MULTICOLOR RAMSEY NUMBERS FOR SOME PATHS AND CYCLES

Halina Bielak
Institute of Mathematics
UMCS, Lublin, Poland
e-mail: hbiel@golem.umcs.lublin.pl

Abstract

We give the multicolor Ramsey number for some graphs with a path or a cycle in the given sequence, generalizing a results of Faudree and Schelp [4], and Dzido, Kubale and Piwakowski [2, 3]. Keywords: cycle, path, Ramsey number. 2000 Mathematics Subject Classification: 05C55.

1. Introduction

We consider simple graphs with at least two vertices. For given graphs $G_{1}, G_{2}, \ldots, G_{k}$ and $k \geq 2$ multicolor Ramsey number $R\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ is the smallest integer n such that in arbitrary k-colouring of edges of a complete graph K_{n} a copy of G_{i} in the colour $i(1 \leq i \leq k)$ is contained (as a subgraph).

Let $\operatorname{ex}(n, F)$ be the Turán number for integer n and a graph F, defined as the maximum number of edges over all graphs of order n without any subgraph isomorphic to F.

Theorems 1, 2 and 3 presented below are very useful for study multicolour Ramsey numbers for paths and cycles. In this paper we generalize the results presented in Theorems 4 and 5.

Theorem 1 (Faudree and Schelp [4]). If G is a graph with $|V(G)|=$ $k p+r(0 \leq k, 0 \leq r<p)$ and G contains no P_{p+1}, then $|E(G)| \leq k p(p-1) / 2$ $+r(r-1) / 2$ with the equality if and only if $G=k K_{p} \cup K_{r}$ or $G=l K_{p} \cup$
$\left(K_{(p-1) / 2}+\bar{K}_{(p+1) / 2+(k-l-1) p+r}\right)$ for some $0 \leq l<k$, where p is odd, and $k>0, r=(p \pm 1) / 2$.

Let $c(G)$ be the circumference of G, i.e., the length of the longest cycle in G.
Theorem 2 (Brandt [1]). Every non-bipartite graph G of order n with more than $\frac{(n-1)^{2}}{4}+1$ edges contains cycles of every length t, where $3 \leq t \leq c(G)$.

For positive integers a and b, set $r(a, b)=a \bmod b=a-\left\lfloor\frac{a}{b}\right\rfloor b$. For integers $n \geq k \geq 3$, set

$$
\begin{equation*}
\omega(n, k)=\frac{1}{2}(n-1) k-\frac{1}{2} r(k-r-1), \tag{1}
\end{equation*}
$$

where $r=r(n-1, k-1)$.
Theorem 3 (Woodall [7]). Let G be a graph of order n and size m with $m \geq n$ and $c(G)=k$. Then $m \leq \omega(n, k)$ and the result is best possible.

In 1975 Faudree and Schelp published the following results concerning a multicolor Ramsey number for paths.

Theorem 4 (Faudree and Schelp [4]). If $r_{0} \geq 6\left(r_{1}+r_{2}\right)^{2}$, then $R\left(P_{r_{0}}, P_{r_{1}}\right.$, $\left.P_{r_{2}}\right)=r_{0}+\left\lfloor\frac{r_{1}}{2}\right\rfloor+\left\lfloor\frac{r_{2}}{2}\right\rfloor-2$ for $r_{1}, r_{2} \geq 2$.

If $r_{0} \geq 6\left(\sum_{i=1}^{k} r_{i}\right)^{2}$, then $R\left(P_{r_{0}}, P_{2 r_{1}+\delta}, P_{2 r_{2}}, \ldots, P_{2 r_{k}}\right)=\sum_{i=0}^{k} r_{i}-k$ for $\delta=0,1, k \geq 1$ and $r_{i} \geq 1(1 \leq i \leq k)$.

Recently, Dzido, Kubale, and Piwakowski published the following results.
Theorem 5 (Dzido et al. [2, 3]). $R\left(P_{3}, C_{k}, C_{k}\right)=2 k-1$ for odd $k \geq 9$, $R\left(P_{4}, P_{4}, C_{k}\right)=k+2$ for $k \geq 6, R\left(P_{3}, P_{5}, C_{k}\right)=k+1$ for $k \geq 8$.

Moreover, some asymptotic results are cited below.

Theorem 6 (Kohayakawa, Simonovits, Skokan [6]). There exists an integer n_{0} such that if $n>n_{0}$ is odd, then $R\left(C_{n}, C_{n}, C_{n}\right)=4 n-3$.

Theorem 7. (Figaj, Łuczak [5]). For even $n, R\left(C_{n}, C_{n}, C_{n}\right)=2 n+o(n)$.

2. Results

First we prove the following theorem, extending the result of Dzido et al. (see Theorem 5).

Theorem 8. Let $t, q(t \geq q \geq 2)$ be positive integers and m be odd integer. Let for even q either $t>\frac{3}{4} q^{2}-2 q+2$ and $m=t+\left\lfloor\frac{q}{2}\right\rfloor$ or $t>$ $\frac{1}{8}\left(3 q^{2}-10 q+16\right)$ and $m \leq t+\left\lfloor\frac{q}{2}\right\rfloor-1$. Let for odd $q, t>\frac{1}{4}\left(3 q^{2}-14 q+21\right)$ and $m \leq t+\left\lfloor\frac{q}{2}\right\rfloor-1$. Then $R\left(P_{q}, P_{t}, C_{m}\right)=2 t+2\left\lfloor\frac{q}{2}\right\rfloor-3$.

Proof. Let $n=2 t+2\left\lfloor\frac{q}{2}\right\rfloor-3$ and $a=t+\left\lfloor\frac{q}{2}\right\rfloor-2$. First we prove that $R\left(P_{q}, P_{t}, C_{m}\right) \geq 2 t+2\left\lfloor\frac{q}{2}\right\rfloor-3$. Let K_{a} be (red, blue)-coloured without red P_{q} and without blue P_{t}. It is possible by $R\left(P_{q}, P_{t}\right)=a+1$. So there exists the critical colouring of the graph $H=K_{a} \cup K_{a}$. Let the edges of \bar{H} be coloured with green. Since \bar{H} is bipartite graph it does not contain any C_{m}.

Now we prove that $R\left(P_{q}, P_{t}, C_{m}\right) \leq 2 t+2\left\lfloor\frac{q}{2}\right\rfloor-3$.
Note that $\left|E\left(K_{n}\right)\right|=\left(2 t+2\left\lfloor\frac{q}{2}\right\rfloor-3\right)\left(t+\left\lfloor\frac{q}{2}\right\rfloor-2\right)$ and $\left|E\left(K_{a, a}\right)\right|=$ $\left(t+\left\lfloor\frac{q}{2}\right\rfloor-2\right)^{2}$.

Let $d=\left|E\left(K_{n}\right)\right|-\left|E\left(K_{a, a}\right)\right|=\left(t+\left\lfloor\frac{q}{2}\right\rfloor-2\right)\left(t+\left\lfloor\frac{q}{2}\right\rfloor-1\right)$.
So
(2) $d=(t-1)(t+q-4)+\left\lfloor\frac{q}{2}\right\rfloor\left(\left\lfloor\frac{q}{2}\right\rfloor-1\right)+2(t-1)-(t-1)\left(\left\lceil\frac{q}{2}\right\rceil-\left\lfloor\frac{q}{2}\right\rfloor\right)$.

Suppose that we can colour $E\left(K_{n}\right)$ with three colours (red, blue, green) without red P_{q}, blue P_{t} and green C_{m}. So the red subgraph of K_{n} has at most $e x\left(n, P_{q}\right)$ edges and the blue subgraph of K_{n} has at most $e x\left(n, P_{t}\right)$ edges. Now we apply Theorem 1 for $p=t-1$. We have two cases. If $2 \mid q$ and $t=q$ then set $k=3, r=0$. In the opposite case, set $k=2$ and $r=2\left\lfloor\frac{q}{2}\right\rfloor-1$. Thus, we can write $e x\left(n, P_{t}\right) \leq(t-1)(t-2)+\left(2\left\lfloor\frac{q}{2}\right\rfloor-1\right)\left(\left\lfloor\frac{q}{2}\right\rfloor-1\right)$.

Moreover, by Theorem 1 for $p=q-1$, we get $e x\left(n, P_{q}\right) \leq \frac{n(q-2)}{2}$. So $e x\left(n, P_{q}\right) \leq(t-1)(q-2)+\frac{1}{2}\left(2\left\lfloor\frac{q}{2}\right\rfloor-1\right)(q-2)$.

Let $s=e x\left(n, P_{t}\right)+e x\left(n, P_{q}\right)$. So the red-blue subgraph of K_{n} has at most s edges and

$$
s \leq(t-1)(t+q-4)+(q-1)(q-2)- \begin{cases}0, & 2 \mid q, \\ \frac{3(q-2)}{2}, & 2 \nless q .\end{cases}
$$

By the above fact and (2) we note that $d-s \geq h(q, t)$, where

$$
h(q, t)=\left\lfloor\frac{q}{2}\right\rfloor\left(\left\lfloor\frac{q}{2}\right\rfloor-1\right)-(q-1)(q-2)+(t-1)+ \begin{cases}(t-1), & 2 \mid q \\ \frac{3(q-2)}{2}, & 2 \nmid q\end{cases}
$$

Moreover, $h(q, t)>0$ if and only if

$$
t> \begin{cases}\frac{1}{8}\left(3 q^{2}-10 q+16\right), & 2 \mid q \\ \frac{1}{4}\left(3 q^{2}-14 q+21\right), & 2 \nmid q\end{cases}
$$

So for t satisfying the above condition the green subgraph G^{\prime} of K_{n} has more edges than the graph $K_{a, a}$. Namely, $\left|E\left(G^{\prime}\right)\right| \geq\left|E\left(K_{a, a}\right)\right|+h(q, t)$. Note that G^{\prime} is not a bipartite graph. In the opposite case we have at least $t+\left\lfloor\frac{q}{2}\right\rfloor-1=R\left(P_{t}, P_{q}\right)$ vertices in a part of the bipartite graph and the proof is done since we get a red P_{q} or a blue P_{t}.

By definition (1), we get
$\omega(n, m-1)=\omega\left(2 t+2\left\lfloor\frac{q}{2}\right\rfloor-3, m-1\right)=\left(t+\left\lfloor\frac{q}{2}\right\rfloor-2\right)(m-1)-\frac{1}{2} r(m-2-r)$, where $r=r(n-1, m-2)$. So $\omega(n, m-1) \leq\left(t+\left\lfloor\frac{q}{2}\right\rfloor-2\right)(m-1)$.

We would like apply the theorems of Woodall and Brandt. We look for a lower bound of the longest cycle in the green graph G^{\prime}. Thus let $b \geq 0$ be maximum integer $b \geq 0$ such that the following inequalities hold
(i) $b \cdot a<h(q, t)$
and
(ii) $\omega(n, m-1) \leq\left(t+\left\lfloor\frac{q}{2}\right\rfloor-2\right)\left(t+\left\lfloor\frac{q}{2}\right\rfloor-2+b\right)<\left|E\left(G^{\prime}\right)\right|$.

Evidently $b<2$, else we get a contradiction to the first of the above inequalities. Moreover, if $2 \mid q$ and $t>\frac{1}{4}\left(3 q^{2}-8 q+8\right)$, then $b=1$. For other cases $b=0$.

Then, by Theorem 3, we get $c\left(G^{\prime}\right) \geq\left(t+\left\lfloor\frac{q}{2}\right\rfloor-1+b\right)$. Thus we get a cycle of order at least $\left(t+\left\lfloor\frac{q}{2}\right\rfloor-1+b\right)$ in the green graph G^{\prime}.

Moreover, $\frac{(n-1)^{2}}{4}+1=\left(t+\left\lfloor\frac{q}{2}\right\rfloor-2\right)^{2}+1<\left|E\left(G^{\prime}\right)\right|$. So, by Theorem 2 , the green graph G^{\prime} is weakly pancyclic. Hence we get a green cycle C_{m} for $m \leq t+\left\lfloor\frac{q}{2}\right\rfloor-1+b$, a contradiction. Therefore each (red, blue, green)colouring of $E\left(K_{n}\right)$ contains a red P_{q}, a blue P_{t} or a green C_{m}. So we get the upper bound for $R\left(P_{q}, P_{t}, C_{m}\right)$. The proof is done.

In general case we get the following theorem.

Theorem 9. $R\left(P_{q}, P_{t}, C_{m}\right) \geq\left\lfloor\frac{q}{2}\right\rfloor-2+\max \left\{t+\left\lfloor\frac{m}{2}\right\rfloor, m+\left\lfloor\frac{t}{2}\right\rfloor\right\}$.
Proof. Let $r=\left\lfloor\frac{q}{2}\right\rfloor-3+\max \left\{t+\left\lfloor\frac{m}{2}\right\rfloor, m+\left\lfloor\frac{t}{2}\right\rfloor\right\}$ and $x=\left\lfloor\frac{q}{2}\right\rfloor-1$. Let K_{r-x} be subgraph of K_{r} (blue, green)-coloured without blue P_{t} and without green C_{m}. Such critical colouring exists by $R\left(P_{t}, P_{m}\right)=r-x+1$. Let other edges of K_{r} be coloured with red. The red subgraph does not contain any P_{q}. The proof is done.

Now we extend the result of Faudree and Schelp presented above in Theorem 4.

Proposition 10. Let $t_{0} \geq t_{1} \geq t_{2} \geq \cdots \geq t_{k} \geq 2, k \geq 2$ be integers and $n=t_{0}+\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)$. Let $x=2$ if $t_{0}=t_{1}=t_{2}$ and $2 \quad \backslash t_{0}$, and $x=0$ in the opposite case. Then $R\left(P_{t_{0}}, P_{t_{1}}, P_{t_{2}}, \ldots, P_{t_{k}}\right) \geq n+x$.

Proof. Let $t_{0}=t_{1}=t_{2}$ and $2 \nmid t_{0}$. We define the critical colouring of the graph K_{n+x-1}, with $x=2$. Let $A, B, C, D, E_{j},(j=3, \ldots, k)$ be sets with $|A|=|B|=|C|=|D|=\left\lfloor\frac{t_{0}}{2}\right\rfloor$ and $\left|E_{j}\right|=\left\lfloor\frac{t_{j}}{2}\right\rfloor-1,(j=3, \ldots, k)$. Let the edges with ends in the sets $A \cup B$ and $C \cup D$ be coloured with the colour 0 , the edges with one end in the set A and the second one in the set C be coloured with the colour 1, the edges with one end in the set B and the second one in the set D be coloured with the colour 1. Other edges with ends in $A \cup B \cup C \cup D$ colour with the colour 2. Let $V_{j}=$ $A \cup B \cup C \cup D \cup \bigcup_{i=3}^{j-1} E_{i},(j=3, \ldots, k)$. Let colour the edges with both ends in E_{j} or one end in E_{j} and the second one in the set V_{j} with the colour $j,(j=3, \ldots, k)$. Note that the colouring contains no monochromatic $P_{t_{i}}$ in the colour i.

If the condition $t_{0}=t_{1}=t_{2}$ and $2 X t_{0}$ does not hold we define the critical colouring of the graph K_{n+x-1}, with $x=0$. Namely, let $|A|=t_{0}+\left\lfloor\frac{t_{1}}{2}\right\rfloor-2$, $\left|E_{j}\right|=\left\lfloor\frac{t_{j}}{2}\right\rfloor-1,(j=2, \ldots, k)$ and $V_{j}=A \cup \bigcup_{i=2}^{j-1} E_{i},(j=2, \ldots, k)$. Let colour the edges with both ends in E_{j} or one end in E_{j} and the second one in the set V_{j} with the colour $j,(j=2, \ldots, k)$. The edges with ends in the set A colour critically with colours 0 and 1 (it is possible by $\left.R\left(P_{t_{0}}, P_{t_{1}}\right)=t_{0}+\left\lfloor\frac{t_{1}}{2}\right\rfloor-1\right)$). The proof is done.

Now we show some sufficient conditions for $R\left(P_{t_{0}}, P_{t_{1}}, P_{t_{2}}, \ldots, P_{t_{k}}\right)=n+x$ with $x=0$ or $x=2$ and $n=t_{0}+\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)$.

Theorem 11. Let $t_{0} \geq t_{1} \geq t_{2} \geq \cdots \geq t_{k} \geq 2$, $k \geq 2$ be integers and $n=t_{0}+\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)$. Let $x=2$ if $t_{0}=t_{1}=t_{2}$ and $2 \not \backslash t_{0}$, and $x=0$
in the opposite case, and let $r_{i}=(n+x) \bmod \left(t_{i}-1\right)(i=0,1, \ldots, k)$. The sufficient conditions for $R\left(P_{t_{0}}, P_{t_{1}}, P_{t_{2}}, \ldots, P_{t_{k}}\right)=n+x$ are as follows:
(i) $t_{0}>t_{1}, 2 \mid t_{i}$ for each $i \geq 1$ and

$$
t_{0}>\max \left\{\left(\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+1\right)^{2}-\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right), \sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+2\right\}
$$

(ii) $t_{0}>t_{1}, 2 \times t_{i}$ for exactly one $i \geq 1$ and

$$
t_{0}>\max \left\{2\left(\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+1\right)^{2}-\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right), \sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+2\right\}
$$

(iii) $t_{0} \in\{4,6,8\}, t_{0}=t_{1}>t_{2}$ and $t_{i}=2$ for each $i=2, \ldots, k$,
(iv) $t_{0} \in\{3,5\}, t_{0}=t_{1}>t_{2}$ and $t_{i}=2$ for each $i=2, \ldots, k$,
(v) $t_{0}=t_{1}=t_{2}=3>t_{3}$ and $t_{i}=2$ for each $i=3, \ldots, k$ or $t_{0}=t_{1}=t_{2}=$ $t_{3}=3$ and $t_{i}=2$ for each $i=4, \ldots, k$,
(vi) $t_{i}=2$ for each $i=0, \ldots, k$.

Proof. By Proposition 10 we get the lower bound $n+x \leq R\left(P_{t_{0}}, P_{t_{1}}\right.$, $\left.P_{t_{2}}, \ldots, P_{t_{k}}\right)$. Now we prove the upper bound. Evidently, $0 \leq r_{i}<t_{i}-1$. By definition of n and r_{0} we have

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+1=w \cdot\left(t_{0}-1\right)+r_{0} \tag{3}
\end{equation*}
$$

where $w \geq 0$ and $0 \leq r_{0} \leq t_{0}-2$ are integers.
By Theorem 1 we get $\sum_{i=0}^{k} e x\left(n+x, P_{t_{i}}\right) \leq s$, where $s=\frac{n+x}{2} \sum_{i=0}^{k}\left(t_{i}-2\right)-\frac{1}{2} \sum_{i=0}^{k} r_{i}\left(t_{i}-1-r_{i}\right)$. Let $g=\binom{n+x}{2}-s$. Evidently,

$$
\begin{equation*}
g=\frac{n+x}{2}\left(n+x-1-\sum_{i=0}^{k} t_{i}+2 k+2\right)+\frac{1}{2} \sum_{i=0}^{k} r_{i}\left(t_{i}-1-r_{i}\right) \tag{4}
\end{equation*}
$$

Note that, $g>0$ is a sufficient condition for $R\left(P_{t_{0}}, P_{t_{1}}, P_{t_{2}}, \ldots, P_{t_{k}}\right) \leq n+x$.
Let y be the number of odd t_{i}, for $i=1, \ldots k$. So

$$
\begin{equation*}
y=\sum_{i=1}^{k}\left(\left\lceil\frac{t_{i}}{2}\right\rceil-\left\lfloor\frac{t_{i}}{2}\right\rfloor\right) \tag{5}
\end{equation*}
$$

Let

$$
\begin{equation*}
a=r_{0}-\left(\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+y-1-x\right) . \tag{6}
\end{equation*}
$$

Then by the definition of n we have

$$
\begin{align*}
g= & \left(a-r_{0}\right) \frac{t_{0}+\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+x}{2}+\frac{1}{2} r_{0}\left(t_{0}-1-r_{0}\right) \tag{7}\\
& +\frac{1}{2} \sum_{i=1}^{k} r_{i}\left(t_{i}-1-r_{i}\right) .
\end{align*}
$$

Hence, by (7) and (6), we get

$$
\begin{align*}
& g=\frac{a}{2} t_{0}-\frac{1}{2}\left(\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+x\right)^{2}+\frac{1}{2}\left(\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+x\right)(2 x+1-y) \\
& \text { (8) } \quad-\frac{1}{2} r_{0}\left(r_{0}+1\right)+\frac{1}{2} \sum_{i=1}^{k} r_{i}\left(t_{i}-1-r_{i}\right) . \tag{8}
\end{align*}
$$

If $a>0$ and $g>0$ then we can find some additional restriction on t_{i} to obtain the upper bound of Ramsey number for the sequence of paths.

By (6), the assumption $a>0$ gives

$$
\begin{equation*}
r_{0} \geq \sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+y-x . \tag{9}
\end{equation*}
$$

Let us consider three cases.
Case 1. Suppose that $t_{0}>t_{1}$. So $x=0$. Thus, by the value of n, we get

$$
\begin{equation*}
r_{0}=\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+1 . \tag{10}
\end{equation*}
$$

By (6), (10) and the assumption $a>0$, we have $y=0$ or $y=1$. Moreover, if $y=0$ then $a=2$ and if $y=1$ then $a=1$.

By (8),

$$
t_{0}>\frac{1}{a}\left(r_{0}\left(r_{0}+1\right)+\left(\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)\right)^{2}-(1-y) \sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)\right)
$$

is a sufficient condition for $g>0$.
Thus we get $t_{0}>r_{0}^{2}-\left(r_{0}-1\right)$ for $y=0$ and $t_{0}>r_{0}\left(2 r_{0}-1\right)+1$ for $y=1$.

Elementary counting leads to the condition (i) and (ii), respectively.
Case 2. Suppose that $t_{0}=t_{1}>t_{2}$. Thus $x=0$ and by (8) we get

$$
\begin{align*}
g=\frac{a+r_{0}}{2} t_{0} & -\frac{1}{2}\left(\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)\right)^{2}+\frac{1}{2}(1-y) \sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right) \tag{11}\\
& -r_{0}\left(r_{0}+1\right)+\frac{1}{2} \sum_{i=2}^{k} r_{i}\left(t_{i}-1-r_{i}\right)
\end{align*}
$$

If $a+r_{0}>0$ and $g>0$ then we can find some further restriction on t_{i} to obtain the above Ramsey number for the sequence of paths.

First, by (6) and the assumption $a+r_{0}>0$, we note that

$$
\begin{equation*}
r_{0}>\frac{1}{2}\left(\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+y-1\right) \tag{12}
\end{equation*}
$$

Moreover, by (11), if

$$
\begin{equation*}
t_{0}>\frac{1}{a+r_{0}}\left(2 r_{0}\left(r_{0}+1\right)+\left(\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)\right)^{2}-(1-y) \sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)\right) \tag{13}
\end{equation*}
$$

then $g>0$.
By definition of $r_{0},(3)$ and (12), we get

$$
\begin{align*}
t_{0}-2 \geq r_{0} & =\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)-w \cdot\left(t_{0}-1\right) \\
& >\frac{1}{2}\left(\sum_{i=1}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+y-1\right) \tag{14}
\end{align*}
$$

Let us assume that $w>0$. Then, by $t_{0}=t_{1}$, we get

$$
\begin{gather*}
\frac{1}{2}\left(\sum_{i=2}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+2-y\right)>\left\lceil\frac{t_{0}}{2}\right\rceil+\frac{1}{2}\left\lfloor\frac{t_{0}}{2}\right\rfloor \\
>\frac{1}{2}\left(\sum_{i=2}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)+y+2\right) . \tag{15}
\end{gather*}
$$

The left-side inequality in (15) follows by the right-side inequality from (14). The right-side inequality in (15) follows by the most left and the most right relation in (14). Hence we get a contradiction.

Let us assume that $w=0$. Then, by (3) and $t_{0}=t_{1}$, we get $r_{0}=$ $\left\lfloor\frac{t_{0}}{2}\right\rfloor+\sum_{i=2}^{k}\left(\left\lfloor\frac{t_{i}}{2}\right\rfloor-1\right)$. By (14) we get $y=0$ or $y=1$. So, by (13) and (6), we get $t_{0}>\frac{1}{r_{0}+2-y}\left(2 r_{0}\left(r_{0}+1\right)+\left(r_{0}-1\right)\left(r_{0}-2+y\right)\right)$.

Considering the case we get $t_{0}>3 r_{0}-7+16 /\left(r_{0}+2\right)$ for $y=0$ and $t_{0}>3 r_{0}-3+4 /\left(r_{0}+1\right)$ for $y=1$. Elementary counting leads to the condition (iii) and (iv), respectively.

Case 3. Suppose that $t_{0}=t_{1}=t_{2}$. If the condition (v) holds then $n=3, x=2$. If the condition (vi) holds then $n=2, x=0$. Thus, by (4), we get $g>0$ for these cases and the result holds. The proof is done.
We conclude with the following result for three paths.
Corollary 12. Let $m, t, q(m \geq t \geq q \geq 2)$ be positive integers. Let either $m>\frac{1}{2}\left((t+q)^{2}-7(t+q)+14\right)$ and $2 \chi(t+q)$ or $m>\frac{1}{4}\left((t+q)^{2}-6(t+q)+12\right)$ and $2 \mid t$ and $2 \mid q$. Then $R\left(P_{q}, P_{t}, P_{m}\right)=m+\left\lfloor\frac{t}{2}\right\rfloor+\left\lfloor\frac{q}{2}\right\rfloor-2$.

Proof. If $2 \nmid(t+q)$ then we apply Theorem 11 (ii). If $2 \mid t$ and $2 \mid q$ then we apply Theorem 11 (i) for $m>2$ and Theorem 11 (vi) for $m=q=t=2$.

References

[1] S. Brandt, A sufficient condition for all short cycles, Discrete Appl. Math. 79 (1997) 63-66.
[2] T. Dzido, Multicolor Ramsey numbers for paths and cycles, Discuss. Math. Graph. Theory 25 (2005) 57-65.
[3] T. Dzido, M. Kubale and K. Piwakowski, On some Ramsey and Turán-type numbers for paths and cycles, Electr. J. Combin. 13 (2006) R55.
[4] R.J. Faudree and R.H. Schelp, Path Ramsey numbers in multicolorngs, J. Combin. Theory (B) 19 (1975) 150-160.
[5] A. Figaj and T. Łuczak, The Ramsey number for a triple of long even cycles, J. Combin. Theory (B) 97 (2007) 584-596.
[6] Y. Kohayakawa, M. Simonovits and J. Skokan, The 3-colored Ramsey numbers of odd cycles, Electr. Notes Discrete Math. 19 (2005) 397-402.
[7] D.R. Woodall, Maximal circuits of graphs I, Acta Math. Acad. Sci. Hungar. 28 (1976) 77-80.

Received 13 December 2007
Revised 4 July 2008
Accepted 23 October 2008

