Discussiones Mathematicae
Graph Theory 29 (2009) 119-142

EQUITABLE COLORING OF KNESER GRAPHS

ROBERT FIDYTEK, HANNA FURMANCZYK, PAWEE ZYLINSKI*

University of Gdarisk
Institute of Computer Science
80-952 Gdarisk, Poland

e-mail: {fidytek,hanna,pz}@inf.univ.gda.pl

Abstract

The Kneser graph K (n, k) is the graph whose vertices correspond
to k-element subsets of set {1,2,...,n} and two vertices are adjacent if
and only if they represent disjoint subsets. In this paper we study the
problem of equitable coloring of Kneser graphs, namely, we establish
the equitable chromatic number for graphs K(n,2) and K(n,3). In
addition, for sufficiently large n, a tight upper bound on equitable
chromatic number of graph K(n,k) is given. Finally, the cases of
K (2k,k) and K(2k + 1,k) are discussed.
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1. INTRODUCTION

The notion of the equitable colorability was introduced by Meyer [9]. A
graph G = (V, E) is said to be equitably r-colorable if its vertex set V' can
be partitioned into r classes Vi1, V5,...,V, such that each V; is an indepen-
dent set — that is, no two vertices from V; are adjacent, i = 1,...,r —
and |#V; — #Vj| < 1 for every i,j, where #S denotes the cardinality of
a given set S. Such partition Vi, Vs, ..., V, is called an equitable partition.
The smallest integer r for which G is equitably r-colorable is known as the
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equitable chromatic number of G and denoted by x—(G). Since an equitable
coloring is a proper coloring, we have:

(1) x=(G) > x(G),

where x(G) denotes the ordinary chromatic number of graph G. It is worth
pointing out that equitable r-colorability of G does not imply that G is
equitably (r+1)-colorable. A counterexample is the complete bipartite graph
K3 3 which can be equitably colored with two colors, but not with three.

Applications of equitable coloring can be found in scheduling and time-
tabling. Consider, for example, a problem of constructing university timeta-
bles. We can model this problem as coloring the vertices of the graph G
whose nodes correspond to classes, edges correspond to time conflicts be-
tween classes, and colors to hours. If the set of available rooms is restricted,
then we may be forced to partition the vertex set into independent subsets
of as near equal size as possible, since then the room usage is the highest.
Another applications of equitable coloring can be found in [2].

In this paper we investigate the equitable colorability of Kneser graphs.
Given two positive integers n and k, n > 2k, the Kneser graph K(n, k) is
the graph whose vertices correspond to k-element subsets of set {1,2,...,n}
and two vertices are adjacent if and only if they represent disjoint subsets.
In 1955, Kneser [5] conjectured that x(K(n,k)) > n — 2k + 2, n > 2k > 2,
which was positively verified by Lovasz in 1978 [8].

Theorem 1.1 (8. Let K(n,k) be a Kneser graph and n > 2k > 2. Then
X(K(n,k)) =n— 2k + 2.

Since then several types of colorings of Kneser graphs have been consid-
ered. For example, the multichromatic number and the circular chromatic
number (also known as the “star chromatic number”) of Kneser graphs was
investigated in [3, 6] and [4, 11, 12, 13|, respectively.

Our results. In this paper we color Kneser graphs in the equitable way.
Our results are the following theorems.

Theorem 1.2. Let K(n,2), n > 4, be a Kneser graph. Then

n—2 if n=4,56;
n—1 otherwise.

(s 2) = {
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Theorem 1.3. Let K(n,3), n > 6, be a Kneser graph. Then

n—4 if 6<n<13;
x=(K(n,3)) =< n—3 if ne{l4,15};
n—2 otherwise.

Theorem 1.4. For any positive integer k, if n is large enough, then
X=(K(n,k) =n—k+1.

Theorem 1.5. For k> 1, x=(K(2k,k)) =2 and x=(K(2k + 1,k)) = 3.

2. PRELIMINARIES

For simplicity, to avoid some confusion which may arise when considering ver-
tices of Kneser graphs being subsets themselves, we shall consider equitable
colorings of set families. We say that a set family F is independent if for any
two sets S1,55 € F, we have S; NSy # (. Next, a set family F is said to be
equitably r-colorable if it can be partitioned into r subfamilies 71, Fo, ..., F,
such that each 7;, i = 1,...,r, is independent and |#F; — #F;| < 1 for
every 1 < ¢,j < r, where #S denotes the cardinality of a given family S;
such partition Fy, Fo, ..., F, is called an equitable partition. And finally, the
smallest integer r for which F is equitably r-colorable is called the equitable
chromatic number of F and denoted by x—(F).

Equitable coloring of Kneser graphs. Let [n]*) denotes the family of all
k-element subsets of the set [n] = {1,...,n}. Following the above definitions,
it easy to see that the equitable chromatic number x_(K(n,k)) of Kneser
graph K (n, k) is equivalent to the equitable chromatic number x—([n]*)) of
family [n]*), and therefore, by estimating bounds on y—([n](*)) we estimate
bounds on x—(K(n,k)) as well, and vice versa.

Dominator of a family. Let F be a family of subsets of a given set X, and
let D be a subset of X. We say that set D is a dominator of F if for every
S € F we have SN D # (). A dominator of F of the minimum cardinality is
called the minimum dominator of F. In 1967, Hilton and Milner [1| proved

Theorem 2.1 [1]. Let F C [n]*) be an independent family of size at least

(o) - (") 2
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Then

S #0.

SeF

The above theorem immediately leads to the following corollary which we
shall extensively use throughout the paper.

Corollary 2.2 [6]. Let F C [n]®*) be an independent family of size at least
n—1\ (n—-1- k 49
k—1 k—1 ’

() S={i}

SeF

Then

for some i € [n|, that is, {i} is the minimum one-element dominator of
family F, and moreover, dominator {i} is unique.

Proof. It follows from the fact that if (g, S has at least two elements,
then F is of size at most (}~5), which is smaller than (}~]) — (”;:k) +2

— a contradiction. m

3. THE EQUITABLE CHROMATIC NUMBER y—([n]?®)

In this section, we provide the exact bounds on the equitable chromatic
number x—([n]®). For small values of n = 4,5,6, we explicitly give the
minimum equitable colorings, while for larger values of n > 7, the proof is
constructive, and for necessity, we make use of Corollary 2.2.

Theorem 3.1.
(a) For n=4,5,6, we have x—([n]®) =n — 2.
(b) For n>7, we have x—([n]®) =n — 1.

Proof. (a) Proper equitable partitions of [n](?), n = 4,5, 6, respectively, are
given in Figure 1(a-c). The optimality of the given bounds follows from (1)
and the fact that x(K(n,2)) =n — 2 by Theorem 1.1.

(b) For necessity, suppose on the contrary that y—([n]®)) < n — 2, and let
Fi,Fa, ..., Fn_i, | > 2, be an equitable partition of family [n]®) into (n —1)
independent subfamilies. As |#F; — #F;| < 1,1 <4,j < n—1, this forces



EQUuITABLE COLORING OF KNESER GRAPHS 123

(5

#ﬂ—{ J or#ﬁ—{&w, 1<i<n-—I.
n—1

a) F Fy b)) R Fo Fs ¢ A Fa F3 Fy
L2} (L4} (L2} (L4 {13} (L2} {L4) (L5} {L6)
{1,3} {2,4} {1,3} {2.4} {2,5} {1,3} {2.4} {2,5} {2,6}
{2,3} {3.4} {2,3} {3.4} {3,5} {2,3} {3.4} {3,5} {3,6}

{4,5} {4,6} {4,5} {5,6}

Figure 1. Equitable partitions of a) [4](?), b) [5]®), and c) [6]().

Since n > 7and [ > 2, we have #F; > 4,i=1,...,n— 1. By Corollary 2.2,
there exist two different elements x,y € [n]| such that neither {z} nor {y} is

the (unique) minimum dominator of family 7;, i = 1,...,n—I. Consequently,
2-element set {x,y} ¢ (JI~| F;, and thus I~} F; # [n]® — a contradiction.
For sufficiency, consider the following set partition Fi,..., F,_1:

Fojpr1:={{2k - 1,2 +1}: 1 <E<j}U{{2j + 1,2k} : j <k < [n/2]} U

{{2j +1,n}}
Foji= ({2k.27) 1 1<k <G} U{{2,2k +1}:j <k < |n/2]} U

{{2.n}}

All we need is to prove that:

(a) each of families F; is independent, i = 1,...,n — 1;

(b) UiZl Fi = [0

(c) |#F; —#F;| <1, fori,j=1,...,n— 1

(a) It follows from the fact that for every i = 1,...,n —1, element {i} is the
minimum dominator of F;, that is, i € S for every S € F;.

(b) Let {x,y} be a 2-element subset of [n]. We have four cases to consider:
o {z,y} ={2i,25}. Asi < j, we have {2i,2j} € Fy;
o {x,y} ={2i,25 +1}. Asi < j, we have {2i,25 + 1} € Fy;
o {x,y} ={2i+1,25}. Asi < j, we have {2i + 1,25} € Fo;y1;
o {z,y} ={2i+1,25+1}. Asi < j, we have {20 +1,2j + 1} € Foit1.
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(c) We have to consider two cases.
e n is even. Then:

e n is odd. Then:
#Fjn =+ (5] - +1=[5]+1
#F=0G-D+ (5] -7—-1)+0=[3] u

Consequently, by the above theorem and the equality x—(K(n,2)) =
x=([n]®), we obtain

Corollary 3.2. Let K(n,2), n > 4, be the Kneser graph. Then

n—2 if n=4,5,6;
n —1 otherwise.

Yo (K(n,2)) = x_([n]®) = {

4. THE EQUITABLE CHROMATIC NUMBER y—([n]®)

In this section we consider the problem of determining the equitable chro-
matic number y—([2](®)). Similarly as in the case of [n](), let us first consider
small values of n, namely, 6 < n < 15.

Proposition 4.1.
(a) For 6 <n <13, we have x—([n]®) =n — 4.
(b) For n € {14,15}, we have x—([n]®®) =n — 3.

Proof. (a) By Theorem 1.1, we have x([n]®®) = n — 4, and thus by
(1) it follows that y—([n]®®) > n — 4. Hence all we need is to provide
proper equitable (independent) partitions of [n]®), 6 < n < 13, into (n — 4)
subfamilies 77',..., F_,.

For {z1,...,z} C [n] and t < m < k, let [n]g;)l o)/t denote the
subfamily of [n](®) consisting of all sets containing at least ¢ elements of

{z1,..., 2 }; for simplicity, when m = ¢t = 1, we shall write [n] ) instead of

[n]?;)}/l. And, for k disjoint sets Sq,...,S C [n], let S1.55... Sk denote the

subfamily of [n](*) consisting of all sets containing y; € S,y € Sa, ..., and
Y € Sk
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Then the proper equitable partitions F7,...,F" , of [n]®), 6 < n < 13,
respectively, are as follows (for convenience of the reader, they are depicted
in Table 1 and 2 in Appendix):

e n=~06:
F = (670525 (#FP = 10)
}—g = [6]({:2576}/2' (#.7‘—3 = 10)
n="mT
Fi=F U{1}{2,3{7} (#F[ =12)
Fy = F5 U{4}{5,6}{7}; (#F; =12)
Fi=[M®\Ui, F. (#F5 = 11)
n=2~8:
FY=FuU{{2,3,7},{1,2,8}}; (#F =14)
F$ =73 U{{5,6,7},{4,5,8}}; (#F8 =14)
"Tg = ("T37 \ {{2737 7}7 {5765 7}}) U [5]{7}{8}7 (#}—g = 14)
Fi=BP\UL, 7 (#F5 = 14)
n=29
FP =77 U{1,2}{3}{8} U {{1,2,9}}; (#F) =17)
.7:3 = -7:3 U {47 5}{6}{8} U {{41 57 9}}; (#.7:3 = 17)
F§ = F5UBKTHY (#F5 =17)
Fio=(F2\ ({1,2}{3H{8} U {4,5}{6}{8})) U [7{8H9}; (#F5 =17)
FE =191\ Uiz, 7 (#75 = 16)
n = 10:
Fi¥ = FPU{1,2{3}{9} U {{1, 2,10} }; (#F1° = 20)
F3° = F3 U{4,51{6}{9} U {{4,5,10}}; (#F3° = 20)
F3° = F3 UB{7}{10} (#F3° = 20)
Fi° = F{ UB{8}{10} (#F1° = 20)
F30 = (FI\ ({1,239} U {4,5}{6}{9}) ) U BI{9}{10}; (#73° = 20)
Fe¥ =[10P\ U, 7. (#F8° = 20)
n=11:
Fit = F0U{1,2{3}{10} U {1}{2, 3}{11}; (#F1° =24)
Fat =" U{4,51{6}{10} U {4}{5,6}{11}; (#F5° =24)
Fit=FP U711} (#F3° = 24)
Fit = Fi° U [4{8}{11}; (#F1° =24)
F3t = F U B{9{11}; (#F1° =23)
Fo' = (7" \ ({1, 2}{3}{10} U {4,5}{6}{10})) U [7){10}{11}; (#7350 = 23)
Ft =@\ ULZ, A (#7780 = 23)
n=12:
Fi? = FITU{2H3}{11, 12} U {1}{2, 3}{12}; (#FIH =28)
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Fy? = Fyt U {s{6}{11, 12} U {4}{5, 6}{12}; (#F3' =28)
F3? = F5t v a{7}H{12}; (#F5" = 28)
Fi? = Fit u4{8}{12} (#Fit =28)
F3? = F3t U4{9}{12} (#F35' =27)
Fo? = Fg u4{10}{12}; (#FsH =27)
Fi? = (F7'\ {{2,3,11},{5,6,11} }) U [6]{11}{12}; (#F =27)
F = 12]P\UL, 72 (#FE = 27)

e n=13:
Fi¥ = F2 U{1{2,3H{13} U {{2,3,13} }; (#F1° = 31)
Fo? = F5? U{4}{5,6}{13} U {{5,6,13} }; (#F5° = 31)
F3® = F52 U [4{7}H{13}; (#F3° = 32)
Fi® = Fi? U [4{8}{13} (#Fi° =32)
Fs5? = F52 U [5]{9}{13}; (#F3° =32)
Fo3 = Fe? u[5]{10}{13} (#F33 =32)
FP = F U B{11}{13} (#7F7° =32)
Fe® = Fg® U [5){12}{13}; (#Fs° =32)
Fo* =13\ Ui, 7. (#F3° = 32)

Observe that:

(1) Forn=6,...,12, we have 7' C F7'*1,i=1,...,n — 5.

(2) Forn=6,...,13, we have F]' C [71]?{‘?273}/2 and F C [n]ﬁ)ﬁﬁ}/?, while

each of families 7', i = 3,...,n — 4, is a star, that is, 7' C [n]z(i)4
@ #01® = () =[]+ [E2] o4 [ D] ane
(-it]
For n=6,...,12, we have #F' = |2 ——|,i=1,...,n— 4.

For n = 13, we have #F}3 = {

(’g)+z‘—(n—4)-‘ _ {(133);—9-‘, i=1,...,9.

n—4

(b) For necessity, suppose on the contrary that y—_([n]®)) = n —4 (=

x([n)®)) for n € {14,15}. Let Fy, Fo,...

,Fn_s be an equitable parti-

tion of [n]® into (n — 4) independent subfamilies. As |#F; — #F;| < 1,

1 <i,5 <n— 4, this forces

#E—{&Jor#ﬂ_[

n—4

(

n
3

)

n—4

—‘, 1<i<n—4.

Since n € {14, 15}, we have #F; > 3n—"7,i=1,...,n—4. By Corollary 2.2,
there exists the unique one-element dominator of F;, i = 1,...,n — 4, and
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thus there are three different elements x,y, z € [n] such that none of them
is the minimum dominator of family F;, i = 1,...,n — 4. Consequently,
3-element set {z,y, 2} ¢ J!,' F;, and thus J!",' 7 # [n]®) — a contradic-
tion.

For sufficiency, we need to provide proper equitable (independent) par-
titions of [n]®), n € {14, 15}, into (n— 3) subfamilies 7, ..., F,_3. The par-

(%) +i—(n—3)

titions are given below; observe that #F; = —3

,i=1,...,n—3.

(Again, for convenience of the reader, they are depicted in Table 3 and 4,
respectively.)

e n=14:
Fi= [14“{31),24,3}/2 \ {27 3, 14}5 (#F1 = 33)
Fa =475 6,5\ {5,6,14}; (#F = 33)
F3 = [14]({37),8,9}/2 \ {8,9,14}; (#F5 = 33)
Fa=[3]{4,5,6}{7} U[6]{7}{10, 11,12, 13}; (#Fs=33)
Fr = [3]{4,5,6}{10} U [9]{10}{11, 12} U [6]{10}{14}; (#F7 =33)
Fy = [3]{4,5,6}{11} U [9]{11}{12} U [5]{11}{13} U [10]{11}{14}; (#Fs = 33)
Fo = [3]{4,5,6}{12} U [11]{12}{13, 14} U {{10, 11,12}, {12, 13,14} }; (#F9 = 33)

Fio = [3]{4,5,6}{13} U [9]{13}{10, 14} U {6, 7,8,9,10}{11}{13}
U {{10,13,14} }; (#F10 = 33)
Fi1 = [14](3) \U:il Fi- (#F11 = 34)

Observe that F; C [14]1(-?3, i=4,...,n—3.

e n =15
Fi= [14]({31),2’3}/2; (#F1 =37)
F2 = [3{4H{5} U[4){5}{6,7,8,9,10,11,12,13} U [3]{5}{14}; (#F2 = 38)
Fs = [3]{4H{6} U[5]{6}{7,8,9,10,11,12,13}; (#F5 = 38)
Fa = [BI{4H{7} U [6]{7}{8, 10,11, 12} U [5]{7}{13}; (#F4 = 38)
Fs = [B{4}{8} U[7T{8H9, 10,11, 12,13}; (#F5 = 38)
Fo = [3{4H{9} U[8{9}{10, 11,12} U [6]{9}{13} U [5]{9}{14}; (#F6 = 38)
Fr = [3]{4}{10} U [9]{10}{11, 12, 15} U [8]{10}{14}; (#F7 =38)
Fg = [B{4H{11} U [10]{11}{12, 13,14} U [5]{11}{15}; (#Fs = 38)
Fo = [3]{4}{12} U [11]{12}{13, 14, 15} U {12}{13}{14, 15}; (#Fo = 38)
Fio = [3]{4}{13} U [9]{10}{13} U [11]{13}{14, 15}
U {{6,7,13},{7,9,13},{8,9,13},{13,14,15} }; (#F10 = 38)
Fu = [3]{4}{14} U [5]{6}{14} U [6]{7}{14} U [7]{8}{14}
U{6,7,8}{9}{14} U [12]{14}{15} U {{4,5,14},{9,10, 14} }; (#F11 = 38)
Fi2 = [15](3) \Uzli1 Fi. (#F12 = 38)
Again notice that F; C [15]53’23, 1=2,...,n—3. [
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For the case n > 16, let us first provide a simpler upper bound, which we
then shall use to derive the tight bound of (n — 2) colors.

Proposition 4.2. For n > 6, we have x—([n]®) < n.

Proof. Clearly, by Proposition 4.1, it is sufficient to consider the case
n > 16. Consider triples (i,7,l) such that i + j + 1 = n. We consider
three triples (i,7,1), (j,1,4) and (I,4,j) equivalent, that is, two triples are
equivalent if one is a cyclic shift of the other; for example, triples (1,2, 3)
and (3,1,2) are equivalent for n = 6.

First, observe that for every n, we have at most one triple of form
(i,4,7), namely, (n/3,n/3,n/3). And, an easy computation shows that
if (n mod 3) = 0, then the number of non-equivalent triples is equal to
((";") = 1) /3+1=[(",")/3], otherwise, it is equal to (",')/3. For exam-
ple, we have four non-equivalent triples for n = 6: (1, 1,4), (1,2,3), (1,3,2)
and (2,2,2).

Following the above definitions, let 7 be the set of all non-equivalent
triples for a fixed n. Now, for every triple (i,7,1) € 7, define P, ;) as the
set of all 3-vertex sets

{m,(m+i—1)modn)+1,((m+i+j—1)modn)+1}, m=1,2,...,n.

In other words, we consider elements m,m + 4, and m + i+ j on a cycle with
integers 1,2,...,n. For example, if n = 6 and we consider triple (1,1,4),
then

P(1,1,4) - {{17 27 3}7 {27 37 4}7 {37 47 5}7 {47 57 6}7 {57 67 1}7 {67 17 2}}

It easy to see that if 7,5, # n/3, then #P; ;) = n — otherwise,
#P(n/3n/3n/3) = n/3. Moreover, as any 3-element set S = {z,y,2} €
Pla—y,2—ynta—z), We have U(i,jl)GT Py = [n]), that is, any 3-element
subset of [n] belongs to P; ;) for some (7, j,1) € 7.

Now, we shall describe how to divide [n]®® into equitable independent
subfamilies 71, Fo, ... F,. To obtain such a partition:

e For every P; ; ), where i,j,0 # n/3, we choose exactly one vertex
{m,((m+i—1)modn)+1,((m+i+j—1) modn)+1}

and add it to F,, for every m = 1,2,...,n. Observe that if n mod 3 #
0, i.e., there is no triple (n/3,n/3,n/3), then we have just obtained a
strongly equitable partition: each family has exactly (",')/3 sets.
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e Ifn mod 3 = 0, we are left with undistributed sets of family P, 3 ,/3,n/3)-
And, to complete our partition, we add them to n/3 appropriate subsets,
namely, 7, ..., F, 3. Clearly, we have |#F, — #F,| < 1, for z # y.

Finally, observe that in our partition, by the definition, family F,, consists
of sets containing m, m = 1,2,...,n, i.e., {m} dominates F,, (F,, is a star).
Consequently, each family F,, is independent, which completes the proof. m

Now, we are ready to prove the main theorem.
Theorem 4.3. Let n > 16. Then

X=([n]®) =n—2.

Proof. The necessity is established by similar arguments as in the proof
of Theorem 3.1 and Proposition 4.1(b). Suppose on the contrary that
x=([n]®) < n — 3, and let Fy, Fo,...,F_;, | > 3, be an equitable par-
tition of [n]® into (n — 1) independent subfamilies. As |#F; — #F;| < 1,
1 <i,7 <n—1, this forces

#E:{%J or #F; = {%w 1<i<n-—L

Since n > 16 and [ > 3, we have #F; > 3n—-7,¢1=1,...,n—1. By
Corollary 2.2, there exists the unique one-element dominator of F;, i =
1,...,1, and thus there are three different elements z,y,z € [n] such that
none of them is the minimum dominator of family %, ¢ = 1,...,n — [.
Consequently, 3-element set {x,y,z} ¢ U’} Fi, and thus =, F; # [n]®
— a contradiction.
For sufficiency, let us partition [n]®) into subfamilies A, Ny and N,

where

M={{nzy}:1<z<yand2<y<n-1},

No={{n-1Lzy}:1<z<yand 2 <y <n-2},

N3 = [n](3) \ (M1 UN,).

Observe that N3 consists of all 3-element subsets of set [n — 2] = {1,2,...,
n — 2}, that is, N3 = [n — 2](®). Consequently, by Proposition 4.2, family A3
can be equitably colored with n —2 colors — let F1, ..., F,,_o be the relevant
partition of N3; by the constructive proof, each family F,,, m =1,...,n—2,
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is dominated by {m}. Now, to obtain an equitable partition of [n](®), all we
need is to show how to distribute sets of families N7 and N5 into families
Fi,...,Fn_o. This can be done as follows.

e Family Ni: each set {n,m,y} is assigned to family F,,, 1 < m < y,
2 <y <n-—1. At this step, the cardinality of family F,, increases by
n—-m-—1,m=3,...,n.

e Family N5: each set {n — 1,2, m} is assigned to family F,,, 1 <z < m,
2 < m < n — 2. At this step, the cardinality of family 7, increases by
m—1,m=3,...,n.

Observe that by the construction, each (new) family ,, is still dominated by
{m} (and thus it is independent), and we assigned exactly n—m—1+m—1=

n — 2 sets to each of families F,,,, m = 1,...,n — 2. Consequently, the new
partition F,..., Fn_ o of N1 UNy UN3 = [n]® remains equitable, which
completes the proof. [ |

Consequently, by Proposition 4.1 and the above theorem, we get

Corollary 4.4. Let K(n,3), n > 6, be the Kneser graph. Then
n—4 if 6<n<13;

X=(K(n,3)) = x=([n]®) = ¢ n—3 if ne{14,15};
n — 2 otherwise.

5. THE EQUITABLE CHROMATIC NUMBER x_ (K (n,k))

In 1987, Lonc |7] provided an upper bound on the equitable chromatic num-
ber of an Kneser graph K (n, k).

Theorem 5.1 |7|. Let K(n,k) be a Kneser graph. Then x—(K(n,k)) <
n—k+1.

It is easy to see that the similar approach as in the necessity proof of Theorem
4.3 can be adapted to obtain a lower bound on the equitable chromatic
number of K(n, k).

Theorem 5.2. Let k be a positive integer. Then there exists ng > 1 such
that
x=([n)™) >n—k+1

holds for every n > ng.
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Proof. Suppose [n]*) can be equitably colored with n — [ < n — k colors,
[ > k. Then the cardinality c¢(n) of any color class F;, i = 1,...,n — [, is

equal to
5[]

Observe that c(n) = O(n*~1) while the expression w(n) = (}_1)— ("1 1")+2
in Theorem 2.1 is O(n*~2), and thus there exists ny such that for every
n > ng we have c¢(n) > w(n). Consequently, Corollary 2.2 can be ap-
plied, thus resulting in the existence of at most n — [ different one-element
dominators {d:},...,{d,—;}, where {d;} uniquely dominates family F;. As

[ < k, there exists a k-element subset {x1,z9,...,2x} of [n] such that
{xl,xg, . ,$k} N {dl,dg, . ,dn,l} = @, and thus {xl,xg, . ,$k} Q Fi U
-+ U F,_;, a contradiction. [ |

Consequently, we obtain

Corollary 5.3. For any positive integer k, if n is large enough, then
X=(K(n,k)=n—k+1.

6. x=(K(2k,k)) AND x=(K(2k + 1,k))

We have presented the exact values of xy—(K(n,k)) for small values of k
as well the asymptotic value of x_(K(n,k)) for an arbitrary (but fixed)
parameter k. It is natural then to consider the case when k is large, i.e.,
the case y—(K(2k,k)) and x—(K(2k + 1,k)). As graph K(2k, k) consists of

(215) /2 copies of the complete 2-vertex graph K, we have

Fact 1. y_(K(2k,k)) = 2.

Observe next that — by similar arguments as in the proofs of Theorems
3.1, 4.3, and 5.2 — one can show that y—(K(2k + 1,k)) > 2 (in order to
not follow up with the same analysis, we omit details). Consequently, we
claim that x—(K(2k + 1,k)) = 3, and in the following — by generalizing the
approach used for constructing the equitable partition of [7]®) (the proof of
Proposition 4.1) — we shall only present the appropriate equitable partitions.

For a given subset S C [n] and an integer m < n, let S(m) denote the
family of all m-element subsets of S. And, for two families 7' and F”, let
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{F'HF"} denote the family of sets (unions) S’ U S”, where S’ € F’' and

S" € F". First, we shall consider the case of odd k.
Let k = 2t + 1, t > 1. Define families G}, G7,...,G!™! as follows:

_ (k) :
Gi = [2]‘5]{1,2 ..... k}/t+1

Gf = {[K]* D H{{2k + 11}};
G = {3 {k + 1, 26} O {2k + 13}

Gt = {[k)E=DY{{k +1,..., 2k} D {{2k + 1}} ).

Likewise, define families G3,G3,...,Gs as follows:

Gy = [2k]§k)+1 ..... 2%k} /t+17
2k {{{2k + 1313}

G ={{k+1,...,
G3 = {{k+1,... . 2k} H{[RDI{{{2k + 1}} )
Gttt = {{k+1,... 2k} O3 [K] U H{{{2k + 1}}}.

Observe that:
o #G =Gl =Y (%) =1 (%) < ().
(k z+1) (ifg), and thus

e Fori=2,... t+1, #Gi = #Gi =
! k k
(ii20) (0)

s ST G | I t
2 #0 =D #0; Z( —z+1> (¢—2>:
=2 =2 =2 i
1 [( 2k k2
2 k—1 t) |
e Consequently (see Appendix):

S ao=Souai= 1 [(0) () - ()] = (%) o

Il
o
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e By oddness of k£ and the Pigeon-Hole Principle:

If (2k+1) ¢ S then S € G UG, and thus, [2k + 1]®)\ (Gl UG)) =
2k + 1]§’Z)+1
Any two sets in (J'7] Gi (in [J'Z] Gi) have an element in common, while
LginULigy=0.
Now, the equitable partition F, Fy, F3 of [2k + 1)) is a simple consequence
of the above observations:

o Fi = Gl UG, where G’ C 1) Gi is chosen arbitrarily, but to satisfy
the cardinality constraints of the equitable partition (which is possible by
(+))-

e Similarly, 7, = Q21 UG”, where G" C Ufi; G} is again chosen arbitrarily,
but to satisfy the cardinality constraints.

e Finally, F3 = 2k + 1]} \ (F1 U 7). (Notice that Fy C [2k + 1]5, ,.)

Consequently, y—(K (2k + 1,k)) = x=([2k + 1]®)) = 3 for odd k. The case
of even k requires a little bit more effort, however, the idea is the same.

Let k = 2t, t > 2. (If t = 1 then x_([5]®¥) = 3 — see Figure 1.)
Consider first the family H that consists of sets having ¢ elements of [k] and
t elements of {k + 1,...,2k}; note that #H = (/l:)2 We have the following
claim.

Claim 6.1. H can be partitioned into two (disjoint) subfamilies H; and Hs
of the same size such that any two sets in each of subfamilies have an element
in common, that is, Vs, 80eH; S1 NS # 0, 1=1,2.

Proof. The claim immediately follows from the fact that any element (set)
S € H c [2k]®®) has an element in common with all other elements (sets)
except its own complement S € . And thus,  is a union of complementary
pairs whose elements form equitable partitions 7, and Hs, respectively. m

So let Hi U Hy be the equitable partition of H guaranteed by the above

claim. Define now families Gi,...,G! as follows:
k
Gi = [2’“]%1),2 ..... k}/t+1 UH;

Gi = {[K]* D H{{2k + 11}};
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G3 = {[K] %DM {k, k+1,..., 2k} OH{{2k + 111}

Gt = {[K)F Dk, k4 1,..., 2k} D H{{{2k + 1)} ).

Likewise, define families GJ, ..., G} as follows:

_ (k) .
Gy = 2K ki1, ony 1 Y H2s

G2 = {{k,k+1,... 2k} "DV {{2k + 1}}};
G5 = {{k.k +1,... 2k} 2[RI VWH{{2k + 11} )

G = {{k.k +1,... . 26} DH{[K] {2k + 11}
Similarly to the case of odd k, observe that:
« #01 =#01 =5 (¥) < (/3
o Fori=2,...t #Gi =#G5=(,_* ) (;%,), and thus
t

t . t . k k t—2 k I
;#gl_;#% - Z;(;;—iﬂ)'(i—z) i (k—i—1>'<z'>

[0

e Consequently, for ¢t > 4 (see Appendix):

yoroi=yrei=g |(0) <000+ () ()]
> <2kl;|r 1) /. "

e By Claim 6.1 and the Pigeon-Hole Principle:
If (2k+1) ¢ S then S € Gl UG, and thus, [2k + 1]*) \ (Gl UG)) =

k
2k + 1]§k)+1'



EQUuITABLE COLORING OF KNESER GRAPHS 135

Any two sets in G} (in Gi) have an element in common.

Any two sets in |J'_, G (in |J}_, G) have an element in common, while

Ui_, GinUi, G5 = 0.

Now — see the construction used for the case of odd &k — if ¢ > 4 then one
can easily construct an equitable partitions Fy, Fy, F3 of [2k + 1](¥). And
thus, x—([2k + 1](®)) = 3 for even k > 8 as well.

We are only left with the case k = 4 and k = 6. Both cases may be solved
with the same approach, and hence we shall only present the appropriate
equitable partitions of [13]().

Let F; be the family of all 6-element subsets of [13] having at least 5
elements from [9], that is, F; = [13] S])/5. Next, let F, be the family of all
6-element subsets of [13] having at least 2 elements from {10,11,12}, that
is, 7o = [13]{3}, 11 1) o Finally, let 3 = [13](6) \ (F; U 7). Observe that:
e Fi and F; are disjoint.

e By the definition and the Pigeon Hole Principle, any two sets in F; (in
F>») have an element in common.

o If 13 ¢ S then S € Fy U Fy, that is, [13]® \ (F, U F) C [13)9).

o #71=(2) - (H)+(2) =588, and #(F N[13)'9) = (2) = 126.

e Consequently, by moving 16 sets S1, ..., S| of 71 to F3 such that {13} €
Si,i=1,...,16, we obtain the new F; with #F; = 588 — 16 = 572.

6 -

o« #F2 = (3)-())+()-(¥) = 750, and #(Fn[1317) = ()- () + (5)- () =

288.

e Consequently, by moving 178 sets S7,..., S of F» to F3 such that
{13} € SY,i=1,...,178, we obtain the new F» with #F, = 750—178 =
572.

e By the construction, the new family F3 C [13] gg) is of size 378 +16+188 =
572.

e And hence F; U F, U F3 forms the desired equitable partition of [13]().

It is worth pointing out that the above approach may be applied for other
arbitrary but small values of k, i.e., it fails for £ > 10.

TFor k = 4, we have F) C [9]({?2731475}/3,]:2 C [9]%)7778}/2, and F5 C 9],
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Summarizing up, we obtain the following theorem.

Theorem 6.2. For k > 1, x_(K(2k,k)) =2 and x=(K(2k + 1,k)) = 3.

APPENDIX

Table 1. Equitable partition of [n](®), 6 < n < 9; for simplicity, {4, 7,1}
is written as ¢jl.

n || Fp Fy Fy Fi Fi
123, 145, 146, 156,
124, 134, 234, 245, 246, 256,
125, 135, 235, 345, 346, 356,
126, 136, 236 456
#79 =10 #F$ =10
123, 145, 146, 156, 147, 157, 167,
124, 134, 234, 245, 246, 256, 247, 257, 267,
125, 135, 235, 345, 346, 356, 347, 357, 367,
126, 136, 236, 456, 237, 567
127, 137 457, 467
#F] =12 #F] =12 #FI =11
123, 145, 146, 156, 147, 157, 167, N s 1%,
124, 134, 234, 245, 246, 256, 247, 257, 267, 348, 358 368,
125, 135, 235, 345, 346, 356, 347, 357, 367, o
126, 136, 236, 456, 178, ..., 578 138, 238
127, 137, 237, 457, 467, 567, 165, 568
128 458 ’
#FP =14 #F§ =14 #F§ =14 #FE =14
123, 145, 146, 156, 147, 157, 167, 148, 158, 168, 149, 159, 169,
124, 134, 234, 245, 246, 256, 247, 257, 267, 248, 258, 268, 249, 259, 269,
125, 135, 235, 345, 346, 356, 347, 357, 367, 348, 358, 368, 349, 359, 369,
126, 136, 236, 456, 178, ..., 578, 678, 479, 579, 679,
127, 137, 237, 457, 467, 567, 179, 279, 379 189, ..., 789 139, 239,
128, 138, 238, 458, 468, 568, 469, 569
129 459
#F) =17 #F9 =17 #F9 =17 #F =17 #F9 =16




n Fp Fp 7y Fp Fr T TP T
123, 145, 146, 156, 147, 157, 167, 148, 158, 168, 149, 159, 169, 14A, 15A, 16A,
124, 134, 234, 245, 246, 256, 247, 257, 267, 248, 258, 268, 249, 259, 269, 24A, 25A, 26A,
125, 135, 235, 345, 346, 356, 347, 357, 367, 348, 358, 368, 349, 359, 369, 34A, 354, 36A,
10=A 126, 136, 236, 456, 178, ..., 578, 678, 479, 579, 679, 47A, 57A, 67A,
127, 137, 237, 457, 467, 567, 179, 279, 379 189, ..., 789 19A, ..., 89A 48A, ..., TSA
128, 138, 238, 458, 468, 568, 17A, 27A, 37A 18A, 28A, 38A 13A, 23A,
129, 139, 239, 459, 469, 569, 46A, 56A
12A 45A
#F10 =20 #730 =20 #730 =20 #7410 =20 #F10 =20 #FL0 =20
123, 145, 146, 156, 147, 157, 167, 148, 158, 168, 149, 159, 169, 14A, 15A, 16A, 14B, 15B, 16B,
124, 134, 234, 245, 246, 256, 247, 257, 267, 248, 258, 268, 249, 259, 269, 24A, 25A, 26A, 24B, 25B, 26B,
125, 135, 235, 345, 346, 356, 347, 357, 367, 348, 358, 368, 349, 359, 369, 34A, 35, 36A, 34B, 35B, 36B,
1B 126, 136, 236, 456, 178, ..., 578, 678, 479, 579, 679, 47A, 5TA, 6TA, 57B, 67B,
127, 137, 237, 457, 467, 567, 179, 279, 379 189, ..., 789 197, ..., 89A 48A, ..., TSA 58B, 68B, 78B,
128, 138, 238, 458, 468, 568, 17A, 27A, 37A 18A, 28A, 38A 19B, 29B, 398 1AB, ..., TAB 49B, ..., 89B
129, 139, 239, 459, 469, 569, 17B, ..., 47B 18B, ..., 48B 8AB, 9AB,
12A, 13A, 23A, 45A, 46A, 56A, 23B, 56B
12B, 13B 45B, 46B
#F =24 #Fy =24 #F3 =24 #FL =24 #F3' =23 #F3 =23 #F} =23
123, 145, 146, 156, 147, 157, 167, 148, 158, 168, 149, 159, 169, 14A, 15A, 16A, 14B, 15B, 16B, 14
124, 134, 234, 245, 246, 256, 247, 257, 267, 248, 258, 268, 249, 259, 269, 24A, 25A, 26A, 24B, 25B, 26B, 24
125, 135, 235, 345, 346, 356, 347, 357, 367, 348, 358, 368, 349, 359, 369, 34A, 35, 36A, 34B, 35B, 36B, 34
126, 136, 236, 456, 178, ..., 578, 678, 479, 579, 679, 47A, 5TA, 6TA, 57B, 67B, 57
12=C 127, 137, 237, 457, 467, 567, 179, 279, 379 189, ..., 789 197, ..., 89A 48A, ..., TSA 58B, 68B, 78B, 58
128, 138, 238, 458, 468, 568, 17A, 27A, 37A 18A, 28A, 38A 19B, 29B, 398 49B, ..., 89B 59
129, 139, 239, 459, 469, 569, 17B, ..., 47B 18B, ..., 48B 19C, ..., 49C 8AB, 9AB, 5A
12A, 13A, 23A, 45A, 46A, 56A, 17C, ..., 47C 18C, ..., 48C 1BC, ..., 6BC 7B
12B, 13B, 23B, 45B, 46B, 56B,
12C, 13C, 23C 45C, 46C, 56C
#F12 =28 #F3?2 =28 #F3% =28 #F)2 =28 #FI2 =27 #FL2 =27 #HFI2 =27
123, 145, 146, 156, 147, 157, 167, 148, 158, 168, 149, 159, 169, 14A, 15A, 16A, 14B, 15B, 16B, 14
124, 134, 234, 245, 246, 256, 247, 257, 267, 248, 258, 268, 249, 259, 269, 24A, 25A, 26A, 24B, 25B, 26B, 24
125, 135, 235, 345, 346, 356, 347, 357, 367, 348, 358, 368, 349, 359, 369, 34A, 354, 36A, 34B, 35B, 36B, 34
126, 136, 236, 456, 178, ..., 578, 678, 479, 579, 679, 47A, 5TA, 67A, 57B, 67B, 57
132D 127, 137, 237, 457, 467, 567, 179, 279, 379 189, ..., 789 19A, ..., 89A 48A, ... 58B, 68B, 78B, 58
128, 138, 238, 458, 468, 568, 17A, 27A, 37A 18A, 28A, 38A 198, 29B, 398 1AB, .. 49B, ..., 89B 59
129, 139, 239, 459, 469, 569, 17B, ..., 47B 18B, ..., 48B ., 49C 1AC, ... SAB, 9AB, 5A
12A, 13A, 23A, 45A, 46A, 56A, 17C, ..., 47C 18C, ..., 48C ..., 59D 1AD, ..., 5AD 1BC, ..., 6BC 7B
12B, 13B, 23B, 45B, 46B, 56B, 17D, ..., 47D 18D, ..., 48D 1BD, ..., 5BD 1C
12C, 13C, 23C, 45C, 46C, 56C,
12D, 13D, 23D 45D, 46D, 56D
#F1? =31 #FLP =31 #7745 =32 #F)P =32 #F13 =32 #F =32 #FP =32
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Table 3. Equitable partition of [14]®), [14] = {1,2,...,9,A, ... E}.

Fi Fa F3 Fa Fs Fe
123, ..., 12E, 145, 245, 345, 178, ..., 678, 147, 157, 167, 148, 158, 168, 149, 159, 169,
134, ..., 13E, 457, ..., 45E, ..., T8E, 247, 257, 267, 248, 258, 268, 249, 259, 269,
234, ..., 23D 146, 246, 346, L 679, 347, 357, 367, 348, 358, 368, 349, 359, 369,
467, ..., 46E, ., T9E, 17A, ..., 67A, 18A, ..., 19A, ..., 69A,
156, ..., 456, . 689, 17B, ..., 67B, 18B, 19B, ..., 69B,
567, ..., 56D 89A, ..., 89D 17C, ..., 67C, 18C, 19C, ..., 69C,
17D, ..., 67D 18D, ..., 19D, ..., 69D
#F =33 #Fy =33 #Fs =33 #Fy =33 #Fs =33 #F6 =33
F1 Ts Fo Fio Fi1
14A, 15A, 16A, 14B, 15B, 16B, 14C, 15C, 16C, 14D, 15D, 16D, 14E, 15E, 16E,
24A, 25A, 26A, 24B, 25B, 26B, 24C, 25C, 26C, 24D, 25D, 26D, 24F, 25E, 26E,
34A, 35A, 36A, 34B, 35B, 36B, 34C, 35C, 36C, 34D, 35D, 36D, 34F, 35E, 36E,
1AB, ..., 9AB, 1BC, ..., 9BC, 1CD, ..., BCD, 1AD, ..., 9AD, 17E, ..., 67E,
1AC, ..., 9AC, 1BD, ..., 5BD, 1CE, ..., BCE, 6BD, ..., ABD, 18E, ..., 68E,
1AE, ..., 6AE 1BE, ..., ABE ABC, CDE IDE, ..., ADE 19E, ..., 69E,
7AE, 8AE, 9AE,
23E, 56E, 89E,
BDE
HFr =33 $Fs =33 $Fo =33 #F10 =33 #F1 =34

Table 4. Equitable partition of [15]®), [15] = {1,2,...,9,A,...,F}.

6.1.

is replaced with

Fi Fa2 F3 Fa Fs Fe
123, ..., 12F, 145, 245, 345, 146, 246, 346, 147, 247, 347, 148, 248, 348, 149, 249, 349,
134, ..., 13F, 156, ..., 15E, 167, ..., 16D, 178, ..., 17D, . 19A,
234, ..., 23F 256, ..., 25K, 267, ..., 26D, 278, .
356, ..., 35E, 367, ..., 36D, 378, ...,
456, ..., 45D 467, ..., 46D, 478, ...,
567, ..., 56D 578, ...
678, ...,
o T9A, 79B, 79C,
89A, 89B, 89C
#F =37 #F> =38 #F3 =38 #Fy =38 #Fs =38 #Fe = 38
Fr Fr Fo Fio Fi1 Fi2
14A, 24A, 34A, 14B, 24B, 34B, 14C, 24C, 34C, 14D, 24D, 34D, 14E, 24E, 34E, 14F, 24F, 34F,
1AB, ..., 9AB, 1BC, ..., ABC, 1CD, ..., BCD, 1AD, ..., 9AD, 16E, ..., 56E, 15F, ..., 45F,
1AC, ..., 9AC, 1BD, ..., ABD, 1CE, ..., BCE, 1DE, ..., BDE, 17E, ..., 67E, 16F, ..., 56F,
1AE, ..., 8AE, 1BE, ..., ABE, 1CF, ..., BCF, 1DF, ..., BDF, 18E, ..., 78E, 17F, ..., 67F,
1AF, ..., 9AF 1BF, ..., 5BF CDE, CDF 67D, 79D, 89D, 69E, T9E, 89E, 18F, ..., 78F,
DEF 1EF, ..., CEF, 19F, ..., 89F,
9AE 45E 6BF, ..., ABF
#F7; =38 #Fg =38 #Fg =38 #F10 = 38 #F11 =38 #F12 = 38
Proof of inequality (x)
2%k + 1 1 [/2k 2k E\ 2
)P g k-1 ¢
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Therefore, as k = 2t + 1, all we need is to prove the following inequality:

IN

2t +1\> 1 [(4t+3
t 3 \2t+1)°
Proof. The proof is by induction on ¢.

er=1 () =0<3/3=1 (),

o i (2t+1)2 < % ] (4t+3)’

¢ 2t+1
L(2043\2 71 (44T
o t+1: (t+1) < 3'(2t+3)’
2t +3\°>
t+1/)
(2t + 3)! (2t + 3)!

T+ D2 D (E+2)

(2t + 1)1 (2t +2)- (2t +3) (2t +1)!- (2t +2) - (2t +3)

B+ -+ D (E+2) - (t+1)-(E+ D) (E+2)

(241N (2t +2)- (2t +3) - (2t +2) - (2t +3)
( t ) (t+1)-(t+2)-(t+1)-(t+2)

.. <2t+1>2 (2t + 3)2

t C(t+2)2
_ L Lo (243 (2t + 3)2
—hyih Fry i ot 41) T (t42)2

3

4L <4t+7> (2t+2)-(2t4+3) (2t +3)- (2t +4) (2t +3)

%+3) (4t 4+4)- (4t +5)- (4t +6) - (4L +7)

(t+2)2
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<4t+7

2- (2t +3)3
2t+3> (4t +5) -

(4t +7) - (t+2)

W =

IN
W =

4t : 3
. 7 , as 2-(2t+3) <1fort>0.
2t 4+ 3 (4t +5)- (4t +7) - (t+2) -

6.2. Proof of inequality («x)

(e (0620 - () (L)

is replaced with

() (50 =1G) 625 () =5 ()

Therefore, as k = 2¢, all we need is to prove the following inequality:

e (1) () =5 (%)

Proof. The proof is by induction on t.

o t=4:2(3) (}) = 7840 < 8103 < 24310/3 = & - (¥)),

e« :2-()- (M) <5 (%),

o t+1:2- (7)) <7 5 D),

5. (itjf) . <2t:2> _
(2t +2)! (2t + 2)!

E+ Dt +1) - (t+2)!
@01 (2t+1)- (2t +2)  (26)!- (2t +1)- (2t +2)

ot +1)-t-(t4+1) (E—1D-t-t+1)-(t+2)
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B 2t 2\ (2t+1)-(26+2)- (2t +1)- (2t +2)
2'(t)'<t—1>' (t+1)-(t+1)-t-(t+2)

e () () B2

o lo(any @2
>by i.h. 3 2 t (+2)

_4‘1'<4t+5>.(2t+1)-(2t+2)-(2t+2)~(2t+3) (2t +1)2
3 \2t+2) (4t+2)-(4t+3)-(4t+4)- (4t +5) t-(t+2)
1 [4t+5\ (2t+1)2- (2t +2)- (2t +3)
-3 (2t+2) (4t +3) - (4t +5) -t (t +2)

1 [4t+5 (2t +1)% - (2t +2) - (2t + 3)
=3 <2t+2> (4t+3)-(4t+5)-t-(t+2)élfortzl'
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