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Abstract

Let D be a digraph. D is said to be an m-colored digraph if the arcs
of D are colored with m colors. A path P in D is called monochromatic
if all of its arcs are colored alike. Let D be an m-colored digraph. A
set N ⊆ V (D) is said to be a kernel by monochromatic paths of D if it
satisfies the following conditions: a) for every pair of different vertices
u, v ∈ N there is no monochromatic directed path between them; and
b) for every vertex x ∈ V (D) − N there is a vertex n ∈ N such that
there is an xn-monochromatic directed path in D.

In this paper we prove that if T is an arc-colored tournament which
does not contain certain subdivisions of cycles then it possesses a kernel
by monochromatic paths. These results generalize a well known suffi-
cient condition for the existence of a kernel by monochromatic paths
obtained by Shen Minggang in 1988 and another one obtained by Hahn
et al. in 2004. Some open problems are proposed.
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1. General Concepts and Notation

Let D be a digraph. V (D) and A(D) will denote the set of vertices and
arcs of D. A subdigraph H of D is a spanning subdigraph if V (H) = V (D);
if S ⊆ V (D) is non empty then the subdigraph D[S] induced by S is that
digraph having vertex set S and whose arc set consists of all those arcs
of D joining vertices of S. An arc z1z2 ∈ A(D) is called asymmetrical

(symmetrical) if z2z1 6∈ A(D) (z2z1 ∈ A(D)); the asymmetrical part of D

(the symmetrical part of D) denoted by Asym(D) (Sym(D)) is the spanning
subdigraph of D whose arcs are the asymmetrical (symmetrical) arcs of D;
D is called an asymmetrical digraph if Asym(D) = D. A digraph is called
semicomplete if for every two distinct vertices u and v of D, at least one
of the arcs (u, v) or (v, u) is present in D. A semicomplete asymmetrical
digraph is called a tournament.

An arc z1z2 ∈ A(D) will be called an S1S2-arc whenever z1 ∈ S1 ⊆ V (D)
and z2 ∈ S2 ⊆ V (D). By [z1, z2]T we denote one of the two possible arcs
between z1 and z2. For a directed walk W we will denote its length by `(W ).
And if z1, z2 ∈ V (W ) then we denote by (z1,W, z2) the z1z2- directed walk
contained in W . We will denote by Cn a directed cycle with length n and by
T3 the transitive tournament on 3 vertices. We call a triangle a transitive
tournament of order 3 or a cycle of length 3. Let C = (0, 1, . . . ,m, 0) be a
directed cycle of D, a pseudodiagonal of C is an arc f = (i, j) ∈ A(D)−A(C)
such that i 6= j, {i, j} ⊆ V (C) and `(i, C, j) ≤ `(C) − 1. A pole of the cycle
C is the terminal vertex y of a pseudodiagonal (x, y) of C. Throughout the
paper all the paths and cycles considered are directed paths and directed
cycles.

A set S ⊆ V (D) is independent if A(D[S]) = ∅. For general concepts
on digraphs we refer the reader to [1].

2. Introduction

2.1. Kernels

The concept of a kernel was first presented in [23] (under the name solution)
in the context of Game Theory by Von Neumann and Morgenstern as an
interesting solution for cooperative n-person games with general n. In [1]
Berge presented it as follows: Suppose that n players wish to select a point
x from a set X of situations. As the individual preferences might not be
compatible, then it is necessary to introduce the effective preference: the
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situation a is effectively preferred to b if there is a set of players who prefer a

to b and who are capable of enforcing their preference. Consider the digraph
D with X as a set of vertices and such that (b, a) ∈ F (D) if the situation
a is effectively preferred to situation b. Von Neumann and Morgenstern
suggested that the situations that are preferred must be the elements of a
distinguished set S which is an independent (stable) set and such that for
every situation y not in S there is a situation w in S which is effectively
preferred to y. They called such a set S a solution.

The (solution) set defined in this problem is now well known as a kernel
of a digraph. More formally, a kernel N of D is an independent set of
vertices such that for each z ∈ V (D)−N there exists a zN -arc in D. As the
reader can see, not every digraph has a kernel and when a digraph contains
a kernel, it may not be the only one. This simple observation compels us
to ask for sufficient conditions for the existence of a kernel in a digraph. It
is well known that if D is finite, the decision problem of the existence of a
kernel in D is NP-complete for a general digraph (see [5] and [27]) and for a
planar digraph with indegrees less than or equal to 2, outdegrees less than
or equal to 2 and degrees less than or equal to 3 (see [8]). For any tighter
constraints the problem is solvable in linear time.

A digraph D such that every induced subdigraph in D has a kernel is
called a kernel-perfect digraph (or simply, a KP-digraph). The following
sufficient conditions for a digraph to be a KP-digraph are known:

Theorem 1. D is a kernel-perfect digraph if one of the following conditions

holds:

(i) D has no cycles of odd length.

(ii) Every directed cycle of odd length in D has at least two symmetric arcs.

(iii) Asym(D) is acyclic.

(iv) Every directed cycle of odd length in D has at least two consecutive

poles.

(v) Every directed cycle in D has at least one symmetrical arc.

These claims were proved respectively by Richardson [26], Duchet [6], Duchet
and Meyniel [7], Galeana-Sánchez and Neumann-Lara [12], and by Berge
and Duchet [2]. There are many applications of this concept in the con-
text of game theory, logic and decision theory (see [1]), as well as several
interesting related results (see also [2, 12] and [13, 28, 13, 3]). A selected
bibliography can be found in [9], and we also recommend the survey [4].
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2.2. Arc colored digraphs and antecedents

Now, let us consider a more realistic variation of the problem first presented
by Von Neumann and Morgenstern. If each player can make their own choice
then a natural model of this new problem will be an arc colored digraph in
which colors and persons will be related by a bijective function. This simple
modification to the initial problem brings an interesting generalization of
the concept of kernel. In order to present it in a more formal way together
with some previous results, first let us introduce some notation.

D is an m-colored digraph if the arcs of D are colored with m colors. Let
D be an m-colored digraph. A directed path (or cycle) is called monochro-

matic if all of its arcs are colored alike and it is called quasimonochromatic

if with at most one exception all of its arcs are colored alike. A subdigraph
H of D is called a k-colored digraph if all of its arcs are colored with only
k colors, in particular for k = 2 we say that H is bicolor. We will say that
a subdigraph H of D is an at most k-colored digraph if all of its arcs are
colored with at most k colors, in particular for k = 2 we say that H is at
most bicolor; H will be called a polychromatic digraph if all of its arcs are
colored with at least 3 colors.

A set N ⊆ V (D) is said to be a kernel by monochromatic paths of
D if it satisfies the following conditions: a) N is an independent set by

monochromatic paths: for every pair of different vertices u and v in N there
is no monochromatic path between them in D; and b) N is an absorbing set

by monochromatic paths: for every vertex x ∈ V (D) − N there is a vertex
n ∈ N such that there is an xn-monochromatic path in D. The concept of
kernel by monochromatic paths is a generalization of the concept of kernel.
Several results arise around this concept (see [15, 16, 17] and [30]) but the
following contributions are the foundations of this work.

In [24], Sands et al. have proved that any 2-colored digraph has a ker-
nel by monochromatic paths, in particular they proved that every 2-colored
tournament T has a vertex v such that for any x ∈ V (T ) − {v} there is a
monochromatic path from x to v (i.e., {v} is a kernel by monochromatic
paths of T ). They also raised the following problem: Let T be an m-colored
tournament such that every cycle of length 3 is a quasimonochromatic cycle.
Must T have a kernel by monochromatic paths? This question is already
answered for m ≥ 5 by Shen Minggang in [25] where he proved that if T

is an m-colored tournament such that every triangle (that is, a transitive
tournament of order 3 or a cycle of length 3) is a quasimonochromatic sub-
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digraph of T , then T has a kernel by monochromatic paths (Theorem A).
He also proved that this hypothesis is tight for m ≥ 5.

Later, in [11] Galeana-Sánchez proved that if every cycle of length at
most 4 in an m-colored tournament is a quasimonochromatic cycle, then
every induced subdigraph of T has a kernel by monochromatic paths
(Theorem B).

Finally in [22] Hahn et al. proved the following generalization of the
previously cited results of Shen Minggang and Galeana-Sánchez: For a tour-
nament T , if every triangle is quasimonochromatic or for some s ≥ 4 each
cycle of length s is a quasimonochromatic cycle and no cycle of length less
than s is a polychromatic cycle (colored with at least three colors), then T

admits an absorbing vertex (Theorem C).

2.3. Description of results

In this paper we obtain two sufficient conditions for the existence of a kernel
by monochromatic paths not only in an m-colored tournament, but in every
induced subdigraph of T . The first one is a generalization of Theorem C

(see [22]) and the second one is a generalization of Theorem A, Shen
Minggang’s result (see [25]). We also prove that our conditions are not
implied by those known previously.

The spirit of our proofs arises from structural properties of arc colored
tournaments (see Lemma 1) and these properties are deduced by working
with previous results on kernels (see Theorem 1-v) on an new digraph asso-
ciated with our original tournament, its closure.

Definition 1. For an m-colored digraph D, the closure of D, denoted by
C(D), is the multidigraph such that:

V (C(D)) = V (D),

A(C(D)) = A(D) ∪ {uv | there is an uv-monochromatic path in D}.

Notice that by definition of C(D) it holds that N ⊆ V (D) is a kernel by
monochromatic paths of D if and only if N ⊆ V (C(D)) is a kernel of C(D).
With this we can see that the closure of a digraph D relates in a very
natural way kernels by monochromatic paths in this digraph with kernels in
its closure. Now, notice that if certain properties which imply that D has
a kernel also hold in the closure of D, then we can assert that C(D) has a
kernel and hence D has a kernel by monochromatic paths (by the definition
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of C(D)). In particular, if the closure of a digraph D satisfies some of the
sufficient conditions in Theorem 1, then we get as an immediate application
of this theorem that D has a kernel by monochromatic paths. This is an
important point to mention because this is not the case with the following
results: the sufficient conditions stated in our results hold in tournaments
and not in its closure.

3. A Preliminary Lemma

The following Lemma gives us structural properties (i.e., existence and color
properties) of certain subdigraphs of an arc colored tournament whose clo-
sure is not a KP-digraph and such that every C3 is a quasimonochromatic
cycle.

Lemma 1. Let T be an m-colored tournament. If every C3 ⊆ T is a quasi-

monochromatic cycle and C(T ) is not a KP-digraph then there exists a cycle

γ = (z0, z1, z2 = 0, 1, 2, . . . , p = z0) ⊆ C(T ) such that the following proper-

ties hold:

(a) `(γ) ≥ 4,

(b) γ ⊆ T ,

(c) (z0, z1) ∈ A(T ) with color a, (z1, z2) ∈ A(T ) with color b and there

exists a z2z0-path α = (z2 = 0, 1, 2, . . . , p = z0) (p ≥ 2) with color c,

a 6= b, b 6= c, a 6= c, let a=red, b=blue, c=black,

(d) (z2, z0) 6∈ A(T ) (so (z0, z2) ∈ A(T )),

(e) There is no z1z0-monochromatic path in T and there is no z2z1-mono-

chromatic path in T ,

(f) Every arc between z1 and an internal vertex in α is not black.

Proof. Proceeding by contradiction, let us suppose that C(T ) is not a KP-
digraph so a well known theorem by Berge and Duchet (see Theorem 1-v) as-
serts that there is a cycle Γ ⊆ Asym(C(T )). Let Γ = (z0, z1, . . . , zn−1, zn =
z0) ⊆ Asym(C(T )) be a cycle with minimal length contained in Asym(C(T )).
Through the following claims we will discover interesting color properties of
this cycle and they will allow us to prove the lemma.

Claim 1. `(Γ) = n ≥ 3.

Recall Γ ⊆ Asym(C(T )), so `(Γ) = n 6= 2.
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Claim 2. Γ ⊆ T .
Suppose that there is an arc (zi, zi+1) ∈ Γ − T . Since T is a tournament
we have that (zi+1, zi) ∈ T and so {(zi, zi+1, (zi+1, zi)} ⊆ Asym(C(T )), a
contradiction.

Claim 3. (z0, z1) ∈ A(T ) has color a, (z1, z2) ∈ A(T ) has color b, a 6= b.
Since Γ is not a monochromatic cycle (by the contrary: (z0, Γ, zn−1) ⊆
Asym(C(T )) is a monochromatic path, thus (z0, zn−1) ∈ A(C(T )) and
hence (zn−1, z0) ∈ A(Sym(C(T )) ∩ Γ), a contradiction), then there exist
two consecutive arcs in Γ colored differently. Say (z0, z1) ∈ A(Γ) is red and
(z1, z2) ∈ A(Γ) is blue.

Claim 4. For any {zi, zj} ⊂ V (Γ) such that j 6∈ {i − 1, i + 1} it holds that
{(zi, zj), (zj , zi)} ⊆ A(C(T )). Let {zi, zj} ⊂ V (Γ) be such that j 6∈ {i − 1,

i + 1}. Since T is a tournament, (zi, zj) ∈ A(T ) or (zj , zi) ∈ A(T ), without
loss of generality let (zi, zj) ∈ A(T ). Then Γ′ = (zi, zj , zj+1, zj+2, . . . , zi−1, zi)
⊆ T is a cycle with `(Γ′) < `(Γ). Hence Γ′ 6⊆ Asym(C(T )) and so (zi, zj) ∈
A(Sym(C(T )).

Claim 5. (z2, z0) 6∈ A(T ).
If (z2, z0) ∈ A(T ) then there exists C3 = (z0, z1, z2, z0) ⊆ T and it is a
quasimonochromatic cycle by hypothesis, so (z2, z0) ∈ A(T ) is red or blue.
If (z2, z0) ∈ A(T ) is red then (z2, z0, z1) ⊆ T is a z2z1-monochromatic path
and (z1, z2) ∈ A(Sym(C(T )) ∩ Γ), a contradiction. If (z2, z0) ∈ A(T ) is
blue, then (z1, z2, z0) ⊆ T is a z1z0-monochromatic path and (z0, z1) ∈
A(Sym(C(T )) ∩ Γ), a contradiction again.

Now, by claims (2.3.) and (2.3.) there exist a z2z0-monochromatic path
in T with length at least 2. Let α = (z2 = 0, 1, 2, . . . , p = z0) ⊆ T be a
z2z0-monochromatic path with minimal length (p ≥ 2).

Claim 6. z1 6∈ V (α).
Otherwise z1 ∈ V (α) and then (z2, α, z1) is a z2z1-monochromatic path in
T so (z1, z2) ∈ Sym(C(T )), contradiction.

Claim 7. α is neither red nor blue.

If α is red then α ∪ (z0, z1) is a z2z1-monochromatic path in T and (z2, z1)
∈ A(Sym(C(T )) ∩ Γ), a contradiction. If α is blue then (z1, z2) ∪ α ⊆ T

is a z1z0-monochromatic path in T and (z1, z0) ∈ A(Sym(C(T )) ∩ Γ), a
contradiction again. Let α be black.
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Consider γ = (z0, z1, z2) ∪ α. Clearly γ satisfies the first four properties of
our Lemma 1. Let us conclude with the following points.

Claim 8. There is no z1z0-monochromatic path in T and there is no z2z1-
monochromatic path in T .
Notice that {(z0, z1), (z1, z2)} ⊆ Asym(C(T )).

Claim 9. Every arc between z1 and an internal vertex in α is not black.
If there exists i, 1 ≤ i ≤ p − 1 such that (i, z1) ∈ A(T ) resp. (z1, i) ∈
A(T )) is black then (z2 = 0, α, i) ∪ (i, z1) ⊆ T (resp. (z1, i) ∪ (i, α, z0)) is
a z2z1-monochromatic path in T (resp. is a z1z0-monochromatic path), a
contradiction.

4. The Main Results

In order to present our main results we must introduce certain subdigraphs
whose arc coloration in an arc colored digraph D will allow us to assert the
existence of a kernel by monochromatic paths in D and in every induced
subdigraph of this digraph.

4.1. Condition I

Definition 2. A (2, k-2)-subdivision of C2-bicolor is defined to be a cycle
of length k containing a monochromatic path of length k-2 and a monochro-
matic path of length 2.

In particular for k = 3 we get a bicolor C3. The importance of this sub-
digraph in our condition is that its coloration is less restrictive than the
quasimonochromatic coloration of Cs-cycles in Theorem C. We will use these
subdigraphs in order to prove a more general sufficient condition than the
condition in Theorem C.

Definition 3. Let T be an m-colored tournament. T has property PIk if
the following conditions hold for some fixed integer k ≥ 4:

(a) Every Ck ⊆ T is at most bicolor and is not a (2,k-2)-subdivision of
C2-bicolor, and

(b) every Ct ⊆ T (t < k) is at most bicolor (it is not polychromatic).

Theorem 2. Let T be an m-colored tournament. If T satisfies property

PIk for some integer k ≥ 4 then C(T ) is a KP-digraph.
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Proof. To prove the theorem we proceed by contradiction. Suppose that
C(T ) is not a KP-digraph, then by Lemma 1 there exists a cycle γ =
(z0, z1, z2 = 0, 1, 2, . . . , p = z0) satisfying properties (a) to (f). The following
assertions will allow us to obtain a contradiction.

Claim 1. p > k − 2.
From property (c) of Lemma 1 we have that γ is a 3-colored cycle. Then
the assertion holds from the hypothesis of Theorem 2.

Claim 2. For each i with p− (k−2) ≥ i ≥ 0 we have: If (z1, i) ∈ A(T ) then
for every j with p > i + j(k − 2) ≥ i, it holds that (z1, i + j(k − 2)) ∈ A(T ).
Let i with p − (k − 2) ≥ i ≥ 0 and assume that (z1, i) ∈ A(T ). If there
is some j, p > i + j(k − 2) ≥ i, such that (z1, i + j(k − 2)) 6∈ A(T ) then
let j0 = min{j | p > i + j(k − 2) ≥ i and (z1, i + j(k − 2)) 6∈ A(T )}.
Since T is a tournament we have (i + j0(k − 2), z1) ∈ A(T ) and it follows
from the choice of j0 that (z1, i + j0(k − 2) − (k − 2)) ∈ A(T ) (notice that
i + j0(k − 2) − (k − 2) ≥ i as (z1, i) ∈ A(T )) then there exists Ck = (z1, i +
j0(k−2)−(k−2))∪(i+j0(k−2)−(k−2), α, i+j0(k−2))∪(i+j0(k−2), z1) ⊆ T

and it is an at most bicolor cycle by hypothesis, so (z1, i+j0(k−2)−(k−2))
and (i+j0(k−2), z1) have the same color and they are not black (by Lemma
1-f), hence Ck is a (2, k-2)-subdivision of C2-bicolor, a contradiction. We
conclude that (z1, i + j(k − 2)) ∈ A(T ) for each j with p > i + j(k − 2) ≥ i.

Claim 3. For each i, p ≥ i > k− 2 we have: If (i, z1) ∈ A(T ) then for every
j, p − (k − 2) ≥ i − j(k − 2) > 0, it holds that (i − j(k − 2), z1) ∈ A(T ).
Let i be such that p ≥ i > k − 2 and (i, z1) ∈ A(T ). If there exists j,
p − (k − 2) ≥ i − j(k − 2) > 0, such that (i − j(k − 2), z1) 6∈ A(T ) then let
j0 = min{j | p − (k − 2) ≥ i − j(k − 2) > 0 and (i − j(k − 2), z1) 6∈ A(T )}.
As before we have that (z1, i − j0(k − 2)) ∈ A(T ) (T is a tournament) then
(z1, i − j0(k − 2) + (k − 2) = i − (j0 − 1)(k − 2)) ∈ A(T ) (as a consequence
of Claim 2) since p − (k − 2) ≥ i − j0(k − 2) ≥ 0), contradicting the choice
of j0.

Now we conclude the proof by analyzing the following two cases.

Case A. p = m(k − 2), with m ∈ N and m ≥ 2 (recall that p > k − 2).
(z1, z2 = 0) ∈ A(T ) so it follows from Claim 2 that (z1, p − (k − 2)) ∈
A(T ), then there exists Ck = (z1, p − (k − 2)) ∪ (p − (k − 2), α, p = z0) ∪
(z0, z1) ⊆ T and it is an at most bicolor cycle by hypothesis, then we have
that (z1, p − (k − 2)) ∈ A(T ) is red (it is not black by Lemma 1-f) and
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so Ck = (z1, p − (k − 2)) ∪ (p − (k − 2), α, p = z0) ∪ (z0, z1) ⊆ T is a (2,
k-2)-subdivision of C2-bicolor, a contradiction.

Case B. p = m(k − 2) + r, with m, r ∈ N, m ≥ 1 and k − 2 > r > 0.

Claim 4. (z1, p − r) ∈ A(T ) and it is red.
(z1, z2 = 0) ∈ A(T ) so (z1,m(k − 2) = p − r) ∈ A(T ) (by Claim 2). Then
Ct = (z1, p − r) ∪ (p − r, α, p = z0) ∪ (z0, z1) ⊆ T is a cycle with length
t = r + 2 with t < k (as r < k − 2). It is an at most 2-colored cycle by
hypothesis, hence (z1, p − r) ∈ A(T ) is black or it is red and we conclude it
is colored red because of Lemma 1-f.

Claim 5. (r, z1) ∈ A(T ) and it is blue.
(z0, z1) ∈ A(T ) so by Claim 3 we have that (p − m(k − 2) = r, z1) ∈ A(T ).
Then Ct = (z1, z2 = 0)∪ (0, α, p−m(k− 2) = r)∪ (r, z1) ⊆ T is a cycle with
length t = r + 2 < k and it is an at most bicolor cycle by hypothesis, so
(r, z1) ∈ A(T ) is black or blue. As a consequence of Lemma 1-f we conclude
(r, z1) ∈ A(T ) is blue.

Claim 6. (z0, r) ∈ A(T ).
If (r, z0) ∈ A(T ) then there exists Cs = (r, z0, z1, z2 = 0)∪ (z2 = 0, α, r) ⊆ T

a cycle of length s = r + 3 ≤ k) and it is an at least 3-colored cycle (k ≥ 4
since k − 3 ≥ r ≥ 1), a contradiction.

Then there exists the at least 3-colored cycle Cq = (z0 = p, r, z1, p−r)∪
(p − r, α, z0) ⊆ T (q ≤ k as r ≤ k − 3), a contradiction again.

Corollary 1. In combination with the Shen Minggang condition, Theorem

2 is a generalization of the Theorem C by Hahn et al.

4.2. Condition II

Definition 4. A (1, 1, k-2)-C-subdivision of a 3-colored C3 with colors 1, 2
and 3, is defined to be a cycle of length k having a monochromatic path of
length k-2 colored 1, one arc colored 2 and one arc colored 3.

Definition 5. A (1, 1, k-2)-T -subdivision of a 3-colored T3 with colors 1, 2
and 3, can be obtained from such T3 by the substitution of one of its arcs
with a path colored alike.

Notice that any of the arcs of T3 can be replaced by a path, so depending
on which arc is replaced, we can get three different 3-colored digraphs.
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Definition 6. Let T be an m-colored tournament. We say that T satisfies
property PIIk for some fixed integer k ≥ 3 if

(a) There is no (1, 1, t − 2)-C-subdivision in T , with t ≤ k and t ≥ 3, and

(b) there is no (1, 1, k − 2)-T -subdivision in T .

Theorem 3. Let T be an m-colored tournament. If T satisfies property

PIIk for some integer k ≥ 3 then C(T ) is a KP-digraph.

Proof. We proceed by contradiction. Suppose that C(T ) is not a KP-
digraph, then by Lemma 1 there exists a cycle γ = (z0, z1, z2 = 0, 1, 2, . . . , p =
z0) satisfying properties (a) to (f). The following claims will allow us to ob-
tain a contradiction:

Claim 1. p > k − 2.
By the contrary, if p ≤ k − 2 then γ ⊆ T is a (1, 1, p)-subdivision of a
3-colored C3 in T (p + 2 ≤ k), a contradiction. So p > k − 2.

Claim 2. For each i with p − (k − 2) > i ≥ 0 we have: If [z1, i]T is colored
a (a 6= black, by Lemma 1-f) then for each j with p > i + j(k − 2) ≥ i, we
have that [z1, i + j(k − 2)]T is also colored a.

Let i, 0 ≤ i < p − (k − 2), be a fixed integer and suppose that [z1, i]T
is colored a. Suppose, by contradiction, that there exists j ′ with p > i +
j′(k − 2) ≥ i, such that [z1, i + j′(k − 2)]T is colored b, with a 6= b. Consider
j0 = min{j′ | p > i + j′(k − 2) ≥ i and such that [z1, i + j′(k − 2)]T is
colored b, with a 6= b}. Then D[{z1, j0, j0 − 1}] is a 3-colored triangle, a
contradiction.

Claim 3. For each i with p ≥ i > k − 2 the following holds: If [z1, i]T is
colored a (a 6= black) then for every j, p − (k − 2) ≥ i − j(k − 2) > 0, we
have that [z1, i − j(k − 2)]T is colored a.
Immediate from the previous claim.

Depending on the length of α we analyze the following two cases.

Case A. p = m(k − 2), m ∈ N, m ≥ 2 (p ≥ k − 2).
(z1, z2 = 0) ∈ A(T ) is blue and [z1, p−(k−2)]T is blue by Claim 2. If (z1, p−
(k−2)) ∈ A(T ) then Ck = (p = z0, z1, p−(k−2))∪(p−(k−2), α, p = z0) ⊆ T

is a (1, 1, k−2)-subdivision of a 3-colored C3 in T . If (p−(k−2), z1) ∈ A(T )
then Tk = (p − (k − 2), α, p = z0) ∪ (p = z0, z1) ∪ (p − (k − 2), z1) ⊆ T

is a (1, 1, k − 2)-subdivision of a 3-colored T3 in T , in both cases we get a
contradiction.
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Case B. p = m(k − 2) + r, m, r ∈ N, m ≥ 1, 1 ≤ r < k − 2.

Claim 4. (p − r, z1) ∈ A(D) and it is blue: (z1, z2 = 0) ∈ A(T ) and it is
blue, so [z1,m(k−2) = p−r]T is also blue (by Claim 2). If (z1, p−r) ∈ A(T )
then Ct = (z1, p − r) ∪ (p − r, α, p = z0) ∪ (z0, z1) ⊆ T (t < k) is a (1,1,t-2)-
subdivision of a 3-colored C3 in T , a contradiction. Then (p− r, z1) ∈ A(D)
and it is blue.

Let h = (k − 2) − r, A1 = {j(k − 2) | m ≥ j ≥ 0}, A2 = {p − j(k − 2) |
m ≥ j ≥ 0} and A = A1 ∪ A2. Notice that A1 ∩ A2 = ∅, as 0 < r < k − 2.

Claim 5. For every i ∈ A we have that (z1, i) ∈ A(T ).

By contradiction let us define f = min{u ∈ A | (u, z1) ∈ A(T )} (f > 0
because (z1, 0) ∈ A(T )). Let w ∈ A defined as follows: f − h = w whenever
f ∈ A1 and f − r = w whenever f ∈ A2. It follows from the definition of f

that (z1, w) ∈ A(T ) (notice that f ∈ A1 implies w ∈ A2; and f ∈ A2 implies
w ∈ A1).

If f ∈ A1 then w ∈ A2, (f, z1) ∈ A(T ) is blue (as (z1, z2) ∈ A(T ) is
blue and because of Claim 2) and (z1, w) ∈ A(T ) is red ((z0, z1) ∈ A(T ) is
red and because of Claim 3). Hence Ct = (f, z1) ∪ (z1, w) ∪ (w,α, f) ⊆ T

(h < k − 2 so t < k) is a 3-colored cycle, a contradiction.

By analogy, if f ∈ A2 then w ∈ A1, (z1, w) ∈ A(T ) if blue ((z1, z2) ∈
A(T ) is blue and by Claim 2) and (f, z1) ∈ A(T ) is red ((z0, z1) ∈ A(T ) is
red and by Claim 3). Hence Ct = (f, z1) ∪ (z1, w) ∪ (w,α, f) ⊆ T (t < k as
r < k − 2) is a 3-colored cycle, a contradiction again.

In particular we have that (z1, p− r = m(k − 2)) ∈ A(T ), contradicting
Claim 4.

Corollary 2. Theorem 3 is a generalization of the Theorem A by Shen

Minggang.

5. Remarks and Open Problems

Remark 1. If we only ask in Theorem 2 for every Ck ⊆ T to be an at most
bicolor cycle and not to be a (2, k − 2)-subdivision of C2-bicolor, then the
result does not hold.

Proof. Consider tournaments in Figure 1a (for k=4) and Figure 1b (for
k=6). Even though every Ck in such tournaments is an at most bicolor cycle
and is not a (2, k−2)-subdivision of C2-bicolor, there exists a 3-colored C3 =
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(z0, z1, z2, z0) and both tournaments do not have a kernel by monochromatic
paths.

Remark 2. If we omit the last hypothesis (c) in Theorem 3 then the result
will be false. To prove it consider the digraph in Figure 1a (same argument
as in the previous remark).

Remark 3. The Sands et al. condition, the Shen Minggang condition and
the Galeana-Sánchez condition do not imply the conditions of Theorem 2
and Theorem 3.

Proof. To prove it consider digraphs in Figure 2 to 5.

Figure 2. The tournament in Figure 2 proves that the Sands et al. Condi-
tion does not imply Condition I: Though T is a 2-colored tournament, there
exists C6 = (z0, z1, z2, z3, z4, z5, z0) a (2, 4)-subdivision of a bicolor C2.

Figure 3. The tournament in Figure 3 proves that the Shen Minggang
Condition does not imply Condition II: Though every triangle is a 2-colored
subdigraph (notice that if there exists a 3-colored triangle then it must
contain the arc (z1, z2)), there exists C6 = (z0, z1, z2, z3, z4, z5, z0) a (1, 1, 4)-
subdivision of a 3-colored C3.

Figure 4. The tournament in Figure 4 proves that the Galeana-Sánchez
Condition does not imply Condition I: Though every cycle of length 3
and 4 in T is a quasimonochromatic cycle (notice that every non quasi-
monochromatic cycle of length 4 must contain two arcs colored 1), there
exists C5 = (z0, z1, z2, z3, z4, z0) a (2, 3)-subdivision of a bicolor C2.

Figure 5. The tournament in Figure 5 proves that the Galeana-Sánchez
Condition does not imply Condition II: Though every cycle of length 3 and
4 in T is a quasimonochromatic cycle (notice that there are only 2 arcs not
colored 3 and both are adjacent to z1, so they can not be simultaneously in
a cycle), there exists P5 = (z2, z3, z4, z0, z1) ∪ (z2, z1), a (1, 1, 3)-subdivision
of a 3-colored T3.

Open problem 1. Let T be an m-colored tournament. If there is some
fixed integer k ≥ 4 such that every Cs ⊆ T (s ≤ k) is at most bicolor then
C(T ) is a KP-digraph.

Open problem 2. Let T be an m-colored tournament. If there is some
fixed integer k ≥ 3 such that there is no (1, 1, t−2)-subdivision of a 3-colored
C3 in T (3 ≤ t ≤ k) then C(T ) is a KP-digraph.
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Open problem 3. Let T be an m-colored tournament. If there is some
fixed integer k ≥ 3 such that there is no (1, 1, k − 2)-subdivision of a 3-
colored T3 in T and there is no (1, 1, t − 2)-subdivision of a 3-colored C3 in
T (3 ≤ t < k) then C(T ) is a KP-digraph.
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