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Abstract

We continue the study on backbone colorings, a variation on clas-
sical vertex colorings that was introduced at WG2003. Given a graph
G = (V, E) and a spanning subgraph H of G (the backbone of G),
a λ-backbone coloring for G and H is a proper vertex coloring V →
{1, 2, . . .} of G in which the colors assigned to adjacent vertices in H
differ by at least λ. The algorithmic and combinatorial properties of
backbone colorings have been studied for various types of backbones
in a number of papers. The main outcome of earlier studies is that the
minimum number ` of colors, for which such colorings V → {1, 2, . . . , `}
exist, in the worst case is a factor times the chromatic number (for

∗An extended abstract [6] of this paper appeared in the Proceedings of the 33rd Con-
ference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2007).
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path, tree, matching and star backbones). We show here that for split
graphs and matching or star backbones, ` is at most a small additive
constant (depending on λ) higher than the chromatic number. Our
proofs combine algorithmic and combinatorial arguments. We also in-
dicate other graph classes for which our results imply better upper
bounds on ` than the previously known bounds.

Keywords: backbone coloring, split graph, matching, star.
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1. Introduction and Related Research

Coloring has been a central area in Graph Theory for more than 150 years. In
[3] backbone colorings are introduced, motivated and put into the following
general framework of coloring problems related to frequency assignment.

Given two graphs G1 and G2 with the property that G1 is a spanning
subgraph of G2, one considers the following type of coloring problems: De-
termine a coloring of (G1 and) G2 that satisfies certain restrictions of type
1 in G1, and restrictions of type 2 in G2.

Many known coloring problems fit into this general framework, such as
distance-2 coloring, radio coloring, radio labeling, and so on, see [2] for an
overview.

In the WG2003 paper [3], a situation is modeled in which the transmit-
ters form a network in which a certain substructure of adjacent transmitters
(called the backbone) is more crucial for the communication than the rest
of the network. This means more restrictions are put on the assignment of
frequency channels along the backbone than on the assignment of frequency
channels to other adjacent transmitters. The backbone could, e.g., model
hot spots in a (sensor) network where a very busy pattern of communications
takes place (the sensors with the highest computational power and energy),
whereas the other adjacent transmitters supply a more moderate service.

Postponing the relevant definitions to the next subsections, we consider
the problem of coloring the graph G2 (that models the whole network) with
a proper vertex coloring such that the colors on adjacent vertices in G1 (that
models the backbone) differ by at least λ ≥ 2. This is a continuation of the
study in [3] and [5]. Just as in [5] we consider two types of backbones in this
paper: matchings and disjoint unions of stars. We are interested in split
graphs for the following reasons.
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1. In all worst cases the matching and star backbone coloring numbers
grow proportionally to a multiplicative factor times the chromatic number
[5]. Although these upper bounds are tight, they are probably only reached
for very special graphs. To analyze this further, we turn to study the special
case of split graphs. Split graphs have nice structural properties, which may
lead to substantially better upper bounds on the number of colors in this
context of backbone colorings. This was motivated by a similar study in [3].
There, the authors showed that for split graphs and tree (path) backbones
the 2-backbone coloring number differs at most 2 (1) from the chromatic
number.

2. Every graph can be turned into a split graph by considering any
(e.g., a maximum or maximal) independent set and turning the remaining
vertices into a clique. The number of colors needed to color the resulting
split graph is an upper bound for the number of colors one needs to color
the original graph. This way we find classes of non-split graphs for which
our results also imply better upper bounds.

3. Although split graphs have a very special structure, they are not
completely artificial in the context of, e.g., sensor networks. As an exam-
ple, consider a sensor network within a restricted area (like a lab) with two
distinct types of nodes: weak sensors with a very low battery capacity, like
heat sensors, smoke sensors, body tags, etc., and PCs, laptops, etc., with
much stronger power properties. The weak sensors are very unlikely to in-
terfere with one another (especially if they are put with a certain purpose on
fixed locations), while the other equipment is likely to interfere (within this
restricted area). Weak sensors interfere with pieces of the other equipment
within their vicinity. In such cases, the situation can be modeled as a split
graph.

2. Terminology

For undefined terminology we refer to [1]. Let G = (V,E) be a graph, where
V = VG is a finite set of vertices and E = EG is a set of unordered pairs
of two different vertices, called edges. A function f : V → {1, 2, 3, . . .} is a
vertex coloring of V if |f(u)−f(v)| ≥ 1 holds for all edges uv ∈ E. A vertex
coloring f : V → {1, . . . , k} is called a k-coloring, and the chromatic number

χ(G) is the smallest integer k for which there exists a k-coloring. A set
V ′ ⊆ V is independent if its vertices are mutually nonadjacent; it is a clique

if its vertices are mutually adjacent. By definition, a k-coloring partitions
V into k independent sets V1, . . . , Vk.
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Let H be a spanning subgraph of G, i.e., H = (VG, EH) with EH ⊆ EG.
Given an integer λ ≥ 1, a vertex coloring f is a λ-backbone coloring of (G,H),
if |f(u) − f(v)| ≥ λ holds for all edges uv ∈ EH . A λ-backbone coloring
f : V → {1, . . . , `} is called a λ-backbone `-coloring. The λ-backbone coloring

number bbcλ(G,H) of (G,H) is the smallest integer ` for which there exists
a λ-backbone `-coloring. Since a 1-backbone coloring is equivalent to a
vertex coloring, we assume from now on that λ ≥ 2.

For q ≥ 1, a star Sq is a complete 2-partite graph with independent
sets V1 = {r} and V2 with |V2| = q; the vertex r is called the root and
the vertices in V2 are called the leaves of the star Sq. For the star S1, we
arbitrarily choose one of its two vertices to be the root. In our context
a matching M is a collection of pairwise vertex-disjoint stars that are all
copies of S1. A matching M of a graph G is called perfect if it is a spanning
subgraph of G. We call a spanning subgraph H of a graph G a star backbone

of G if H is a collection of pairwise disjoint stars, and a matching backbone

if H is a perfect matching.

Figure 1. Matching and star backbones.

See Figure 1 for an example of a graph G with a matching backbone M
(left) and a star backbone S (right). The thick edges are matching or star
edges, respectively. The grey circles indicate root vertices of the stars in S.

Obviously, bbcλ(G,H) ≥ χ(G) holds for any backbone H of a graph G.
We are interested in tight upper bounds for bbcλ(G,H) in terms of χ(G).

3. New Results

For convenience we give the definition of a split graph. A split graph is a
graph whose vertex set can be partitioned into a clique and an independent
set, with possibly edges in between. The size of a largest clique in G is
denoted by ω(G). The size of a largest independent set in G is denoted
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by α(G). Split graphs were introduced by Hammer & Földes [8]; see also
the book [7] by Golumbic. They form an interesting subclass of the class
of perfect graphs. Hence, split graphs satisfy χ(G) = ω(G), and many NP-
hard problems are polynomially solvable when restricted to split graphs. The
combinatorics of most graph problems becomes easier when the problem is
restricted to split graphs. In this paper we study the special case of λ-
backbone colorings of split graphs where their backbones are matchings or
stars.

3.1. Matching backbones

In this section we present sharp upper bounds on the λ-backbone coloring
numbers of split graphs along matching backbones. Our result on match-
ing backbones is summarized in the next theorem which will be proven in
Section 4.. We would like to mention here that this proof turned out to be
far more involved than for the other studied backbones of split graphs. In
particular, we use two coloring heuristics and elements of extremal graph
theory to complete the proof.

Theorem 3.1. Let λ ≥ 2 and let G = (V,E) be a split graph with χ(G) =
k ≥ 2. For every matching backbone M = (V,EM ) of G,

bbcλ(G,M) ≤































λ + 1 if k = 2, (i)

k + 1 if k ≥ 4 and λ ≤ min{ k
2
, k+5

3
}, (ii)

k + 2 if k = 9 or k ≥ 11 and k+6

3
≤ λ ≤ dk

2
e, (iii)

dk
2
e + λ if k = 3, 5, 7 and λ ≥ d k

2
e, (iv)

dk
2
e + λ + 1 if k = 4, 6 or k ≥ 8 and λ ≥ d k

2
e + 1. (v)

All the bounds are tight.

We will now show how these results can yield upper bounds for non-split
graphs. For this purpose we first implicitly define a function f by the upper
bounds bbcλ(G,M) ≤ f(λ, χ(G)) from the above theorem. Note that f is
a nondecreasing function in λ and χ(G). Let G = (V,E) be a graph and
V1 ⊆ V be an independent set with |V1| = α(G), and let V2 = V \ V1.
Let W be the subset of V1 consisting of vertices that are adjacent to all
vertices in V2. If W is non-empty, then we choose one v ∈ W and move
it to V2, i.e., V2 := V2 ∪ {v}. The meaning of this choice will become
clear after the next sentence. Let S(G) be the split graph with clique V2
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and independent set V1. Since we moved one vertex from W to V2 in case
W 6= ∅, we guarantee that no vertex of V1 is adjacent to all vertices of V2. So
χ(S(G)) = ω(S(G)) = |V (G)| −α(G) or χ(S(G)) = |V (G)| −α(G) + 1. Let
the edges between V1 and V2 be defined according to E. Then we obtain:
bbcλ(G,M) ≤ bbcλ(S(G),M) ≤ f(λ, χ(S(G))) ≤ f(λ, |V (G)| − α(G) + 1).

When can these bounds be useful for other (non-split) graphs? To
answer this question, we should compare the new bound f(λ, |V (G)|−
α(G) + 1) with the bound (2 − 2

λ+1
)χ(G) from [5].

To get some insight into situations for which this gives an improvement,
we apply a very rough calculation in which we use that the first bound is
roughly of order |V (G)| − α(G) (disregarding some additive constant de-
pending on λ), and the second one is roughly of order 2χ(G) (disregarding
the factor 2

λ+1
). Adopting these rough estimates, the first bound is better

than the second one whenever |V (G)| − α(G) ≤ 2χ(G). This is, of course,
the case when G is a split graph, since then |V (G)| −α(G) ≤ ω(G) = χ(G).
Now suppose we have a graph G with the following structure: An inde-
pendent set I of G with cardinality α(G) shares at most one vertex with a
clique C of G with cardinality ω(G), and r = |V (G)\ (I ∪C)| ≤ ω(G). Then
clearly |V (G)|−α(G) ≤ 2ω(G) ≤ 2χ(G). This gives large classes of non-split
graphs for which the new bounds are better than the old bounds. Also if we
apply a more careful analysis: If r is small compared to (1− 2

λ+1
)ω(G) + λ,

we get an improvement. We omit the details.

3.2. Star backbones

For split graphs with star backbones we obtained the following theorem. We
have chosen to leave the proof of this result out of this paper, since its case
analysis goes along the same lines as the proofs of previous results.

Theorem 3.2. Let λ ≥ 2 and let G = (V,E) be a split graph with χ(G) =
k ≥ 2. For every star backbone S = (V,ES) of G,

bbcλ(G,S) ≤

{

k + λ if either k = 3 and λ ≥ 2 or k ≥ 4 and λ = 2,
k + λ − 1 in the other cases.

All the bounds are tight.

We can apply the results to obtain upper bounds for certain non-split graphs
that improve bounds in [5], in a similar way as we did in the case of matching
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backbones, using a function g(λ, χ(G)) which is implicitly defined by the
upper bounds from Theorem 3.2. We omit the details.

4. Proof of Theorem 3.1

Let G = (V,E) be a split graph with a perfect matching backbone M =
(V,EM ). A vertex u ∈ V is called a matching neighbor of v ∈ V if uv ∈ EM ,
denoted by u = mn(v).

Let C, I be two vertex-disjoint subsets of V such that C is a clique and
I is an independent set of G with mn(v) ∈ C for all v ∈ I. We note that,
if C is a largest clique of V , then the condition mn(v) ∈ C for all v ∈ I is
immediately satisfied. A set of nonneighbors of an element u ∈ C is defined
as the set of vertices v ∈ I for which uv /∈ E. Similarly, a set of nonneighbors

of an element v ∈ I is defined as the set of vertices u ∈ C for which vu /∈ E.
The set of nonneighbors of a vertex u will be denoted by NN(u). Note that
in G, every vertex of I has at least one nonneighbor in C, if C is a largest
clique of G. However, for a vertex u ∈ C, the set NN(u) may be empty.
Given C, I as above, a splitting set of cardinality p, named an s-set for short,
is a subset {v1, . . . , vp} ⊆ I such that







⋃

i=1...p

NN(vi)







⋂







⋃

i=1...p

{mn(vi)}







= ∅.

Note that if (G,M) has an s-set of cardinality p, then it also has an s-set of
cardinality q, for all q ≤ p. See Figure 2 for an example of a split graph with
a matching backbone that has an s-set: the thick edges form the matching
backbone and the grey vertices form the s-set.

I C

Figure 2. A graph with a matching backbone that has an s-set.

We need the following technical lemmas on the existence of certain s-sets
for our proof.
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Lemma 4.1. Let G = (V,E) be a split graph with a perfect matching back-

bone M = (V,EM ). Let C, I be two vertex-disjoint subsets of V such that

C is a clique of G with |C| = k, and I is an independent set of G with

|I| = i. If i = k and every vertex in I has at most one nonneighbor in C
and every vertex in I has exactly one matching neighbor in C and d k

3
e ≥ p,

then (G,M) has an s-set of cardinality p.

Proof. Below we partition the disjoint sets C and I in the sets C1, C2, I1

and I2 with cardinalities c1, c2, i1 and i2, respectively. Then we show that
one can pick at least d i1

3
e vertices from I1 and at least d i2

3
e vertices from I2

to form an s-set with cardinality q ≥ d i1
3
e+ d i2

3
e ≥ dk

3
e, which will prove the

lemma.

C and I are split up in the following way: C1 consists of all the vertices in
C that either have zero nonneighbors in I or have at least two nonneighbors
in I or have exactly one nonneighbor in I, whose matching neighbor in C has
no nonneighbors in I; C2 consists of all other vertices in C. Obviously, they
all have exactly one nonneighbor in I; I1 consists of the matching neighbors
of the vertices in C1; I2 consists of the matching neighbors of the vertices
in C2.

Clearly, i1 = c1 and i2 = c2. Now assume that there are `1 vertices in C1

that have no nonneighbors in I and put them in L1. Also assume that there
are `2 vertices in C1 that have at least two nonneighbors in I and put them
in L2. Finally, assume that there are `3 vertices in C1 that have exactly one
nonneighbor in I, whose matching neighbor has no nonneighbors in I and
put them in L3. Then `1 ≥ `2 and `1 ≥ `3 and c1 = `1 + `2 + `3, so c1 ≤ 3`1.

Let L′

1, L′

2 and L′

3 be the sets of matching neighbors of the vertices in L1,
L2 and L3, respectively. Now we pick from I1 the `1 vertices in L′

1 and put
them in the s-set. Notice that these vertices do not violate the definition of
an s-set, because the set of their nonneighbors and the set of their matching
neighbors are two disjoint sets. The matching neighbors of the nonneighbors
of the `1 vertices in the s-set are either in L′

2 or in L′

3, so we exclude the
vertices in these two sets for use in the s-set. On the other hand, the
matching neighbors of the `1 vertices in the s-set do not have nonneighbors,
so we do not have to worry about that. From the observations above it is
clear that we can pick `1 ≥ d c1

3
e = d i1

3
e vertices from I1 that can be used

in the s-set. Moreover, any vertices from I2 that we will put in the s-set do
not conflict with the vertices from L′

1 that are in the s-set already. So the
only thing we have to do now is to pick at least d i2

3
e vertices from I2 that
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can be used in the s-set. Simply pick an arbitrary vertex from I2 and put it
in the s-set. Now delete from I2 the matching neighbor of its nonneighbor
and the unique nonneighbor of its matching neighbor if they happen to be
in I2. Continuing this way, we ’throw away’ at most two vertices of I2 for
every vertex of I2 that we put in the s-set. It is easy to see that we can
pick at least d i2

3
e vertices from I2 that we can put in the s-set. Therefore,

the cardinality of the s-set will be at least d i1
3
e + d i2

3
e ≥ d i

3
e = dk

3
e, which

proves the lemma.

Lemma 4.2. Let G = (V,E) be a split graph with a perfect matching back-

bone M = (V,EM ). Let C, I be a partition of V such that C is a maximum
clique with |C| = k, and I is an independent set with |I| = i. If i ≤ k
and every vertex in I has exactly one nonneighbor in C and d k

3
e ≥ p, then

(G,M) has an s-set S with |S| = p − k−i
2

such that there are no matching

edges between elements of the set of nonneighbors of vertices of S.

Proof. To prove this lemma, we first define three disjoint subsets of C:
C1 consists of the i vertices of C that have a matching neighbor in I; C2

contains, for each matching edge in C for which both end vertices have at
least one nonneighbor in I, the end vertex with the fewest nonneighbors in
I. If both end vertices have the same number of nonneighbors in I, then
one arbitrary end vertex will be in C2; C3 contains, for each matching edge
in C for which both end vertices have at least one nonneighbor in I, the end
vertex that is not in C2.

Let m be the sum of the number of nonneighbors of the vertices in C2

and let n be the sum of the number of nonneighbors of vertices in C3. Then
clearly, n ≥ m and there are at least m + n vertices in C1 that have zero
nonneighbors in I.

We now give a partition of I into four sets, I1, . . . , I4 with |I1| = i1,
|I2| = i2, |I3| = i3, and |I4| = i4. We show that one can pick n vertices from
I2 and at least p − k−i

2
− n vertices from I4 that together will form an s-set

of (G,M) with cardinality at least p− k−i
2

. It will turn out that this will be
sufficient to prove the lemma.

I1 consists of all the nonneighbors of the vertices in C2; I2 consists of
the matching neighbors of n vertices in C1 that have no nonneighbors in
I and whose matching neighbors are not already in I1; I3 consists of the
matching neighbors of the nonneighbors of the elements of I2 that are in I
but not in I1; I4 consists of the other vertices of I.
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It is easily verified that i1 = m, i2 = n, i3 ≤ n and i4 ≥ i − (2n + m).
By construction of I2, the matching neighbor of each vertex in I2 does not
have any nonneighbors. Hence, I2 is an s-set of (G,M). Furthermore, the
matching neighbors of the nonneighbors of the vertices in I2 are in (I1 ∪ I3)
or not in I at all. So, if we add vertices from I4 to I2, we only have to check
whether the condition of being an s-set is satisfied for any pair of vertices
of I4.

Let C4 ⊂ C with |C4| = k4 be the set of the matching neighbors of I4

in C. Every vertex in I4 has at most one nonneighbor in C4 and exactly
one matching neighbor in C4. Moreover, i4 = k4 and, since n ≥ m and
i4 ≥ i − (2n + m), we find that

⌈

k4

3

⌉

=

⌈

i4
3

⌉

≥

⌈

k − (k − i) − (2n + m)

3

⌉

≥

⌈

k

3

⌉

−

⌈

k − i

3

⌉

−

⌈

2n + m

3

⌉

≥ p −

⌈

k − i

2

⌉

− n = p −
k − i

2
− n.

Thus, according to Lemma 4.1, (G,M) has an s-set I ′

4 ⊆ I4 of cardinality
p− k−i

2
−n. As observed before, then S = I2 ∪ I ′4 is also an s-set of (G,M).

The cardinality of this set is |S| = n + p− k−i
2

− n = p− k−i
2

. We finish our
proof of this lemma by observing that there is no matching edge between
the two nonneighbors of any two vertices x, y ∈ S. If such a matching edge
would exist, then one of the two vertices x, y would be in I1. This is a
contradiction.

4.1. Proof of the bounds in Theorem 3.1

First of all, note that for technical reasons we split up the proof in more
and different subcases than there appear in the formulation of the theorem.
The exact relation between the subcases in the theorem and those in the
following proof is given as follows: Subcase i of the theorem is proven in a.
The proof of subcase ii can be found in b. For even k the proof of subcase
iii is given in c, for odd k in d. The three cases with k = 3 and λ = 2, k = 5
and λ = 3 and k = 7 and λ = 4 from subcase iv are treated in b, the others
in e. Finally, subcase v is proven in f for even k and in g for odd k.

In all subcases, G = (V,E) is a split graph with a perfect matching
backbone M = (V,EM ), and we let C, I be a partition of V such that C
with |C| = k is a clique of maximum size, and I is an independent set with
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|I| = i. Without loss of generality, we assume that every vertex in I has
exactly one nonneighbor in C.

Subcase a. If k = 2 then G is bipartite, and we use colors 1 and λ + 1.

Subcase b. Here we consider the cases with k ≥ 4 and λ ≤ min{ k
2
, k+5

3
}

together with the three separate cases with k = 3 and λ = 2, k = 5 and
λ = 3 and k = 7 and λ = 4. The reason for this is that these are exactly the
cases for which we obtain k ≥ 2λ−1 and d k

3
e ≥ λ−1 and for which we need

show the existence of a λ-backbone coloring using at most k + 1 colors. By
Lemma 4.2, we find that (G,M) has an s-set of cardinality y = λ − 1 − k−i

2

such that there are no matching edges between the nonneighbors of vertices
in the s-set. We make a partition of C into six disjoint sets C1, . . . , C6, with
cardinalities c1, . . . , c6, respectively, as follows: C1 consists of those vertices
in C that have a matching neighbor in C and a nonneighbor in the s-set.
Notice that by definition of the s-set, there are no matching edges between
vertices in C1; C2 consists of those vertices in C that have a matching
neighbor in I and a nonneighbor in the s-set; C3 contains one end vertex
of each matching edge in C that has no end vertex in C1; C4 consists of
those vertices in C whose matching neighbor is in I and that are neither
matching neighbor nor nonneighbor of any vertex in the s-set; C5 consists of
those vertices in C that have a matching neighbor in the s-set; C6 consists
of those vertices in C that have a matching neighbor in C and that are not
already in C1 or C3. It is easily verified that

c1 + c2 ≤ y, c3 =
k − i

2
− c1, c4 = i − y − c2,

c5 = y, c6 =
k − i

2
,

6
∑

i=1

ci = k.

An algorithm that constructs a feasible λ-backbone coloring of (G,M) with
at most k + 1 colors is given below. In this algorithm I ′ denotes the set of
vertices of I that are not in the s-set.

Coloring Algorithm 1

1 Color the vertices in C1 with colors from the set {1, . . . , c1}.

2 Color the vertices in C2 with colors from the set {c1 + 1, . . . , c1 + c2}.

3 Color the vertices in the s-set by assigning to them the same colors as
their nonneighbors in C1 or C2. Note that different vertices in the s-set
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can have the same nonneighbor in C1 or C2, so a color may occur more
than once in the s-set.

4 Color the vertices in C3 with colors from the set {c1 + c2 + 1, . . . , c1 +
c2 + c3}.

5 Color the vertices in C4 with colors from the set {c1 +c2 +c3 +1, . . . , c1 +
c2 + c3 + c4}.

6 Color the vertices in C5 with colors from the set {c1 + c2 + c3 + c4 +
1, . . . , c1 + c2 + c3 + c4 + c5}; start with assigning the lowest color from
this set to the matching neighbor of the vertex in the s-set with the lowest
color and continue this way.

7 Color the vertices in C6 with colors from the set {c1 + c2 + c3 + c4 + c5 +
1, . . . , c1 + c2 + c3 + c4 + c5 + c6}; start with assigning the lowest color
from this set to the matching neighbor with the lowest color in C1 ∪ C3

and continue this way.

8 Finally, color the vertices of I ′ with color k + 1.

We prove the correctness of this algorithm as follows. First, it is immediately
clear that vertices in C all get different colors and that vertices in I either get
a color that does not occur in C or get the same color as their nonneighbor
in C. There are now three types of matching edges for which we have to
verify that the distance between the colors of their end vertices is at least λ.

1. Matching edges in the clique. They have one end vertex in C1 ∪ C3 and
one end vertex in C6. It is easy to see that the smallest distance between
two colors here occurs in the matching edges that have one end vertex
in C3 and one end vertex in C6. This distance is c4 + c5 + c6. However,
c4 + c5 + c6 = i − c2 + k−i

2
≥ i − y + k−i

2
= i − λ + 1 + k−i

2
+ k−i

2
=

k − λ + 1 ≥ 2λ − 1− λ + 1 = λ, so the coloring causes no problems here.

2. Matching edges between the s-set and C. These are exactly y matching
edges. They have one end vertex in the s-set and one end vertex in C5, so
one end vertex gets a color from the set {1, . . . , c1 +c2} and the other end
vertex gets a color from the set {c1+c2+c3+c4+1, . . . , c1+c2+c3+c4+c5}.
This last set contains exactly y colors, but the first set may contain less
than y colors, because some of the colors of the first set may be used
more than once in the s-set. However, it is not too hard to see that the
smallest distance between colors here occurs in the matching edge with
colors 1 and c1+c2+c3+c4+1. This distance is equal to c1+c2+c3+c4 =
k−c5−c6 = k−y−k−i

2
= k−λ+1+k−i

2
−k−i

2
= k−λ+1 ≥ 2λ−1−λ+1 = λ,
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so the coloring is also feasible for these matching edges.

3. Matching edges between I ′ and C. They have one end vertex I ′ and one
end vertex in C2 ∪C4. It is clear that the smallest distance between two
colors on a matching edge of this type is equal to k +1− c1 − c2− c3 − c4.
This is equal to c5 + c6 + 1 = p + k−i

2
+ 1 = λ − 1 − k−i

2
+ k−i

2
+ 1 = λ,

so the coloring is feasible here as well.

These three checks show that the coloring provided by the algorithm indeed
is a proper λ-backbone coloring of (G,M) with k + 1 colors, which finishes
the proof of this case.

Subcase c. Here we consider the case k = 2m, m ≥ 6 and k+6

3
≤ λ ≤ k

2
.

We obtain k ≥ 2λ. We color the k vertices in C with colors from the sets
{2, . . . , k

2
+ 1} and {k

2
+ 2, . . . , k + 1}. If there are matching edges in C,

then we color them such that the first colors from both sets are assigned
to the end vertices of one matching edge, the second colors from both sets
are assigned to the end vertices of another matching edge, and so on. For
later reference we call this a greedy coloring. We can color up the two end
vertices of k

2
matching edges in C this way, which suffices. Vertices in I get

color k+2 if their matching neighbor in C is colored by a color from the first
set, and vertices in I get color 1 if their matching neighbor in C is colored
by a color from the second set. This yields a λ-backbone coloring of (G,M)
with at most k + 2 colors.

Subcase d. We now consider the case k = 2m + 1, m ≥ 4 and k+6

3
≤

λ ≤ k+1

2
. We obtain k ≥ 2λ− 1. For this case i is odd, otherwise there is no

perfect matching in G. If i = 1, then there are k−1

2
matching edges in C. We

can color their end vertices with colors from the two sets {1, . . . , k−1

2
} and

{k−1

2
+3, . . . , k+1} by a greedy coloring. The distance between the colors of

the end vertices of a matching edge in C is then k−1

2
+2 ≥ 2λ−2

2
+2 = λ+1.

For the other vertex in C we use color k−1

2
+ 1 and its matching neighbor

in I gets color k + 2. Note that k + 2 − k−1

2
− 1 = k+3

2
≥ 2λ+2

2
= λ + 1. If

3 ≤ i ≤ k, there are k−i
2

matching edges in C. We color their end vertices

with colors from the two sets {2, . . . , k−i
2

+ 1} and {k+i
2

+ 2, . . . , k + 1} by
a greedy coloring. The distance between the colors of the end vertices in
a matching edge in C is then k+i

2
≥ 2λ−1+i

2
≥ 2λ+2

2
= λ + 1. The other i

vertices in C are colored with colors from the sets { k−i
2

+ 2, . . . , k+3

2
} and

{k+3

2
+ 1, . . . , k+i

2
+ 1}. The cardinality of the first set is i+1

2
and of the

second set i−1

2
, adding up to exactly i. Vertices in I get color k + 2 if



156 H. Broersma, B. Marchal, D. Paulusma and A.N.M. Salman

their matching neighbor in C is colored by a color from the first set, or
get color 1 if their matching neighbor in C is colored by a color from the
second set. Notice that k + 2 − k+3

2
= 2k+4−k−3

2
= k+1

2
≥ 2λ

2
= λ and

k+3

2
+ 1 − 1 = k+3

2
≥ 2λ+2

2
= λ + 1, so this yields a λ-backbone coloring of

(G,M) with at most k + 2 colors.

Subcase e. Next, we consider the case k = 3, 5, 7 and λ ≥ k+6

3
. We

obtain λ > k+1

2
and dk

3
e = k−1

2
. By Lemma 4.2, we find that (G,M)

has an s-set of cardinality z = k−1

2
− k−i

2
= i−1

2
such that there are no

matching edges between the nonneighbors of vertices in the s-set. We have
to construct a λ-backbone coloring of (G,M) using at most k+1

2
+ λ colors.

Obviously, colors from the set { k+1

2
+1, . . . , λ} can not be used at all, so we

must find a λ-backbone coloring with colors from the sets {1, . . . , k+1

2
} and

{λ + 1, . . . , k+1

2
+ λ}. We partition C in six disjoint sets exactly like we did

in (b). For the cardinalities of the sets, we now find the following relations:

c1 + c2 ≤
i − 1

2
, c3 =

k − i

2
− c1, c4 = i − z − c2,

c5 = z, c6 =
k − i

2
,

6
∑

i=1

ci = k.

The following variation on Coloring Algorithm 1 constructs a feasible λ-
backbone coloring of (G,M).

Coloring Algorithm 2

1 - 5 are the same as in Coloring Algorithm 1.

6 Color the vertices in C5 with colors from the set {λ+1, . . . , λ+ c5}; start
with assigning the lowest color from this set to the matching neighbor of
the vertex in the s-set with the lowest color and continue this way.

7 Color the vertices in C6 with colors from the set {λ+ c5 +1, . . . , λ+ c5 +
c6}; start with assigning the lowest color from this set to the matching
neighbor with the lowest color in C1 ∪ C3 and continue this way.

8 Finally, color the vertices in I ′ with color k+1

2
+ λ.

We prove the correctness of this algorithm as follows. Since
∑

4

i=1
ci = k+1

2
,

it is clear that vertices in C all get different colors and that vertices in I
either get a color that does not occur in C or get the same color as their
nonneighbor in C. Again, there are three types of matching edges for which
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we have to verify that the distance the colors of their end vertices is at
least λ.

1. Matching edges in the clique. They have one end vertex in C1 ∪ C3 and
one end vertex in C6. It is easy to see that the smallest distance occurs in
the matching edges that have one end vertex in C3 and one end vertex in
C6. This distance is λ+ c5 + c6− c1− c2− c3 = λ+ i−1

2
+ k−i

2
− k−i

2
− c2 ≥

λ + i−1

2
− i−1

2
= λ.

2. Matching edges between the s-set and C. These are exactly z = i−1

2

matching edges. They have one end vertex in the s-set and one end
vertex in C5, so one end vertex gets a color from the set {1, . . . , c1 + c2}
and the other gets a color from the set λ + 1, . . . , λ + c5}. This last set
contains exactly z colors, but the first set may contain less than z colors,
because some of the colors of the first set may be used more than once
in the s-set. However, it can be verified that the smallest distance here
occurs in the matching edge with colors 1 and λ + 1 and this distance is
equal to λ.

3. Matching edges between I ′ and C. They have one end vertex in I ′ and
one end vertex in C2 ∪ C4. It is clear that the smallest distance in a
matching edge of this type is equal to k+1

2
+ λ − c1 − c2 − c3 − c4. This

is equal to k+1

2
+ λ − k−i

2
− i + i−1

2
= λ + k+1−k+i−2i+i−1

2
= λ.

These observations show that the coloring induced by Coloring Algorithm
2 indeed is a proper λ-backbone coloring of (G,M) using only colors from
{1, . . . , k+1

2
+ λ}.

Subcase f. We consider the case k = 2m, m ≥ 2 and λ ≥ k
2

+ 1. For
this case we find that i is even, otherwise there is no perfect matching of
G. If i = 0, then there are k

2
matching edges in C. We can use color

pairs {1, λ + 1}, {2, λ + 2}, . . . , { k
2
, k

2
+ λ} for their end vertices, because

λ + 1 > k
2
. If i ≥ 2, then there are k−i

2
matching edges in C. We can

color their end vertices with colors from the two sets {2, . . . , k−i
2

+ 1} and

{ i
2

+ λ + 1, . . . , k
2

+ λ}, using greedy coloring. The distance between the
two colors on every matching edge in C is then i

2
+ λ − 1 ≥ λ. The other

i vertices in C are colored with colors from the sets { k−i
2

+ 2, . . . , k
2

+ 1}
and {λ + 1, . . . , i

2
+ λ}, which are exactly i colors. The colors in the first

set have distance at least λ to color k
2

+ λ + 1, so we color the matching
neighbors in I of the vertices in C that are colored with colors from this set
with color k

2
+ λ + 1. The colors in the second set have distance at least
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λ to color 1, so we color the matching neighbors in I of the vertices in C
that are colored with colors from this set with color 1. This yields a feasible
λ-backbone coloring of (G,M) with at most k

2
+ λ + 1 colors.

Subcase g. Finally, we consider the case k = 2m + 1, m ≥ 4 and
λ ≥ k+1

2
+1. For this case we find that i is odd, otherwise there is no perfect

matching of G. There are k−i
2

matching edges in C. We can color their end

vertices with colors from the two sets {2, . . . , k−i
2

+1} and { i+3

2
+λ, . . . , k+1

2
+

λ} by a greedy coloring. Notice that i+3

2
+ λ − k−i

2
− 1 = i+3+2λ−k+i−2

2
=

2i+1−k+2λ
2

≥ 2i+1−k+k+2

2
> 0, so that these sets are disjoint. The distance

between the two colors on every matching edge in C is i−1

2
+ λ ≥ λ. The

other i vertices in C are colored with colors from the sets { k−i
2

+2, . . . , k+1

2
}

and {λ+1, . . . , i+1

2
+λ}, which are exactly i colors that have not been used

so far. Vertices in I get color k+1

2
+ λ + 1 if their matching neighbor in C is

colored by a color from the first set, and get color 1 otherwise. This yields
a λ-backbone coloring of (G,M) with at most k+1

2
+ λ + 1 colors.

4.2. Proof of the tightness of the bounds in Theorem 3.1

Again, different subcases will be used in the proof than there appear in the
formulation of the theorem. The case k = 2 is trivial.

We first consider the subcases ii, iv and the cases with even k in subcase
v from Theorem 3.1: subcase ii together with the three cases k = 3 and
λ = 2, k = 5 and λ = 3 and k = 7 and λ = 4 from subcase iv are proven in
a. The other cases from subcase iv are treated in b, whereas subcase v for
even k can be found in c.

For all three cases a, b, c, we consider a split graph G with matching
backbone M that is defined as follows. G is partitioned in a clique of k
vertices v1, . . . , vk and an independent set of k vertices u1, . . . , uk. Every
vertex ui for i = 1, . . . , k−1 is adjacent to all vertices vj for i = 1, . . . , k−1.
The vertex uk is adjacent to all vertices vj for j = 2, . . . , k. The perfect
matching M contains the k edges uivi for i = 1, . . . , k.

Subcase a. For these cases, we must show that there is no feasible λ-
backbone coloring of (G,M) using less than k + 1 colors. Suppose to the
contrary that bbcλ(G,M) ≤ k. Then all k colors are used in the clique
and the vertices ui with i = 1, . . . , k − 1 must get the same color as the
color of vk. However, one color can be used at most k − λ ≤ k − 2 times in
the independent set, since else the corresponding matching neighbors in the
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clique can not be colored, so we find a contradiction.

Subcase b. Here k = 3, 5 or 7 and λ ≥ k+6

3
. Suppose to the contrary

that bbcλ(G,M) ≤ k−1

2
+ λ. Then colors from the set { k−1

2
+ 1, . . . , λ} can

not be used at all, since for these colors there are no colors at distance of
at least λ within the color set {1, . . . , k−1

2
+ λ}. Since there are only k − 1

colors left to use and there is no way to color a clique of size k with only
k − 1 colors, we find a contradiction

Subcase c. Suppose to the contrary that bbcλ(G,M) ≤ k
2

+ λ. Then

colors from the set { k
2

+ 1, . . . , λ} can not be used at all, since for these
colors there are no colors at a distance of at least λ within the color set
{1, . . . , k

2
+ λ}. Therefore, only the other k colors can be used and they all

appear in the clique. The vertices ui for i = 1, . . . , k − 1 must then get the
same color as vk, but then we find a contradiction, since one color can be
used at most k

2
≤ k − 2 times in the independent set.

We are now ready to prove the remaining subcases of Theorem 3.1. Subcase
iii of the theorem will shortly be proven in d, whereas the proof of subcase
v for odd values of k can be found in e.

We first need the following definition. Let G be a split graph on 2k
vertices with k = ω(G) = α(G). Let C, I be a partition of V such that C is
a largest clique, and I is an independent set of G. Let G have a matching
backbone M that contains k edges between C and I. We let every vertex
in I have exactly one nonneighbor in C, and we let the matching edges
together with the nonneighbor relations (see these nonneighbor relations as
some imaginary edges) form a cycle of length 2k. By Ck,k, we then mean
the representation of G only by its vertices, its matching edges and the
nonneighbor relations between C and I, i.e., Ck,k is the graph obtained
from G after deleting all edges between two vertices in C together with all
nonmatching edges between vertices from I and C, and after adding an edge
uv for each u ∈ C, v ∈ I that are nonadjacent in G.

Now, in d and e, we consider a split graph G with matching backbone
M that is defined by the following three characteristics (see Figure 3 for an
example).

1. ω(G) = α(G) = k,

2. |NN(v) ∩ C| = 1, ∀v ∈ I,

3. The representation by its vertices, matching edges and nonneighbor
relations between C and I consists of exactly d k

3
e copies of C3,3 or C2,2.
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More specifically, there are q copies of C3,3 for k = 3q, there are q − 1
copies of C3,3 and two copies of C2,2 for k = 3q + 1, and there are q
copies of C3,3 and one copy of C2,2 for k = 3q + 2.

Figure 3. A split graph satisfying 1-3, together with its representation in

condition 3.

Subcase d. Suppose to the contrary that bbcλ(G,M) ≤ k + 1. Then
the following observations can be made.

Observation 4.3. There is exactly one color that is not used in C, which we

will call the independent color. Without loss of generality, we may assume

that the independent color is in the set {λ + 1, . . . , k + 1}. The independent

color may be used p times in I, where p ≤ k + 1 − λ. All vertices in I that

are not colored with the independent color must get the same color as their

unique nonneighbor in C, hence all these other colors can only occur once

in I.

Observation 4.4. Assume that the independent color is in the set {λ +
1, . . . , k + 1} and that this color is used p times in I. Then the other colors

from {λ + 1, . . . , k + 1} can be used on at most k + 1 − λ − p vertices of I.

Indeed, if the independent color is used k+1−λ times, then all the possible
colors for matching neighbors in C of the vertices in I with the other colors
from {λ + 1, . . . , k + 1} are already in use by matching neighbors of the
vertices that are colored with the independent color.

Observation 4.5. Assuming that the independent color is in the set {λ +
1, . . . , k+1}, the colors from {1, . . . , λ} can be used at most once in I. Even

stronger, from the set {1, . . . , λ} we can choose only d k
3
e colors that can be

used in I.
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Indeed, if we choose more, there would be at least two colors from {1, . . . , λ}
in one C2,2 or C3,3. This means that there would be a matching edge violat-
ing the minimally required distance of λ between the two colors of its end
vertices.

By these three observations, we derived the following. Firstly, we can
use the independent color at most p times in I. Secondly, we can use the
other colors from {λ + 1, . . . , k + 1} on at most k + 1 − λ − p vertices of
I. Thirdly, we can use colors from {1, . . . , λ} for at most d k

3
e vertices of I.

Since dk
3
e < λ − 1, we can only color at most k + 1 − λ + d k

3
e < k vertices

of I. We find a contradiction.

Subcase e. Suppose to the contrary that bbcλ(G,M) ≤ k+1

2
+ λ for

the case k = 2m + 1, m ≥ 4 and λ ≥ k+1

2
+ 1. It is clear that colors from

the set {k+1

2
+ 1, . . . , λ} can not be used at all. So, we can only use the

k +1 colors from the two sets {1, . . . , k+1

2
} and {λ+1, . . . , k+1

2
+λ}. Hence,

we have one independent color. Without loss of generality, we may assume
that this independent color is in {λ + 1, . . . , k+1

2
+ λ}. By Observation 4.3,

we can use the independent color at most p times in I, where p ≤ k+1

2
.

By Observation 4.4, we can use the other colors from {λ + 1, . . . , k+1

2
+ λ}

on at most k+1

2
− p vertices of I. Since k+1

2
< λ, by Observation 4.5, we

can use colors from {1, . . . , k+1

2
} for at most dk

3
e vertices of I. So we can

only color up to k+1

2
+ dk

3
e vertices of I. Since for k ≥ 9, it holds that

k+1

2
+ dk

3
e < k+1

2
+ k

3
+ 1 = 5k+9

6
≤ k, we find a contradiction.
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