Note

A NOTE ON *k*-UNIFORM SELF-COMPLEMENTARY HYPERGRAPHS OF GIVEN ORDER

Artur Szymański and A. Paweł Wojda

Faculty of Applied Mathematics AGH University of Science and Technology Al. Mickiewicza 30, 30–053 Kraków, Poland e-mail: szymansk@agh.edu.pl, wojda@agh.edu.pl

Abstract

We prove that a k-uniform self-complementary hypergraph of order n exists, if and only if $\binom{n}{k}$ is even. **Keywords:** self-complementing permutation, self-complementary hypergraph, k-uniform hypergraph, binomial coefficients. **2000 Mathematics Subject Classification:** 05C65.

Let V be a set of n elements. The set of all k-subsets of V is denoted by $\binom{V}{k}$. A k-uniform hypergraph H consists of a vertex-set V(H) and an edge-set $E(H) \subseteq \binom{V(H)}{k}$. Two k-uniform hypergraphs G and H are isomorphic, if there is a bijection $\theta : V(G) \to V(H)$ such that $e \in E(G)$ if and only if $\{\theta(x)|x \in e\} \in E(H)$. The complement of a k-uniform hypergraph H is the hypergraph \overline{H} such that $V(\overline{H}) = V(H)$ and the edge set of which consists of all k-subsets of V(H) not in E(H) (in other words $E(\overline{H}) = \binom{V(H)}{k} - E$). A k-uniform hypergraph H is called self-complementary (s-c for short) if it is isomorphic with its complement \overline{H} . Isomorphism of a k-uniform self-complementary hypergraph onto its complement is called a self-complementing permutation (or s-c permutation).

The k-uniform s-c hypergraphs for k = 3 and k = 4 are studied in [3] and [6], respectively. The 2-uniform self-complementary hypergraphs are exactly self-complementary graphs. This class of graphs has been independently discovered by Ringel [4] and Sachs [5] who proved that an s-c graph of order n exists if and only if $n \equiv 0$ or $n \equiv 1 \pmod{4}$ or, equivalently, whenever $\binom{n}{2}$ is even. We prove a generalisation of this fact for k-uniform hypergraphs.

Theorem 1. Let n and k be positive integers, $k \leq n$. There is a k-uniform self complementary hypergraph of order n if and only if $\binom{n}{k}$ is even.

Let us give first some results which will be needed in the proof of Theorem 1.

For positive integers k and n we say that n contains k (we write $k \subset n$) if when k has 1 in a certain binary place, then n also has 1 in the corresponding binary place. That is, the binary representation of k can be obtained from that of n by changing some ones to zeros. For example, $6 \subset 14$ since $6 = 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$ and $14 = 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$ and, clearly, $5 \not\subset 14$. In [2] Hatcher and Riley solved a problem proposed by Kimball by proving the lemma which we give below (Moser has pointed out that this result is contained in [1]).

Lemma 1. $\binom{n}{k}$ is odd if and only if $k \subset n$.

Any positive integer n may be, in the unique way, written in the form $n = 2^l c$, where c is an odd integer. We denote then $\lambda(n) = l$. For any finite and nonempty set A we shall write $\lambda(A)$ in place of $\lambda(|A|)$, for short.

The following lemma is proved in [7].

Lemma 2. Let k, m and n be positive integers, and let $\sigma : V \to V$ be a permutation of a set V, |V| = n, with orbits O_1, \ldots, O_m . σ is a selfcomplementing permutation of a self-complementary k-uniform hypergraph, if and only if, for every $p \in \{1, \ldots, k\}$ and for every decomposition

$$k = k_1 + \ldots + k_p$$

of k $(k_j > 0 \text{ for } j = 1, ..., p)$, and for every subsequence of orbits

$$O_{i_1}, \ldots, O_{i_n}$$

such that $k_j \leq |O_{i_j}|$ for j = 1, ..., p, there is a subscript $j_0 \in \{1, ..., p\}$ such that

$$\lambda(k_{j_0}) < \lambda(O_{i_{j_0}}).$$

Proposition 1. Let n and k be two non negative integers, k < n. The following two conditions are equivalent.

(1) $\binom{n}{k}$ is odd.

200

A NOTE ON *k*-Uniform Self-Complementary ...

(2) For every non negative integer l such that $k = a2^{l} + s$, where a is odd and $0 \le s < 2^{l}$ we have $n \in \{2^{l} + s, \dots, 2^{l+1} - 1\} \pmod{2^{l+1}}$.

Proof. Put $k = \sum_{i=0} c_i 2^i$ and $n = \sum_{i=0} d_i 2^i$, where $c_i, d_i \in \{0, 1\}$ for every *i*. Let us suppose first that $\binom{n}{k}$ is odd. Then, by Lemma 1, for every *i*, $c_i = 1$ implies $d_i = 1$. Note that $k = a2^l + s$, where *a* is odd and $0 \le s < 2^l$, means exactly that $c_l = 1$ and $\sum_{i=0}^{l-1} c_i 2^i = s$. Since $d_i = 1$ whenever $c_i = 1$, we have $\sum_{i=0}^{l} d_i 2^i \ge 2^l + s$ for every *l* such that $c_l = 1$ (and, clearly, $\sum_{i=0}^{l} d_i 2^i < 2^{l+1}$).

If $\binom{n}{k}$ is even then, again by Lemma 1, there is l_0 such that $c_{l_0} = 1$ and $d_{l_0} = 0$. Hence $k = a2^{l_0} + s$, with a odd and $0 \le s = \sum_{i=0}^{l_0-1} c_i 2^i < 2^{l_0}$, and $n = b2^{l_0+1} + \sum_{i=0}^{l_0-1} d_i 2^i$. Since $\sum_{i=0}^{l_0-1} d_i 2^i < 2^{l_0}$, we have $n \in \{0, \ldots, 2^{l_0} - 1\}$ (mod 2^{l_0+1}) $\subset \{0, \ldots, 2^{l_0} + s - 1\}$ (mod 2^{l_0+1}) and the proposition is proved.

Proposition 1 is clearly equivalent to the following.

Proposition 2. Let n and k be two non negative integers, k < n. The following two statements are equivalent.

- (1) $\binom{n}{k}$ is even.
- (2) There is a non negative integer l_0 such that $k = a_0 2^{l_0} + s_0$, where a_0 is odd, $0 \le s_0 < 2^{l_0}$, and $n \in \{0, \dots, 2^{l_0} + s_0 1\} \pmod{2^{l_0+1}}$.

Lemma 3. Let l, k, s and n be non negative integers such that k < n, $k = a2^{l} + s$, a is odd, $s < 2^{l}$. If $n \in \{0, \ldots, 2^{l} + s - 1\} \pmod{2^{l+1}}$ then there is a k-uniform self-complementary hypergraph of order n.

Proof. Let us write n in the form $n = b2^{l+1} + r$, where $0 \le r < 2^l + s$, and let σ be a permutation of an n-set V such that it has b orbits O_1, \ldots, O_b , each of which having its cardinality equal to 2^{l+1} , and one orbit O_{b+1} with $|O_{b+1}| = r$. Applying Lemma 2 we shall prove that σ is the self-complementing permutation of a self-complementary k-uniform hypergraph.

Suppose, contrary to our claim, that σ is not s-c permutation of any s-c k-uniform hypergraph. Then, by Lemma 2, there is a decomposition of k, $k = k_1 + \ldots + k_p$ and a subsequence O_{i_1}, \ldots, O_{i_p} of O_1, \ldots, O_{b+1} such that $0 < k_j \leq |O_{i_j}|$ and $\lambda(k_j) \geq \lambda(O_{i_j})$ for $j = 1, \ldots, p$. Clearly, we have $k_j = |O_{i_j}| = 2^{l+1}$ whenever $i_j \neq b+1$. Hence there exists j_0 such that $i_{j_0} = b+1$ and $k_{j_0} = k - \sum_{j \neq j_0} k_j = (2^l a + s) - (p-1)2^{l+1} = 2^l (a-2(p-1)) + s$. Observe that a-2(p-1) > 0 is positive and odd, so we have $k_{j_0} \geq 2^l + s > r = |O_{b+1}|$. This contradicts our assumption that $|O_{b+1}| \geq k_{j_0}$.

Note that if there is a k-uniform s-c hypergraph of order n then, clearly, $\binom{n}{k}$ is even. Now the proof of Theorem 1 follows by Lemma 3 and Proposition 2.

Acknowledgement

The research was partially supported by AGH local grant No. 11 420 04.

References

- [1] J.W.L. Glaisher, On the residue of a binomial coefficient with respect to a prime modulus, Quarterly Journal of Mathematics **30** (1899) 150–156.
- [2] S.H. Kimball, T.R. Hatcher, J.A. Riley and L. Moser, Solution to problem E1288: Odd binomial coefficients, Amer. Math. Monthly 65 (1958) 368–369.
- [3] W. Kocay, Reconstructing graphs as subsumed graphs of hypergraphs, and some self-complementary triple systems, Graphs Combin. 8 (1992) 259–276.
- [4] G. Ringel, Selbstkomplementäre Graphen, Arch. Math. 14 (1963) 354–358.
- [5] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962) 270–288.
- [6] A. Szymański, A note on self-complementary 4-uniform hypergraphs, Opuscula Math. 25/2 (2005) 319–323.
- [7] A.P. Wojda, Self-complementary hypergraphs, Discuss. Math. Graph Theory 26 (2006) 217–224.

Received 16 October 2007 Revised 1 December 2008 Accepted 1 December 2008