Discussiones Mathematicae Graph Theory 29 (2009) 209–218

MULTICOLOR RAMSEY NUMBERS FOR SOME PATHS AND CYCLES

HALINA BIELAK

Institute of Mathematics UMCS, Lublin, Poland e-mail: hbiel@golem.umcs.lublin.pl

Abstract

We give the multicolor Ramsey number for some graphs with a path or a cycle in the given sequence, generalizing a results of Faudree and Schelp [4], and Dzido, Kubale and Piwakowski [2, 3]. Keywords: cycle, path, Ramsey number. 2000 Mathematics Subject Classification: 05C55.

1. Introduction

We consider simple graphs with at least two vertices. For given graphs G_1, G_2, \ldots, G_k and $k \geq 2$ multicolor Ramsey number $R(G_1, G_2, \ldots, G_k)$ is the smallest integer n such that in arbitrary k-colouring of edges of a complete graph K_n a copy of G_i in the colour i $(1 \leq i \leq k)$ is contained (as a subgraph).

Let ex(n, F) be the Turán number for integer n and a graph F, defined as the maximum number of edges over all graphs of order n without any subgraph isomorphic to F.

Theorems 1, 2 and 3 presented below are very useful for study multicolour Ramsey numbers for paths and cycles. In this paper we generalize the results presented in Theorems 4 and 5.

Theorem 1 (Faudree and Schelp [4]). If G is a graph with $|V(G)| = kp+r \ (0 \le k, 0 \le r < p)$ and G contains no P_{p+1} , then $|E(G)| \le kp(p-1)/2 + r(r-1)/2$ with the equality if and only if $G = kK_p \cup K_r$ or $G = lK_p \cup K_r$

 $(K_{(p-1)/2} + \overline{K}_{(p+1)/2+(k-l-1)p+r})$ for some $0 \le l < k$, where p is odd, and $k > 0, r = (p \pm 1)/2$.

Let c(G) be the circumference of G, i.e., the length of the longest cycle in G.

Theorem 2 (Brandt [1]). Every non-bipartite graph G of order n with more than $\frac{(n-1)^2}{4} + 1$ edges contains cycles of every length t, where $3 \le t \le c(G)$.

For positive integers a and b, set $r(a, b) = a \mod b = a - \lfloor \frac{a}{b} \rfloor b$. For integers $n \ge k \ge 3$, set

(1)
$$\omega(n,k) = \frac{1}{2}(n-1)k - \frac{1}{2}r(k-r-1),$$

where r = r(n - 1, k - 1).

Theorem 3 (Woodall [7]). Let G be a graph of order n and size m with $m \ge n$ and c(G) = k. Then $m \le \omega(n, k)$ and the result is best possible.

In 1975 Faudree and Schelp published the following results concerning a multicolor Ramsey number for paths.

Theorem 4 (Faudree and Schelp [4]). If $r_0 \ge 6(r_1 + r_2)^2$, then $R(P_{r_0}, P_{r_1}, P_{r_2}) = r_0 + \lfloor \frac{r_1}{2} \rfloor + \lfloor \frac{r_2}{2} \rfloor - 2$ for $r_1, r_2 \ge 2$. If $r_0 \ge 6(\sum_{i=1}^k r_i)^2$, then $R(P_{r_0}, P_{2r_1+\delta}, P_{2r_2}, \dots, P_{2r_k}) = \sum_{i=0}^k r_i - k$ for $\delta = 0, 1, \ k \ge 1$ and $r_i \ge 1$ $(1 \le i \le k)$.

Recently, Dzido, Kubale, and Piwakowski published the following results.

Theorem 5 (Dzido *et al.* [2, 3]). $R(P_3, C_k, C_k) = 2k - 1$ for odd $k \ge 9$, $R(P_4, P_4, C_k) = k + 2$ for $k \ge 6$, $R(P_3, P_5, C_k) = k + 1$ for $k \ge 8$.

Moreover, some asymptotic results are cited below.

Theorem 6 (Kohayakawa, Simonovits, Skokan [6]). There exists an integer n_0 such that if $n > n_0$ is odd, then $R(C_n, C_n, C_n) = 4n - 3$.

Theorem 7. (Figaj, Łuczak [5]). For even n, $R(C_n, C_n, C_n) = 2n + o(n)$.

2. Results

First we prove the following theorem, extending the result of Dzido *et al.* (see Theorem 5).

Theorem 8. Let t, q $(t \ge q \ge 2)$ be positive integers and m be odd integer. Let for even q either $t > \frac{3}{4}q^2 - 2q + 2$ and $m = t + \lfloor \frac{q}{2} \rfloor$ or $t > \frac{1}{8}(3q^2 - 10q + 16)$ and $m \le t + \lfloor \frac{q}{2} \rfloor - 1$. Let for odd $q, t > \frac{1}{4}(3q^2 - 14q + 21)$ and $m \le t + \lfloor \frac{q}{2} \rfloor - 1$. Then $R(P_q, P_t, C_m) = 2t + 2\lfloor \frac{q}{2} \rfloor - 3$.

Proof. Let $n = 2t + 2\lfloor \frac{q}{2} \rfloor - 3$ and $a = t + \lfloor \frac{q}{2} \rfloor - 2$. First we prove that $R(P_q, P_t, C_m) \ge 2t + 2\lfloor \frac{q}{2} \rfloor - 3$. Let K_a be (red, blue)-coloured without red P_q and without blue P_t . It is possible by $R(P_q, P_t) = a + 1$. So there exists the critical colouring of the graph $H = K_a \cup K_a$. Let the edges of \overline{H} be coloured with green. Since \overline{H} is bipartite graph it does not contain any C_m .

Now we prove that $R(P_q, P_t, C_m) \leq 2t + 2\lfloor \frac{q}{2} \rfloor - 3.$

Note that $|E(K_n)| = (2t + 2\lfloor \frac{q}{2} \rfloor - 3)(t + \lfloor \frac{q}{2} \rfloor - 2)$ and $|E(K_{a,a})| = (t + \lfloor \frac{q}{2} \rfloor - 2)^2$. Let $d = |E(K_n)| - |E(K_{a,a})| = (t + \lfloor \frac{q}{2} \rfloor - 2)(t + \lfloor \frac{q}{2} \rfloor - 1)$. So

|).

$$(2) \quad d = (t-1)(t+q-4) + \left\lfloor \frac{q}{2} \right\rfloor \left(\left\lfloor \frac{q}{2} \right\rfloor - 1 \right) + 2(t-1) - (t-1)\left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rceil - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rfloor - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rfloor - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rfloor - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rfloor - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rfloor - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rfloor - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rfloor - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rfloor - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2(t-1) \left(\left\lceil \frac{q}{2} \right\rfloor \right) + 2(t$$

Suppose that we can colour $E(K_n)$ with three colours (red, blue, green) without red P_q , blue P_t and green C_m . So the red subgraph of K_n has at most $ex(n, P_q)$ edges and the blue subgraph of K_n has at most $ex(n, P_t)$ edges. Now we apply Theorem 1 for p = t - 1. We have two cases. If 2|q and t = q then set k = 3, r = 0. In the opposite case, set k = 2 and $r = 2\lfloor \frac{q}{2} \rfloor - 1$. Thus, we can write $ex(n, P_t) \leq (t - 1)(t - 2) + (2\lfloor \frac{q}{2} \rfloor - 1)(\lfloor \frac{q}{2} \rfloor - 1)$.

Moreover, by Theorem 1 for p = q - 1, we get $ex(n, P_q) \le \frac{n(q-2)}{2}$. So $ex(n, P_q) \le (t-1)(q-2) + \frac{1}{2}(2\lfloor \frac{q}{2} \rfloor - 1)(q-2).$

Let $s = ex(n, P_t) + ex(n, P_q)$. So the red-blue subgraph of K_n has at most s edges and

$$s \leq (t-1)(t+q-4) + (q-1)(q-2) - \begin{cases} 0, & 2|q, \\ \frac{3(q-2)}{2}, & 2 \not |q. \end{cases}$$

By the above fact and (2) we note that $d - s \ge h(q, t)$, where

$$h(q,t) = \left\lfloor \frac{q}{2} \right\rfloor \left(\left\lfloor \frac{q}{2} \right\rfloor - 1 \right) - (q-1)(q-2) + (t-1) + \begin{cases} (t-1), & 2|q, \\ \frac{3(q-2)}{2}, & 2 \not|q. \end{cases}$$

Moreover, h(q,t) > 0 if and only if

$$t > \begin{cases} \frac{1}{8} \left(3q^2 - 10q + 16 \right), & 2|q, \\ \\ \frac{1}{4} \left(3q^2 - 14q + 21 \right), & 2 \not|q. \end{cases}$$

So for t satisfying the above condition the green subgraph G' of K_n has more edges than the graph $K_{a,a}$. Namely, $|E(G')| \ge |E(K_{a,a})| + h(q,t)$. Note that G' is not a bipartite graph. In the opposite case we have at least $t + \lfloor \frac{q}{2} \rfloor - 1 = R(P_t, P_q)$ vertices in a part of the bipartite graph and the proof is done since we get a red P_q or a blue P_t .

By definition (1), we get $\omega(n, m-1) = \omega(2t+2\lfloor \frac{q}{2} \rfloor - 3, m-1) = (t+\lfloor \frac{q}{2} \rfloor - 2)(m-1) - \frac{1}{2}r(m-2-r),$ where r = r(n-1, m-2). So $\omega(n, m-1) \le (t+\lfloor \frac{q}{2} \rfloor - 2)(m-1)$.

We would like apply the theorems of Woodall and Brandt. We look for a lower bound of the longest cycle in the green graph G'. Thus let $b \ge 0$ be maximum integer $b \ge 0$ such that the following inequalities hold

(i)
$$b \cdot a < h(q, t)$$

and

(ii)
$$\omega(n, m-1) \le (t + \lfloor \frac{q}{2} \rfloor - 2)(t + \lfloor \frac{q}{2} \rfloor - 2 + b) < |E(G')|$$

Evidently b < 2, else we get a contradiction to the first of the above inequalities. Moreover, if 2|q and $t > \frac{1}{4} (3q^2 - 8q + 8)$, then b = 1. For other cases b = 0.

Then, by Theorem 3, we get $c(G') \ge (t + \lfloor \frac{q}{2} \rfloor - 1 + b)$. Thus we get a cycle of order at least $(t + \lfloor \frac{q}{2} \rfloor - 1 + b)$ in the green graph G'.

Moreover, $\frac{(n-1)^2}{4} + 1 = (t + \lfloor \frac{q}{2} \rfloor - 2)^2 + 1 < |E(G')|$. So, by Theorem 2, the green graph G' is weakly pancyclic. Hence we get a green cycle C_m for $m \leq t + \lfloor \frac{q}{2} \rfloor - 1 + b$, a contradiction. Therefore each (red, blue, green)-colouring of $E(K_n)$ contains a red P_q , a blue P_t or a green C_m . So we get the upper bound for $R(P_q, P_t, C_m)$. The proof is done.

In general case we get the following theorem.

Theorem 9. $R(P_q, P_t, C_m) \ge \lfloor \frac{q}{2} \rfloor - 2 + \max\left\{t + \lfloor \frac{m}{2} \rfloor, m + \lfloor \frac{t}{2} \rfloor\right\}.$

Proof. Let $r = \lfloor \frac{q}{2} \rfloor - 3 + \max \{ t + \lfloor \frac{m}{2} \rfloor, m + \lfloor \frac{t}{2} \rfloor \}$ and $x = \lfloor \frac{q}{2} \rfloor - 1$. Let K_{r-x} be subgraph of K_r (blue, green)-coloured without blue P_t and without green C_m . Such critical colouring exists by $R(P_t, P_m) = r - x + 1$. Let other edges of K_r be coloured with red. The red subgraph does not contain any P_q . The proof is done.

Now we extend the result of Faudree and Schelp presented above in Theorem 4.

Proposition 10. Let $t_0 \ge t_1 \ge t_2 \ge \cdots \ge t_k \ge 2$, $k \ge 2$ be integers and $n = t_0 + \sum_{i=1}^k (\lfloor \frac{t_i}{2} \rfloor - 1)$. Let x = 2 if $t_0 = t_1 = t_2$ and $2 \not| t_0$, and x = 0 in the opposite case. Then $R(P_{t_0}, P_{t_1}, P_{t_2}, \ldots, P_{t_k}) \ge n + x$.

Proof. Let $t_0 = t_1 = t_2$ and $2 \not| t_0$. We define the critical colouring of the graph K_{n+x-1} , with x = 2. Let $A, B, C, D, E_j, (j = 3, ..., k)$ be sets with $|A| = |B| = |C| = |D| = \lfloor \frac{t_0}{2} \rfloor$ and $|E_j| = \lfloor \frac{t_j}{2} \rfloor - 1, (j = 3, ..., k)$. Let the edges with ends in the sets $A \cup B$ and $C \cup D$ be coloured with the colour 0, the edges with one end in the set A and the second one in the set C be coloured with the colour 1, the edges with one end in the set B and the second one in the set D be coloured with the colour 1. Other edges with ends in $A \cup B \cup C \cup D$ colour with the colour 2. Let $V_j =$ $A \cup B \cup C \cup D \cup \bigcup_{i=3}^{j-1} E_i, (j = 3, ..., k)$. Let colour the edges with both ends in E_j or one end in E_j and the second one in the set V_j with the colour j, (j = 3, ..., k). Note that the colouring contains no monochromatic P_{t_i} in the colour i.

If the condition $t_0 = t_1 = t_2$ and $2 \not| t_0$ does not hold we define the critical colouring of the graph K_{n+x-1} , with x = 0. Namely, let $|A| = t_0 + \lfloor \frac{t_1}{2} \rfloor - 2$, $|E_j| = \lfloor \frac{t_j}{2} \rfloor - 1$, $(j = 2, \ldots, k)$ and $V_j = A \cup \bigcup_{i=2}^{j-1} E_i$, $(j = 2, \ldots, k)$. Let colour the edges with both ends in E_j or one end in E_j and the second one in the set V_j with the colour $j, (j = 2, \ldots, k)$. The edges with ends in the set A colour critically with colours 0 and 1 (it is possible by $R(P_{t_0}, P_{t_1}) = t_0 + \lfloor \frac{t_1}{2} \rfloor - 1)$). The proof is done.

Now we show some sufficient conditions for $R(P_{t_0}, P_{t_1}, P_{t_2}, \ldots, P_{t_k}) = n + x$ with x = 0 or x = 2 and $n = t_0 + \sum_{i=1}^k (\lfloor \frac{t_i}{2} \rfloor - 1)$.

Theorem 11. Let $t_0 \ge t_1 \ge t_2 \ge \cdots \ge t_k \ge 2$, $k \ge 2$ be integers and $n = t_0 + \sum_{i=1}^k (\lfloor \frac{t_i}{2} \rfloor - 1)$. Let x = 2 if $t_0 = t_1 = t_2$ and $2 \not| t_0$, and x = 0

in the opposite case, and let $r_i = (n + x) \mod (t_i - 1)$ (i = 0, 1, ..., k). The sufficient conditions for $R(P_{t_0}, P_{t_1}, P_{t_2}, ..., P_{t_k}) = n + x$ are as follows:

(i) $t_0 > t_1$, $2|t_i$ for each $i \ge 1$ and

$$t_0 > \max\left\{\left(\sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1\right) + 1\right)^2 - \sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1\right), \sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1\right) + 2\right\},\$$

(ii) $t_0 > t_1$, 2 $\not| t_i$ for exactly one $i \ge 1$ and

$$t_0 > \max\left\{2\left(\sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2}\right\rfloor - 1\right) + 1\right)^2 - \sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2}\right\rfloor - 1\right), \sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2}\right\rfloor - 1\right) + 2\right\},\$$

- (iii) $t_0 \in \{4, 6, 8\}, t_0 = t_1 > t_2 \text{ and } t_i = 2 \text{ for each } i = 2, \dots, k,$
- (iv) $t_0 \in \{3, 5\}, t_0 = t_1 > t_2 \text{ and } t_i = 2 \text{ for each } i = 2, \dots, k,$
- (v) $t_0 = t_1 = t_2 = 3 > t_3$ and $t_i = 2$ for each i = 3, ..., k or $t_0 = t_1 = t_2 = t_3 = 3$ and $t_i = 2$ for each i = 4, ..., k,
- (vi) $t_i = 2$ for each i = 0, ..., k.

Proof. By Proposition 10 we get the lower bound $n + x \leq R(P_{t_0}, P_{t_1}, P_{t_2}, \ldots, P_{t_k})$. Now we prove the upper bound. Evidently, $0 \leq r_i < t_i - 1$. By definition of n and r_0 we have

(3)
$$\sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + 1 = w \cdot (t_0 - 1) + r_0,$$

where $w \ge 0$ and $0 \le r_0 \le t_0 - 2$ are integers.

By Theorem 1 we get $\sum_{i=0}^{k} ex(n+x, P_{t_i}) \leq s$, where $s = \frac{n+x}{2} \sum_{i=0}^{k} (t_i - 2) - \frac{1}{2} \sum_{i=0}^{k} r_i (t_i - 1 - r_i)$. Let $g = \binom{n+x}{2} - s$. Evidently,

(4)
$$g = \frac{n+x}{2} \left(n+x-1 - \sum_{i=0}^{k} t_i + 2k + 2 \right) + \frac{1}{2} \sum_{i=0}^{k} r_i (t_i - 1 - r_i).$$

Note that, g > 0 is a sufficient condition for $R(P_{t_0}, P_{t_1}, P_{t_2}, \dots, P_{t_k}) \le n+x$. Let y be the number of odd t_i , for $i = 1, \dots k$. So

(5)
$$y = \sum_{i=1}^{k} \left(\left\lceil \frac{t_i}{2} \right\rceil - \left\lfloor \frac{t_i}{2} \right\rfloor \right).$$

Let

(6)
$$a = r_0 - \left(\sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + y - 1 - x \right).$$

Then by the definition of n we have

(7)
$$g = (a - r_0) \frac{t_0 + \sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + x}{2} + \frac{1}{2} r_0 (t_0 - 1 - r_0) + \frac{1}{2} \sum_{i=1}^k r_i (t_i - 1 - r_i).$$

Hence, by (7) and (6), we get

$$g = \frac{a}{2}t_0 - \frac{1}{2}\left(\sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1\right) + x\right)^2 + \frac{1}{2}\left(\sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1\right) + x\right)(2x+1-y)$$

$$(8) \qquad -\frac{1}{2}r_0(r_0+1) + \frac{1}{2}\sum_{i=1}^k r_i(t_i-1-r_i).$$

If a > 0 and g > 0 then we can find some additional restriction on t_i to obtain the upper bound of Ramsey number for the sequence of paths.

By (6), the assumption a > 0 gives

(9)
$$r_0 \ge \sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + y - x.$$

Let us consider three cases.

Case 1. Suppose that $t_0 > t_1$. So x = 0. Thus, by the value of n, we get

(10)
$$r_0 = \sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + 1.$$

By (6), (10) and the assumption a > 0, we have y = 0 or y = 1. Moreover, if y = 0 then a = 2 and if y = 1 then a = 1.

By (8),

$$t_0 > \frac{1}{a} \left(r_0(r_0+1) + \left(\sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) \right)^2 - (1-y) \sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) \right)$$

is a sufficient condition for g > 0.

Thus we get $t_0 > r_0^2 - (r_0 - 1)$ for y = 0 and $t_0 > r_0(2r_0 - 1) + 1$ for y = 1.

Elementary counting leads to the condition (i) and (ii), respectively.

Case 2. Suppose that $t_0 = t_1 > t_2$. Thus x = 0 and by (8) we get

(11)
$$g = \frac{a+r_0}{2}t_0 - \frac{1}{2}\left(\sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1\right)\right)^2 + \frac{1}{2}(1-y)\sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1\right) - r_0(r_0+1) + \frac{1}{2}\sum_{i=2}^k r_i(t_i-1-r_i).$$

If $a + r_0 > 0$ and g > 0 then we can find some further restriction on t_i to obtain the above Ramsey number for the sequence of paths.

First, by (6) and the assumption $a + r_0 > 0$, we note that

(12)
$$r_0 > \frac{1}{2} \left(\sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + y - 1 \right).$$

Moreover, by (11), if

(13)
$$t_0 > \frac{1}{a+r_0} \left(2r_0(r_0+1) + \left(\sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) \right)^2 - (1-y) \sum_{i=1}^k \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) \right)$$

then g > 0.

By definition of r_0 , (3) and (12), we get

(14)
$$t_{0} - 2 \ge r_{0} = \sum_{i=1}^{k} \left(\left\lfloor \frac{t_{i}}{2} \right\rfloor - 1 \right) - w \cdot (t_{0} - 1)$$
$$> \frac{1}{2} \left(\sum_{i=1}^{k} \left(\left\lfloor \frac{t_{i}}{2} \right\rfloor - 1 \right) + y - 1 \right).$$

Let us assume that w > 0. Then, by $t_0 = t_1$, we get

(15)
$$\frac{1}{2} \left(\sum_{i=2}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + 2 - y \right) > \left\lceil \frac{t_0}{2} \right\rceil + \frac{1}{2} \left\lfloor \frac{t_0}{2} \right\rfloor$$
$$> \frac{1}{2} \left(\sum_{i=2}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + y + 2 \right).$$

216

The left-side inequality in (15) follows by the right-side inequality from (14). The right-side inequality in (15) follows by the most left and the most right relation in (14). Hence we get a contradiction.

Let us assume that w = 0. Then, by (3) and $t_0 = t_1$, we get $r_0 = \lfloor \frac{t_0}{2} \rfloor + \sum_{i=2}^k \left(\lfloor \frac{t_i}{2} \rfloor - 1 \right)$. By (14) we get y = 0 or y = 1. So, by (13) and (6), we get $t_0 > \frac{1}{r_0+2-y} (2r_0(r_0+1) + (r_0-1)(r_0-2+y))$. Considering the case we get $t_0 > 3r_0 - 7 + 16/(r_0+2)$ for y = 0 and

Considering the case we get $t_0 > 3r_0 - 7 + 16/(r_0 + 2)$ for y = 0 and $t_0 > 3r_0 - 3 + 4/(r_0 + 1)$ for y = 1. Elementary counting leads to the condition (iii) and (iv), respectively.

Case 3. Suppose that $t_0 = t_1 = t_2$. If the condition (v) holds then n = 3, x = 2. If the condition (vi) holds then n = 2, x = 0. Thus, by (4), we get g > 0 for these cases and the result holds. The proof is done.

We conclude with the following result for three paths.

Corollary 12. Let $m, t, q \ (m \ge t \ge q \ge 2)$ be positive integers. Let either $m > \frac{1}{2}((t+q)^2 - 7(t+q) + 14)$ and $2 \not|(t+q) \ or \ m > \frac{1}{4}((t+q)^2 - 6(t+q) + 12)$ and $2|t \ and \ 2|q$. Then $R(P_q, P_t, P_m) = m + \lfloor \frac{t}{2} \rfloor + \lfloor \frac{q}{2} \rfloor - 2$.

Proof. If $2 \not| (t+q)$ then we apply Theorem 11 (ii). If 2|t and 2|q then we apply Theorem 11 (i) for m > 2 and Theorem 11 (vi) for m = q = t = 2.

References

- S. Brandt, A sufficient condition for all short cycles, Discrete Appl. Math. 79 (1997) 63–66.
- [2] T. Dzido, Multicolor Ramsey numbers for paths and cycles, Discuss. Math. Graph. Theory 25 (2005) 57–65.
- [3] T. Dzido, M. Kubale and K. Piwakowski, On some Ramsey and Turán-type numbers for paths and cycles, Electr. J. Combin. 13 (2006) R55.
- [4] R.J. Faudree and R.H. Schelp, *Path Ramsey numbers in multicolorngs*, J. Combin. Theory (B) **19** (1975) 150–160.
- [5] A. Figaj and T. Łuczak, The Ramsey number for a triple of long even cycles, J. Combin. Theory (B) 97 (2007) 584–596.
- [6] Y. Kohayakawa, M. Simonovits and J. Skokan, *The 3-colored Ramsey numbers of odd cycles*, Electr. Notes Discrete Math. **19** (2005) 397–402.

[7] D.R. Woodall, Maximal circuits of graphs I, Acta Math. Acad. Sci. Hungar. 28 (1976) 77–80.

> Received 13 December 2007 Revised 4 July 2008 Accepted 23 October 2008

218