1.

On the other hand, if B is a non-trivial block of Ai[V2], u, v are two
consecutive vertices of the outer cycle of this block and the edge uv does
not belong to the cycle C, then for each such a pair of vertices there is one
vertex w ∈ V (Ai) − V (B), adjacent to both u and v, which follows from
the construction of Ai. Therefore, if E(B) ∩ E(C) = ∅, then the colouring
(V1, V2) cannot be acyclic.
Hence consider an edge e = uv ∈ E(B) ∩ E(C). Without loss of generality
we can assume that Li(v) = i, therefore, by Lemma 6, d(v) = 2. Let w be
the second neighbour of v in Ai. If the edge e1 = vw does not belong to B,
then B̃ is isomorphic to K2. Hence e1 ∈ E(B). If E(B) ∩ E(C) = {e, e1},
then the second situation occurs.

Therefore, we can assume that there is an edge e′ = u′v′ ∈ E(B), e′ 6= e,
e′ 6= e1, which belongs to the cycle C. Similarly as above, we can assume
that v′ has level i in Ai. Hence, by Lemma 6, d(v) = 2. Moreover, if w′

is the remaining neighbour of v′, then the edge e′1 = w′v′ ∈ E(C) ∩ E(B),
which is clear because B is a block. Moreover, from the construction of Ai
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it follows that e′1 6= e and e′1 6= e1. If E(B) ∩ E(C) = {e, e1, e
′, e′1}, then we

have the first situation.
Observe that if there is another edge e′′ = v′′u′′ ∈ E(B) ∩ E(C), e′′ 6∈

{e, e1, e
′, e′1}, then assuming that L(v′′) = i, we will have that there is exactly

one vertex w′′ 6= u′′ adjacent to v′′ in Ai. Moreover, w′′ ∈ V (B) and u′′w′′ ∈
E(B). But it is quite easy to see that in this case B̃ must contain a subgraph

isomorphic to Ã1, which follows from the construction of Ai, a contradiction.

From the proof of Lemma 8 and the construction of Ai we can conclude the
following.

Remark 1. Let P be an additive hereditary class such that Ã1 6∈ P. Con-
sider an acyclic (O,P)-colouring (V1, V2) of Ai. Let C be the outer cycle of
Ai. Furthermore, assume that v is a vertex such that v ∈ V2 and Li(v) = i.
Clearly, d(v) = 2. Hence, let u and w be the neighbours of v. Obviously,
vu, vw ∈ E(C). Moreover, if B is the block of Ai[V2] containing v, then
either B̃ ' K2 or vu, vw ∈ E(B).

Theorem 1. Let P be an additive hereditary class and assume that Ã1 6∈ P.

If (V1, V2) is an acyclic (O,P)-colouring of Ai, then there is a graph Hi ∈ Hi

such that Ãi[V2] = H̃i.

Proof. We prove a stronger statement, namely we prove that if (V1, V2)
is any acyclic (O,P)-colouring of Ai = (Vi, Ei;Li, Si), then there is a graph

Hi = (V,E;L, S) ∈ Hi such that Ãi[V2] = H̃i and for each vertex t ∈ V2 we
have Li(v) = L(v).

We use induction on i. It is easy to check that the theorem is true for
A0 and A1.
Let i ≥ 1. Assume the theorem holds for every Aj (0 ≤ j ≤ i), we will prove
it for Ai+1.

Consider the graph Ai+1 = (Vi+1, Ei+1;Li+1, Si+1) and the subgraph
Ai = (Vi, Ei;Li, Si) induced in Ai+1 by the vertices of levels 0, . . . , i. Let
(V1, V2) be any acyclic (O,P)-colouring of Ai. By the induction hypothesis it

follows that there is the graph Hi = (V,E;L, S) ∈ Hi such that Ãi[V2] = H̃i

and moreover for each vertex t ∈ V2 we have Li(t) = L(t). It is sufficient
to prove that for any acyclic (O,P)-colouring (V ′

1 , V
′

2) of Ai+1 such that
V1 ⊆ V ′

1 , V2 ⊆ V ′

2 , there is also a graph Hi+1 = (V ′, E′;L′, S′) ∈ Hi+1 such

that Ãi+1[V
′

2 ] = H̃i+1 and for each vertex t ∈ V ′

2 we have Li+1(t) = L′(t).
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At the beginning observe that for any s ≥ 0, level of an edge uv of a graph
F ∈ Hs is the maximum of levels of the vertices u and v. Therefore, from
the induction hypothesis and the fact that for any l ≥ 0 all edges of the outer
cycle of Al have level l, it clearly follows that:

Observation 1. If e ∈ E, then S(uv) = (i, ·) if and only if uv belongs to

the outer cycle of Ai.

Furthermore, from the construction of Ai and the facts that the colour-
ing (V1, V2) is acyclic and the set V1 is independent it follows that Ai[V2]
is connected.

The rest of the proof is dived into two steps. In the first step we use
Lemma 8 to prove that there is a graph Hi+1 = (V ′, E′;L′, S′) ∈ Hi+1 which

satisfies Ãi+1[V
′

2 ] ⊆ H̃i+1 and for each vertex t ∈ V ′

2 we have Li+1(t) = L′(t).
First, we choose an arbitrary graph Hi+1 = (V ′, E′;L′, S′) ∈ child(Hi).

Clearly, from the induction hypothesis it follows that it is sufficient to prove
that for each vertex x ∈ V ′

2 which has level i + 1 in Ai+1 there is a suitable
vertex of level i + 1 in Hi+1.

From the construction of the graph Ai+1 it follows that each such x has
a unique neighbour v of level i in Ai+1 and there is also a unique vertex y,
y 6= x, of level i + 1 in Ai+1 which is adjacent to v. We will consider each
such pair of vertices x and y. Obviously, dAi+1

(x) = dAi+1
(y) = 2.

Assume at the beginning that v ∈ V2. Let B be the block of Ai[V2]
containing v. Furthermore, let C be the outer cycle of Ai. According to
Lemma 8 we have to distinguish three cases.

Case 1. If E(B)∩E(C) = {uv, vw, u′v′, v′w′}, then notice that Si(uv) =
Si(vw) = Si(u

′v′) = Si(v
′w′) = (i, 0) and moreover Li(v) = Li(v

′) = i.
Hence L(v) = L(v′) = i. Therefore v, v′ are of degree two in Ai and in Hi.
Moreover, uw ∈ E(Ai) and u′w′ ∈ E(Ai). Let x′, y′ be the neighbours of v′

in Ai+1 which have level i + 1. Without loss of generality we can assume
that xu, yw, x′w′, y′w′ ∈ E(Ai+1). It is evident that the block B has at
least 5 vertices. Furthermore, from the definition of Ai it follows that there
is a vertex z ∈ V (Ai), different from u, v, w, such that uz,wz ∈ E(Ai). The
vertex z is unique, for otherwise we will have a subgraph isomorphic to K2,3

in Ãi, which is impossible. Similarly, there is exactly one vertex z ′ ∈ V (Ai),
different from u′, v′, w′, such that u′z′, w′z′ ∈ E(Ai). Since B is a block, we
have z, z′ ∈ V (B).

If x, y, x′, y′ ∈ V ′

1 , then (V ′

1 , V ′

2) cannot be acyclic, which follows from
the proof of Lemma 8.
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If we assume that x, y ∈ V ′

2 or x′, y′ ∈ V ′

2 , then Ãi+1[V
′

2 ] contains a subgraph

isomorphic to Ã1, namely a subgraph induced by the vertices {x, y, u, v, w, z}
or {x′, y′, u′, v′, w′, z′}.

If exactly one of the vertices x, y, x′, y′, say x′, belongs to V ′

2 , and the rest
of them belong to V ′

1 , then from the fact that Li(v) = i we have L(v) = i.
Hence S(uw) = (i − 1,−). Likewise, S(u′w′) = (i − 1,−). Therefore by
Lemma 2 there is a graph H ′

i = (V,E;L, S ′′) ∈ Hi such that S ′′(e) = S(e)
for every edge e ∈ E, e 6∈ {u′v′, vw, uv, v′w′} and S′′(u′v′) = (i,+), S(vw) =
S(uv) = S(v′w′) = (i, 0). We set Hi = (V,E;L, S ′′). In the step (b.3)
of the construction of a graph Hi+1, we add a vertex a adjacent to both u′

and v′ with L′(a) = i + 1. We set x′ = a. Furthermore, from Observation 1
we conclude that in B ′ = Hi[V (B)] only the edge u′v′ has label (·,+).

In the remaining case, if exactly two of the vertices x, y, x′, y′ are in V ′

2

and the two others are in V ′

1 , then without loss of generality we can assume
that x, x′ ∈ V ′

2 . Similarly as above, from the fact that Li(v) = i we have
L(v) = i and S(uw) = (i − 1,−). Likewise, S(u′w′) = (i − 1,−). Therefore,
by Lemma 2 there is a graph H ′

i = (V,E;L, S ′′) ∈ Hi such that S ′′(e) = S(e)
for every edge e ∈ E, e 6∈ {u′v′, vw, uv, v′w′} and S′′(uv) = S′′(u′v′) = (i,+)
and S′′(vw) = S′′(v′w′) = (i, 0). We set Hi = (V,E;L, S ′′). In the step
(b.3) of the construction of a graph Hi+1, we add two new vertices a and b
(one for the edge uv and another for u′v′), such that a is adjacent to both
u and v, and b is adjacent to both u′ and v′ with L′(a) = L′(b) = i + 1. We
set x = a, x′ = b. Observation 1 implies that in B ′ = Hi[V (B)] there are no
edges with labels (·,+), except of uv and u′v′.

Case 2. Assume that E(B) ∩ E(C) = {uv, vw}. It is easy to observe
that the edges uv and vw both have level i in Ai, since Li(v) = i. Hence
L(v) = i. Therefore, dAi

(v) = 2 and also dHi
(v) = 2. Besides, uw ∈ Ei.

Without loss of generality we can assume that xu ∈ Ei+1 and yw ∈ Ei+1.

If x, y ∈ V ′

1 , then the colouring (V ′

1 , V ′

2) cannot be acyclic, which follows
from the proof of Lemma 8.

On the other hand, if both x, y are in V ′

2 , but B has a vertex z adjacent

to both w and u, z 6= v, then the graph Ãi+1[{x, y, u, v, w, z}] is isomorphic

to Ã1, which is impossible.

If we assume that x, y ∈ V ′

2 and B does not have such a vertex z, then

B̃ ' K3 and, by Lemma 1, the edge uw has label (i−1,−) in Hi. Therefore
by Lemma 2 there is a graph H ′

i = (V,E;L, S ′′) ∈ Hi such that S ′′(e) = S(e)
for every edge e ∈ E, e 6= uv, e 6= vw and S ′′(uv) = S′′(vw) = (i,+).
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We set Hi = (V,E;L, S ′′). Notice that in the step (b.3) of the construction
of a graph Hi+1 we add two new vertices a and b (one for the edge uv and
another for vw), such that a is adjacent to both u and v, and b is adjacent
to both v and w with L′(a) = L′(b) = i + 1. We set x = a, y = b. From
Observation 1 we conclude that in B ′ = Hi[V (B)] there are no edges with
labels (·,+), except of uv and vw.

It remains to consider the case x ∈ V ′

2 and y ∈ V ′

1 . Clearly, from
the fact that Li(v) = i and v is adjacent to both u and w, we conclude
that S(uw) = (i − 1,−). Therefore, by Lemma 2 there is a graph H ′

i =
(V,E;L, S ′′) ∈ Hi such that S ′′(e) = S(e) for every edge e ∈ E, e 6= uv,
e 6= vw and S ′′(uv) = (i,+), S ′′(vw) = (i, 0). We set Hi = (V,E;L, S ′′).
Notice that in the step (b.3) of the construction of a graph Hi+1, we add
a new vertex a adjacent to both u and v with L′(a) = i + 1. We set x = a.
From Observation 1 we conclude that in B ′ = Hi[V (B)] only the edge uv has
label (·,+). Similar considerations can be applied to the case when x ∈ V ′

1

and y ∈ V ′

2 .

Case 3. If E(B) ∩ E(C) = {uv}, then B̃ ' K2. It is easy to observe
that in Ai there is a vertex w such that uw, vw ∈ E(Ai). As B̃ ' K2

we have w ∈ V1. Moreover, there is no loss of generality in assuming that
xu, yw ∈ E(Ai+1), which follows from the definition of Ai+1.

If either x or y belongs to V ′

1 , then either the colouring (V ′

1 , V ′

2) cannot
be acyclic or the set V ′

1 cannot be independent.

On the other hand, if x, y ∈ V ′

2 , then from the fact that Li(v) = i
it follows that L(v) = i. Moreover, v is of degree 1 in B and cannot be
adjacent in Ai to any vertex from V2, except u. Thus v is of degree 1 in Hi.
Therefore, S(uv) = (i,+). In the step (b.2) of the construction of a graph
Hi+1, we add two new vertices a and b such that a is adjacent to both u
and v, b is adjacent to v. We set x = a, y = b. Moreover, from Observation
1 we can conclude that in B ′ = Hi[V (B)] only the edge uv has label (·,+).

Let us assume now that v 6∈ V2. Hence v 6∈ V (Hi). By the definition
of Ai we have that there are vertices u,w ∈ V (Ai) such that uv, vw,wu ∈
E(Ai) and ux,wy ∈ E(Ai+1). Obviously, u,w ∈ V2. Let z ∈ V (Ai) be
the unique vertex different from v which is adjacent to both u and w in
Ai. The uniqueness of the vertex z follows from the definition of Ai. The
colouring (V1, V2) is acyclic so z ∈ V2. If either x ∈ V ′

1 or y ∈ V ′

1 , then V ′

1

cannot be independent. Therefore, we can assume x, y ∈ V ′

2 . Moreover, one
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of the vertices u,w, say u, has level i − 1 in Ai, and another one,
it means w, has level lower than or equal to i− 1 in Ai. Hence L(u) = i− 1
and L(w) ≤ i−1. Thus S(uw) = (i−1, ·). Since z ∈ V2, we have z ∈ V (Hi).
Moreover, z has level less than or equal to i−1 in Ai. Furthermore, the edge
uw cannot have label (i − 1,−) in Hi, because in this case we would have

a vertex a in Hi, adjacent to both u and w, and therefore, since H̃i = Ãi[V2],
we would have a ∈ V2 and Li(a) = i. This would contradict the fact that
the vertex v ∈ V1 is the only neighbour of both u and w which has Li

equal to i. So we must have S(uw) = (i − 1, 0). Therefore, in the step (c)
of the construction of Hi+1 we add vertices b and c and edges ub and uc.
We set x = b, y = c.

Notice that we have just obtained certain graphs Hi = (V,E;L, S) and
Hi+1 = (V ′, E′;L′, S′). We use this particular graphs to finish the proof by

showing that Ãi+1[V
′

2 ] = H̃i+1.

Clearly, it is sufficient to prove that

• if a vertex t ∈ V ′ and L′(t) = i + 1, then t ∈ V ′

2 and

• if an edge e ∈ E ′ and S′(e) = (i + 1, ·), then e ∈ E(Ai+1[V
′

2 ]).

Let a ∈ V (Hi+1) be a vertex satisfying L′(a) = i + 1. Obviously, a can
be either of degree 2 or 1 in Hi+1.

Assume that a is of degree 2 in Hi+1 and let b, c be its neighbours
in Hi+1. Clearly, S ′(bc) = (i,−). Let B ′ be the block of Hi+1 containing
the edge bc. Moreover, let B = Hi+1[{t ∈ V (B′) : L′(t) < i+1}]. Obviously,
B is a block of the graph Hi and S(bc) = (i,+). Hence by Observation 1,
bc belongs to the outer cycle of Ai. Therefore, according to the procedure
described in Case 1 and Case 2, we have a ∈ V ′

2 and ab, ac ∈ E(Ai+1[V
′

2 ]).
Now we assume that a is of degree 1 in Hi+1 and let b ∈ V (Hi+1) be its
neighbour. It is clear that L′(b) < i + 1. Hence b ∈ V (Hi).

If L(b) = i, then b is of degree 1 in Hi. Moreover, if c is the neighbour
of b in Hi, then S(bc) = (i,+). Therefore, we have the situation described
in Case 3 and clearly a ∈ V ′

2 and ab ∈ E(Ai+1[V
′

2 ]).
In the opposite case, if L(b) = j < i, then according to the construction

of Hi+1 we see that there is an edge bc in Hi such that S(bc) = (i − 1, 0).
Hence bc has level i− 1 in Ai. Therefore, in Ai there is a vertex v of level i,
adjacent to both b and c. The vertex v must be in V1 since Ãi[V2] = H̃i and
in Hi we do not have any vertex of level i adjacent to both b and c, because
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S(bc) = (i− 1, 0). Hence in Ai+1 there is a vertex x, adjacent to both v and
b. We have x ∈ V ′

2 since V ′

1 is independent and we can set a = x. Clearly,
ab ∈ E(Ai+1[V

′

2 ]).

If G is a graph and (V1, V2) is a colouring of G, then a cycle C = (c1, . . . , cn)
of a graph G is called alternating (with respect to the colouring (V1, V2)),
if n is even and c1, c3, . . . , cn−1 ∈ V2 and c2, c4, . . . , cn ∈ V1. Such a cycle C
is called minimal alternating, if there is no other alternating cycle C ′ (with
respect to the colouring (V1, V2)) satisfying V (C ′) ⊂ V (C).

In the proof of the next theorem we will use the following lemma, which
presents a certain property of minimal alternating cycles with respect to
an (O,P)-colouring of Ai, where P is a given additive hereditary class.

Lemma 9. Let (V1, V2) be a colouring of Ai such that Ãi[V1] ∈ O and let

C = (c1, c2, . . . , ck) be any minimal alternating cycle of length k ≥ 6 with

respect to the colouring (V1, V2) such that c1 ∈ V2. Then V2∩V (C) is a cycle

of Ai. Moreover, the graph Ai[V2 ∩ V (C)] is a block in Ai[V2].

Proof. Let (V1, V2) be a colouring of Ai satisfying Ãi[V1] ∈ O and let
C = (c1, c2, . . . , ck) (k ≥ 6) be any minimal alternating cycle with respect to
this colouring such that c1 ∈ V2. By Lemma 5 we have the set V (C) induces
the graph GC in Ai, which cannot contain any induced cycle of length greater
than 3. From the fact that the set V1 is independent we can conclude that
if u, v ∈ {c2, c4, . . . , ck}, then u and v cannot be adjacent in Ai. If the vertex
c2l, 1 ≤ l ≤ k/2, is adjacent to a certain vertex c2l′−1, 1 ≤ l′ ≤ k/2,
then the cycle C cannot be minimal alternating. Therefore the vertex c2l−1

is adjacent to c2l+1, for all l = 1, . . . , k/2 − 1, and ck−1 is adjacent to c1,
since otherwise in GC it would be an induced cycle of length greater than
3. The fact that Ai[V2 ∩ V (C)] is a block in Ai[V2] follows from Lemma 5
and the definition of Ai.

Theorem 2. Let Hi ∈ Hi. Then there is an acyclic colouring (V1, V2) of Ai

such that Ãi[V1] ∈ O and Ãi[V2] = Hi.

Proof. We prove a little stronger statement. Namely, we prove that for any
graph Hi = (V,E;L, S) ∈ Hi there is an acyclic (O,P)-colouring (V1, V2)

of Ai = (Vi, Ei;Li, Si) such that Ãi[V2] = H̃i and for each vertex v ∈ V we
have L(v) = Li(v).

We use induction on i. It is easy to check that the theorem is true for
all H ∈ H0 and H ∈ H1.
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Let i ≥ 1. Assume the theorem is true for all Hj ∈ Hj and every j ≤ i. We
will prove it for i + 1.

Let us consider the graph Hi+1 = (V ′, E′;L′, S′) ∈ Hi+1 and let Hi =
(V,E;L, S) be a parent of Hi+1. Clearly, Hi ∈ Hi. Therefore by the in-
duction hypothesis we have that Ai has an acyclic (O,P)-colouring (V1, V2),

which satisfies the condition Ãi[V2] = H̃i and such that for each vertex v ∈ V
we have L(v) = Li(v). We prove that there is an acyclic colouring (V ′

1 , V ′

2)
of Ai+1, such that V1 ⊆ V ′

1 and V2 ⊆ V ′

2 , and which satisfies the condi-

tion Ãi+1[V
′

1 ] ∈ O, Ãi+1[V
′

2 ] = H̃i+1 and for each vertex v ∈ V ′ we have
L′(v) = Li+1(v).

Now we show how we construct the colouring (V ′

1 , V ′

2). First, we colour
every vertex of level at most i in Ai+1 according to the colouring (V1, V2).
Next, we will extend this colouring to the whole graph Ai+1. Clearly, it
is sufficient to consider only the vertices of level i + 1 in Ai+1.

Let x, y be a pair of vertices of level i + 1 in Ai+1, such that there
is a vertex v of level i in Ai adjacent to both x and y. Besides let u,w
be the vertices such that uw, vw, vu, xu, yw ∈ E(Ai+1). Furthermore, let
z be a vertex different from v such that uz,wz ∈ E(Ai+1). According to
the definition of Ai+1 we see that these vertices exist and moreover, all
u,w, z have neither level i + 1 nor i. Since the colouring (V1, V2) is acyclic
and the set V1 is independent, at most one of the vertices u, v, w can belong
to V1. Hence there are four cases to consider.

Case 1. If u, v, w ∈ V2 and z ∈ V1, then by the definition of Ai, if B
is a block in the graph Hi which contains u, v, w, then B̃ ' K3. Therefore,
by Lemma 1, at least one of the edges uv, vw has label (i,+) in Hi. Assume,
without loss of generality, that L(uv) = (i,+). We put x into V ′

2 . If L(vw) =
(i,+), then we put y into V ′

2 , otherwise into V ′

1 .

Case 2. If u, v, w ∈ V2 and z ∈ V2 then let B be a block of Hi which
contains u, v, w, z. From Lemma 8 it follows that B has either two or four
common edges with the outer cycle of Ai.

Subcase 2.1. If there are only two common edges uv and vw, then there
are no other edges of level i in B. Therefore, by Lemma 1, exactly one
of this two edges, say uv, has label (i,+). Hence in the construction of Hi+1

we add a vertex a, adjacent to both u and v. Therefore we put x into V ′

2 .
Since the edge vw has label (i,−), we put y into V ′

1 .

Subcase 2.2. If there are four common edges: uv, vw, u′v′ and w′v′,
then in the block B there are no other edges of level i. Hence, again by
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Lemma 1, at least one of these four edges has label (i,+) in Hi. If the edge
uv has label (i,+), then we put x into V ′

2 , otherwise into V ′

1 . If the edge vw
has label (i,+), then we put y into V ′

2 , otherwise into V ′

1 .

Case 3. If v ∈ V1, then clearly u,w, z ∈ V2, since the colouring (V1, V2)
is acyclic and the set V1 is independent. Moreover, the edge uw has label
(i − 1, 0) in Hi. Therefore, in the construction of the graph Hi+1 we add
two new vertices adjacent to both u and w, respectively. We put x, y
into V ′

2 .

Case 4. If w ∈ V1 (or, similarly, u ∈ V1), then z ∈ V2, because the set V1

is independent. Furthermore, the edge uv is a trivial block in Hi. Therefore,
L(uv) = (i,+) in Hi and the vertex v is of degree 1 in Hi. Hence in the
construction of the graph Hi+1 we add one new vertex adjacent to both u
and v and another one adjacent to v. We put x, y into V ′

2 .

From the above it clearly follows that Ãi+1[V
′

2 ] ⊆ H̃i+1, Ãi+1[V
′

1 ] ∈ O
and each vertex from the set V ′

2 , which has level l in Hi+1, has level l in
Ai+1.

In order to finish the proof it remains to show that the colouring (V ′

1 , V ′

2)

is acyclic and that Ãi+1[V
′

2 ] = H̃i+1.

Assume, on the contrary, that the colouring (V ′

1 , V ′

2) is not acyclic.
From the fact that V1 ⊆ V ′

1 and V2 ⊆ V ′

2 it follows that any alternating
cycle must contain a vertex of level i + 1 in Ai+1. Notice, that each vertex
of level i + 1 is of degree 2 in Ai+1. Next, observe that putting a vertex x
into V ′

2 , we cannot create an alternating cycle. Moreover, in all the cases,
except of Subcase 2.2, a given vertex x is put into V ′

1 only if the following
two conditions hold: |NAi+1

(x) ∩ V2| = 2 and at least one neighbour of x
does not have any neighbour in V ′

1 . Clearly, we cannot obtain an alternating
cycle in this way. Therefore, there is only one situation when an alternating
cycle can occur. Namely, in Subcase 2.2 when both x and y have level i + 1
and belong to V ′

1 . Observe that each such alternating cycle must contain at
least 6 vertices. Assume that C is the shortest one. By Lemma 9 it follows
that if W2 = V ′

2 ∩ V (C), then the vertices of W2 create a cycle in Ai+1

and moreover, they induce a block in Ai+1[V
′

2 ]. But, as it was described in
Subcase 2.2, at least one of the vertices from the set W2 has level i + 1 in
Ai+1, so is of degree 2. Hence both its neighbours also belong to W2. This
fact clearly implies that C is not alternating.

Now we prove that Ãi+1[V
′

2 ] = H̃i+1. On the contrary, assume that
there is a vertex a of level i + 1 in Hi+1, such that a 6∈ V ′

2 . Observe that



236 M. Borowiecki, A. Fiedorowicz and M. Ha luszczak

from the above it follows that a cannot be of degree 2. Therefore, we can
assume, that a is of degree 1. Let b be the neighbour of a in Hi+1. Clearly,
b does not have level i + 1 in Hi+1.

If b has level i in Hi, then b is of degree 1 in Hi. Moreover, if c
is the neighbour of b in Hi, then L(bc) = (i,+). Thus we have the situ-
ation described in Case 4 and the vertex a ∈ V ′

2 , a contradiction.
On the other hand, if b has level j < i in Hi, then according to the con-

struction of Hi+1 there is an edge bc in Hi such that L(bc) = (i− 1, 0). If bc
is of level i − 1 in Hi, then it is also of level i − 1 in Ai. Hence, as in Case

3, the vertex a ∈ V ′

2 , a contradiction.

Let H = {H0,H1,H2, . . .} be a set of graphs such that each Hi ∈ Hi and
each Hi, for i > 0, is a child of Hi−1. We define a class PH of graphs as
follows: a graph G belongs to PH if and only if G is a subgraph of the disjoint
union of some graphs from the set H̃. Clearly, the class PH is additive and
hereditary.

Theorem 3. Let PH be the class of graphs defined as above. Then

T 2 ⊆ O �PH.

Proof. It clearly follows from Lemma 3 and Theorem 2.

4. Concluding Remarks

Boiron, Sopena and Vignal proved in [1], that T 2 ⊆ S5 � S5, where S5

is the class of all graphs of maximum degree at most 5. We prove that this
bound and our bounds are incomparable.

Figure 3. Graph B0 Figure 4. Graph B1

Let us consider at the beginning the graph B0 presented in Figure 3. We
show that in every acyclic colouring (V1, V2) of the graph A3 either B0 ⊆

Ã3[V1] or B0 ⊆ Ã3[V2].
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Assume on the contrary, that there is an acyclic colouring (V1, V2) of A3,

such that B0 6⊆ Ã3[V1] and B0 6⊆ Ã3[V2]. Assume at the beginning, that all
the vertices of level 0 belong to V1. Clearly, at least two of the vertices of
level 1 have to be in the set V2, since otherwise B0 ⊆ Ã3[V1]. Moreover, at
least one vertex of level 1 has to be in V1, because the colouring is acyclic.
Let x and y be the vertices of level 2 such that each of them is adjacent to
two vertices from V1.

The colouring is acyclic, hence both x and y cannot be in V2. Therefore,
either x ∈ V1 or y ∈ V1, but in this case B0 ⊆ Ã3[V1], a contradiction.

On the other hand, if we assume that two vertices of level 0, say x and
y, are in V1, and the remaining one in V2, then let z be the vertex of level 1
adjacent to both x and y. Clearly, z ∈ V1, because the colouring is acyclic.
Now we can proceed as in the previous case, starting from the triangle x, y, z.

Let P and Q be additive hereditary classes of graphs such that T 2 ⊆
P � Q. Clearly, from the above it follows that either B0 ∈ P or B0 ∈ Q.
Moreover, if we assume additionally that the classes P and Q are both dif-
ferent from O, then the graph B1, presented in Figure 4, admits an acyclic
(P ,Q)-colouring. Now we show that B1 does not have any acyclic (O, T 2)-
colouring. Assume on the contrary, that (V1, V2) is an acyclic (O, T 2)-
colouring of B1. Observe at the beginning, that if we remove any vertex
from B1, then the remaining graph is not outerplanar. Hence we have to
put at least two vertices to V1, but in this case the colouring is not acyclic.

Remark 2. If P and Q are additive hereditary classes of graphs, both
different from O, and such that T 2 ⊆ P �Q, then P �Q 6⊆ O � T 2.

In particular, we can put both P and Q equal to S5 in the above remark.
Moreover, instead of the class T 2 we can take the class PH, with PH defined
as at the end of Section 3. Hence, S5 � S5 6⊆ O � PH.

Next we show that there is a graph which belongs to O�PH \ S5 �S5,
where the class PH is defined as at the end of Section 3. Consider the graph
B3 = K1 + 6K1,6. It is obvious that B3 has an acyclic (O,PH)-colouring
(V1, V2), because we can put the vertex of maximal degree to V1 and the
other vertices to V2. On the other hand, B3 does not admit any acyclic
(S5,S5)-colouring, which follows from that fact that any copy of the graph
K1,6 cannot be monochromatic, hence the vertex v of maximum degree is
adjacent to at least six vertices of the same colour, as colour of v.

Remark 3. If PH is the class of graphs defined as above, then O �PH 6⊆
S5 � S5.
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Let us recall that a maximal outerplanar graph G with at least 3 vertices
is called a 2-path of even order n = 2p, if G consists of two paths P1 =
(x1, x2, . . . , xp) and P2 = (y1, y2, . . . , yp) and additional edges: xiyi, i =
1, . . . , p and xjyj+1 for j = 1, . . . , p − 1. A 2-path of odd order is defined
as H = G − xp, where G is a 2-path of even order. A maximal outerplanar
graph G with at least 3 vertices is called a fan of order n, if G is the join
of K1 and a path of order n − 1.

In [4] it was proved that if G is a 2-path (or a fan) of order 6, then T 2 ⊆
O� Forb(A1, G). They also proved that T 2 ⊆ O�FT and T 2 ⊆ O�PT ,
where classes FP and PT are defined as follows:
PT = {G ∈ I such that each its block is a subgraph of a 2-path},
FT = {G ∈ I such that each its block is a subgraph of a fan}.

One can observe that there is a set H′ = {H ′

0,H
′

1, . . .} of graphs such
that each H ′

i satisfies the following three conditions:

• H ′

i ∈ Hi,

• H ′

i is a child of the graph H ′

i−1, for i ≥ 1,

• each its block is a 2-path.

Clearly, we have PH′ = PT , where PH′ is defined as a class of graphs such
that a graph F belongs to PH′ if and only if F is a subgraph of a graph
from the set H̃′.
If we consider the class FT , then it is easy to see that there is a set
H′′ = {H ′′

0 ,H ′′

1 , . . .} of graphs such that each H ′′

i satisfies the following
three conditions:

• H ′′

i ∈ Hi,

• H ′′

i is a child of the graph H ′′

i−1, for i ≥ 1,

• each its block is a fan.

Clearly, we have PH′′ ⊂ FT , where PH′′ is a class of graphs such that
a graph F ∈ PH′′ if and only if F is a subgraph of a graph from the set H̃′′.
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