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Abstract

W. He et al. showed that a planar graph not containing 4-cycles
can be decomposed into a forest and a graph with maximum degree at
most 7. This degree restriction was improved to 6 by Borodin et al.

We further lower this bound to 5 and show that it cannot be improved
to 3.
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1. Introduction

He, Hou, Lih, Shao, Wang and Zhu [5] proved a number of results on de-
composing a planar graph with specified girth conditions into a forest and
another graph whose maximum degree is not too high. In the same pa-
per, they also used these results to derive new upper bounds on the game
chromatic number of graphs.

In particular, He et al [5] showed that a planar graph with girth g can
be decomposed into a forest and a graph H such that the maximum degree,
∆(H), of H is at most 4, 2 or 1 if g is at least 5, 7 or 11, respectively.
Kleitman [6] improved one of these results by showing that ∆(H) ≤ 2 if
g ≥ 6. Kleitman et al. [1] also proved that ∆(H) ≤ 1 when g ≥ 10.
This result was further improved by Borodin, Kostochka, Sheikh and Yu [3]:
∆(H) ≤ 1 if g ≥ 9.

In addition to the results with girth conditions, He et al. [5] proved that
a planar graph that does not contain 4-cycles (even though it may contain 3-
cycles) can be decomposed into a forest and a graph H such that ∆(H) ≤ 7.
This bound was improved to 6 by Borodin et al [4].

Our main result here is as follows.

Theorem 1. Every planar graph without 4-cycles can be decomposed into a

forest and a graph with maximum degree at most 5.

The reason for forbidding 4-cycles is seen in the complete bipartite graph
K2,n, which is planar. Any forest F contained in K2,n has at most n + 1
edges, and at least half of the remaining edges are incident with one of the
two vertices of degree n in K2,n. Thus, in any decomposition of K2,n into
F and another graph, H, the maximum degree of H is at least n−1

2 , i.e., is
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high if n is large. On the other hand, forbidding only 2-alternating 4-cycles
(having two nonconsecutive vertices of degree 2) in a planar graph implies
that this graph can be decomposed into a forest and an H with ∆(H) ≤ 14
(by Theorem 5 in [2] combined with Theorem 3.1 in [5]).

As explained in [5], Theorem 1 implies the following result.

Corollary 2. The game chromatic number and the game coloring number

of a planar graph without 4-cycles are at most 9.

By an FHk-coloring of a graph we mean a partition of its edges into a forest
F and a graph H of maximum degree at most k, i.e., a coloring of the edge
set of the graph with two colors, F and H, such that the set of edges colored
F forms a forest and the set of edges colored H forms a graph of maximum
degree at most k.

2. Proof of Main Result

Say that a vertex is branching if its degree is at least 3. Suppose that there
exist counterexamples to Theorem 1. In the set of these counterexamples,
consider the subset that contains graphs with the fewest branching vertices.
Let G be a graph from this subset with the smallest total number of vertices
and edges.

2.1. Basic structural properties of G

Claim 3. G is connected.

Fix a planar embedding of G and let F (G) denote the set of faces of G in
this planar embedding. For x ∈ V (G)∪F (G), d(x) denotes the degree of x,
where the degree of a face is the length of a closed walk around the boundary
of the face.

Claim 4. G has no vertex v with d(v) = 1.

Proof. Let G′ = G − v. By the minimality of G, graph G′ has an FH5-
coloring, and it suffices to color the edge incident with v with F to obtain
an FH5-coloring of G.

Claim 5. Every edge in G is incident with a vertex of degree at least 7.
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Proof. Suppose u and v are two adjacent vertices of degree at most 6. Let
G′ = G − uv. Since the number of branching vertices in G′ does not exceed
that in G, and G′ has fewer edges than G, G′ has an FH5-coloring. If both
u and v have incident edges of color F , then we color uv with H; otherwise,
color it with F . This gives an FH5-coloring of G, a contradiction.

Claim 6. G has no vertices of degree 3.

Proof. Suppose that G has a vertex v of degree 3, with neighbors v1, v2,
and v3. Let G′ be obtained from G by removing v, adding three new vertices
x1, x2, and x3, and the edges of the 6-cycle v1x1v2x2v3x3. By Claim 5, G′

has fewer branching vertices. Thus by the minimality of G, G′ has an FH5-
coloring c′. We use c′ to construct an FH5-coloring c for G: we let c(vvi) = F
if both new edges at vi in G′ are colored F , and let c(vvi) = H otherwise.
Then v has at most three incident edges colored H, the number of edges
colored H in G incident with any vertex vi does not exceed that in G′, and
no F -path in G going through v can appear.

For a vertex v, let d+(v) denote the total number of adjacent vertices of
degree 2 and triangular faces incident with v.

Claim 7. G has no vertex v such that d+(v) > d(v).

Proof. We first note that by Claim 5, each closed walk (w1, . . . , wt) en-
counters at least d t

2e vertices of degree at least 7. Suppose that the neighbors
of v in the clockwise direction are w1, . . . , wt. Let fi be the face containing
the walk (wi, v, wi+1), i = 1, . . . , t. Some vertices and/or faces with distinct
labels can coincide. If a face fi is a triangle, then by the first sentence of this
proof, at least one of wi and wi+1 is a vertex of degree at least 7. Call such
a vertex xi. Since G has no 4-cycles, all xi are distinct. Thus the number
of neighbors of degree at least 7 is at least the number of the incident tri-
angular faces. Hence, the total number of adjacent 2-vertices and incident
triangular faces is at most the number of adjacent vertices of degree 2 plus
the number of adjacent vertices of degree at least 7, which is at most the
degree of v.

2.2. Discharging and its consequences

Let the initial charge of every x ∈ V (G) ∪ F (G) be µ(x) = d(x) − 4. By
Euler’s formula |V (G)| − |E(G)| + |F (G)| = 2, we have
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(1)
∑

x∈V (G)∪F (G)

(d(x) − 4) =
∑

x∈V (G)∪F (G)

µ(x) = −8 < 0.

A face f of degree at least 5 is weak if it is incident with d(f)− 3 vertices of
degree 2. Non-triangular faces that are not weak will be called strong. By
Claim 5, every face f with d(f) ≥ 7 is strong.

The vertices and faces of G discharge their initial charges by the follow-
ing rules:

Rule 1. Every non-triangular face f = uvw . . . gives each incident vertex v
of degree 2:

(a) 1, if either f is strong or f is a weak 6-face adjacent to the 3-face uvw;

(b) 1
2 , otherwise.

Rule 2. Every triangle gets 1
2 from every incident vertex of degree at least 7.

Rule 3. Every vertex w of degree at least 7 gives 1
2 to every adjacent 2-

vertex v, unless v lies between non-triangular faces at least one of which is
strong, in which case w gives only 1

4 to v.

In the rest of the paper, we show that the final charge µ∗(x) is nonnegative
for each x ∈ V (G) ∪ F (G), which is a contradiction to (1) since the total
charge is preserved.

If f is a 3-face, then µ∗(f) ≥ 3−4+2× 1
2 = 0 by Rule 2, due to Claim 5.

By Rule 1 combined with Claim 5, each 5-face ends with a charge of at least
0. For the same reasons, each 6-face f has µ∗(f) ≥ 6 − 4 − 2 × 1 = 0 if f is
strong and µ∗(f) ≥ 6 − 4 − 2 × 1

2 − 1 = 0 if f is weak. (Note that a weak
6-face cannot give 1 to more than one incident 2-vertex due to the absence
of 4-cycles in G.) Finally, if d(f) ≥ 7, then µ∗(f) ≥ d(f)−4−b d(f)

2 c×1 ≥ 0.
Now suppose v ∈ V (G). If d(v) = 2, then µ(v) = −2. Note that v

cannot be incident with two triangle faces, since G has no multiple edges. If
one of the faces, f1, incident with v is a triangle, then the other, f2, cannot be
a weak 5-face, and hence µ∗(v) ≥ 2−4+1+2× 1

2 = 0 by Rules 1 and 3. If both
f1 and f2 are non-triangular, then µ∗(v) ≥ 2−4+1+ 1

2 +2× 1
4 = 0 provided

that at least one of f1, f2 is strong; otherwise, µ∗(v) ≥ 2 − 4 + 4 × 1
2 = 0.

If 4 ≤ d(v) ≤ 6, then µ∗(v) = µ(v) = d(v) − 4 ≥ 0. If d(v) ≥ 8, then

µ∗(v) ≥ d(v)− 4− d+(v)× 1
2 ≥ d(v)− 4− d(v)× 1

2 = d(v)−8
2 ≥ 0 by Claim 7.

Vertices of degree 7 are considered in the next subsection.
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2.3. Handling vertices of degree 7

Note that d+(v) ≤ 6 implies µ∗(v) ≥ 7 − 4 − 6 × 1
2 = 0, so we can assume

d+(v) = 7 due to Claim 7. There are four configurations to consider.

Let the neighbors of v be labeled v1, . . . , v7 in the clockwise order.

Configuration 1. Vertex v is adjacent to seven 2-vertices and not incident
with any triangle.

Let the neighbor of vi, i ∈ {1, . . . , 7}, other than v be labeled wi. Note
that each wi is of degree at least 7, and that they are all distinct, since G
has no 4-cycles.

Let Gi,j be the graph obtained from G by removing v and all 2-vertices
adjacent to it, adding a new vertex x and the edges wix and wjx. Note
that Gi,j is still planar and has fewer branching vertices than G. If Gi,j is
C4-free, then by the minimality of G, there exists an FH5-coloring c′ of Gi,j .
We show how to extend c′ to an FH5-coloring c of G.

We let c(wlvl) = c′(wlx) for l = i, j and c(viv) = c(vjv) = F , while
c(vlv) = H and c(wlvl) = F for l 6= i, j. Note that if c′(wix) = c′(wjx) = F ,
then there is no other F -path from wi to wj in Gi,j and hence the F -path
wivivvjwj does not produce any F -colored cycle in coloring c of G.

Thus, we may assume that for each i 6= j, i, j ∈ {1, . . . , 7}, graph Gi,j

has a 4-cycle, i.e., wi has a common neighbor with wj .

Claim 8. Let G′ be obtained from G by deleting v and all its neighbors
of degree 2. If every pair of vertices from the set {w1, . . . , w7} in G′ has
a common neighbor, then there exists a vertex distinct from these seven
vertices that is adjacent to all of them.

Proof. Case 1. First suppose that there is a chord of type wiwi+3 for some
i in G′, say, w1w4. There are two possibilities: (a) neither edge w1w3 nor
edge w2w4 is present, and (b) exactly one of them exists (both cannot be
present by planarity). If (a) holds, then for w2 to have a common neighbor
with w5, the edges w1w2 and w1w5 must be present, and similarly in order
for w3 to have a common neighbor with w6 the edges w3w4 and w4w6 must
be present. But by planarity, edges w1w5 and w4w6 cannot be present at
the same time.

Suppose now that (b) holds; say, w1w3 ∈ E(G). In order for w2 to have
a common neighbor with any of the vertices in the set {w5, w6, w7}, the
edge w1w2 must exist. If both edges w2w3 and w3w4 exist, then the 4-cycle
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w1w2w3w4w1 arises. Thus, one of these two edges does not exist. If the
edge w2w3 is not there, then the face containing w2, w3 and v in the original
graph G is strong. Indeed, it either contains w1, in which case it is a strong
6-face, or is a face with at least 7 edges (if there is a w2 to w3 path, it must
have at least 3 edges, since 2 edges would produce a 4-cycle with the edges
w1w2 and w1w3). Note that the presence of a strong face at v ensures that
µ∗(v) ≥ 0. Similarly, if the edge w3w4 is absent, then the face incident with
w3, w4 and v in G is strong. Thus, there is no chord of type wiwi+3 if v has
a negative final charge.

Case 2. Now suppose there is no chord of the kind wiwi+3 but there is
a chord of the kind wiwi+2, say, w1w3. Since w3w6 /∈ E(G), to have a path
of length 2 from w6 to w2, there should be edges w1w6 and w1w2. Similarly,
to have a path of length 2 from w2 to w5, the edges w2w3 and w3w5 should
be present. Now, because of planarity, there cannot be a path of length 2
between w4 and w7, a contradiction.

Case 3. Finally, suppose there are no chords in this set of vertices.
To produce a path of length 2 from w1 to w4, there should be a common
neighbor w of w1 and w4. Also, there must be a common neighbor w′ of w2

and w6. By planarity, w′ must be the same vertex as w. Similarly, w5 must
also be adjacent to w, and in fact all the other vertices must be adjacent to
w to get all the paths of length 2.

By Claim 8, we can assume that there is a vertex w adjacent to each wi.
Since G has no 4-cycles, either w1w2 /∈ E(G) or w2w3 /∈ E(G). Suppose that
w1w2 /∈ E(G). Then the face incident with v, v1 and v2 is strong. Hence,
µ∗(v) ≥ 0.

Configuration 2. Vertex v is adjacent to six 2-vertices and incident with
one triangle.

Let v7 have degree larger than 2, and let the triangle incident with v
contain v7 and v6. Let the neighbors of vi, i = 1, ..., 6, be labelled wi;
in particular, v7 = w6. Like in Configuration 1 above, consider Gi,j for
1 ≤ i < j ≤ 6 (we do not delete v7). If some Gi,j is C4-free, then by the
minimality of G as a counterexample, there exists an FH5-coloring c′ of Gi,j .
We will show that one can extend c′ to an FH5-coloring c of G.

Let c(v7v) = F , c(wlvl) = c′(wlx) for l ∈ {i, j}, while c(wlvl) = F
and c(vlv) = H for l ∈ {1, . . . , 6} − {i, j}. It remains to color viv and vjv.
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If at least one of wivi, wjvj , say the first, is colored with H, then we let
c(viv) = F , c(vjv) = H. Suppose both wivi and wjvj are colored with F .
This means that wi and wj are not connected by an F -path in Gi,j−x, which
implies that v7 is not connected by an F -path in Gi,j − x either with wi or
with wj. Suppose with the first; then we let c(viv) = F and c(vjv) = H.

It remains to assume that every pair of vertices in the set {w1, . . . , w6}
has a common neighbor. Then we make use of the following claim.

Claim 9. Let G′ be obtained from G by deleting v and all its neighbors
of degree 2. If in G′, every pair of vertices from the set {w1, . . . , w6} has
a common neighbor, then there exists a vertex x distinct from these six
vertices such that x is adjacent to all of them.

Proof. The proof is similar to that of Claim 8. In particular, Case 3 is
identical and is omitted from the proof below. The only remark on Case 1
is that w6w3 /∈ E(G), which implies that a strong face at v is not adjacent
to the triangle at v and therefore saves 1

2 for v. Case 2 is a little bit different
and given in full detail below.

Case 2. There is no chord of the kind wiwi+3, but there is a chord
wiwi+2. Since wi+1 has a common neighbor with a wi+4, we can assume by
symmetry that wiwi+4 ∈ E(G). Note that wi+3 can reach wi+5 only through
wi+4 (which means that wi+3wi+4 ∈ E(G)) and wi+1 only through wi+2

(which means that wi+3wi+2 ∈ E(G)). This yields a 4-cycle wiwi+2wi+3wi+4,
a contradiction.

By the same reasoning as in the proof of Configuration 1, at least one of
the edges w2w3 or w3w4, say the first, is not present in G. Then the face
incident with v, v2 and v3 is strong. This face is not adjacent to the triangle
at v and has at least two vertices of degree 2, which implies that v gives 1

4
to each of them.

Configuration 3. Vertex v is adjacent to five 2-vertices and incident with
two triangles, where each triangle contains one of these five 2-vertices.

W.l.o.g., we can assume that d(v1) > 2 and there is a triangle vv1v2

at v. There are two cases to consider as shown in Figure 1.

(A) d(v6) > 2 and there is a triangle vv5v6, and

(B) d(v7) > 2 and there is a triangle vv6v7.
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Figure 1. Two cases of Configuration 3.

Our argument below makes no distinction between (A) and (B), except in
notation. For i ∈ {2, . . . , 7}, if d(vi) = 2, then denote the vertex adjacent to
vi other than v by wi. In particular, w2 = v1 and either w5 = v6 (Case (A))
or w6 = v7 (Case (B)). We delete all 2-vertices adjacent to v and add one of
the following 2-paths to obtain a graph G′: either v1x1w4 or w3x3v6 in (A),
and either v1x1w4 or w3x3v7 in (B). Note that vertex x1 or x3, as the case
may be, is a newly-added vertex.

Note that G′ has fewer branching vertices than G. First suppose G′ is
C4-free; then let c′ be an FH5-coloring of G′. We use c′ to design an FH5-
coloring c of G. To fix notation, we give the argument for the case when G′

contains 2-path v1x1w4.

We define an intermediate coloring c0 of G and then adjust it to obtain a
desired coloring c. Let e∗ be the edge other than vv1 joining v with a vertex
of degree greater than 2, i.e., e∗ = vv6 in (A) and e∗ = vv7 in (B). Let
c0(vv1) = c′(vv1) and c0(e

∗) = c′(e∗). Also for each i such that d(vi) = 2,
we let c0(vvi) = H and c0(viwi) = F .

If c0(vv1) = c0(e
∗) = F then c0 is already the desired FH5-coloring c

of G. We are also easily done if c0(vv1) = c0(e
∗) = H by letting c(vv1) =

c(vv2) = F and c(v1v2) = H.

Suppose c0(vv1) = F and c0(e
∗) = H. At this point, c0 is not an FH5-

coloring as there are six edges incident to v that are colored H. We will re-
color some edges to obtain FH5-coloring c. In the case that c′(v1x1) = H, c
is obtained by recoloring vv2 with F and v1v2 with H. Now if c′(x1w4) = H,
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we let c(v4w4) = H and c(vv4) = F . So we can assume that c′(v1x1) =
c′(x1w4) = F ; now it suffices to let c(vv4) = F .

Finally, suppose that c0(vv1) = H and c0(e
∗) = F . The case c′(x1w4) =

H is resolved as in the previous paragraph. If c′(v1x1) = H, we can let
c(v1v2) = H and c(vv2) = F . So we can assume that c′(v1x1) = c′(x1w4) =
F . This implies that there is no F -path from v1 to w4. Now the end of e∗

other than v is not joined by an F -path either with v1 or with w4, and it
suffices to let c(vv1) = F or c(vv4) = F , respectively.

Thus, our initial supposition that G′ is C4-free has been ruled out. So
we have that G has a 2-path joining v1 with w4 (in order for there to be a C4

in G′). The same argument, with a slight difference in notation, shows that
G has a 2-path joining w3 with v6 if (A) happens and with v7 otherwise.
This means that G has a vertex w adjacent to v1, w3, w4, and either v6 (if
(A) is the case) or v7 (otherwise).

If the face f3 = v3vv4 . . . is strong, then v gives only 1
4 to each of v1

and v2, and µ∗(v) ≥ 7 − 4 − 5 × 1
2 − 2 × 1

4 = 0. If, on the other hand,
face f3 is weak, then, since d(w) > 2 and there is a path w3ww4, it follows
that f3 must be a 5-face incident with edge qw3w4. In that case, the faces
f2 = v2vv3 . . . and f4 = v4vv5 . . . are strong since edges w2w3 and w4w5

cannot exist, and again µ∗(v) ≥ 0.

Configuration 4. Vertex v is adjacent to four 2-vertices and incident with
three triangles, each containing one of these 2-vertices.

Let v be adjacent to 2-vertices v2, v4, v6 and v7, and the three triangles
are vv1v2, vv3v4 and vv5v6. Furthermore, let w7 be the neighbor of v7 other
than v.

Let G′ be the graph obtained by removing v and 2-vertices adjacent
to v, adding vertices z1, z3, and z5, and adding the edges of the 6-cycle
C+ = v1z1v3z3v5z5. Note that G′ is C4-free since the common neighbor, v,
of v1, v3, v5 in G has been removed.

Since G′ has fewer branching vertices than G, it is FH5-colorable. Let
c′ be an FH5-coloring of G′. We use c′ to design an FH5-coloring c of G as
follows.

Again, we first define an intermediate coloring c0 and then we adjust it
to obtain a desired coloring c. Let c0(vvi+1) = c0(vv7) = H, and c0(vivi+1) =
c0(v7w7) = F whenever i ∈ {1, 3, 5}. Also for i ∈ {1, 3, 5}, we let c0(vvi) =
H if vi is incident with at least one edge of C+ colored H (in coloring c′);
otherwise, we let c0(vvi) = F .
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Note that at least one of vv1, vv3 and vv5 is colored H since C+ cannot be
totally colored with F in coloring c′. Thus, we have three cases to consider.

Case 1. Exactly one of the edges vv1, vv3 and vv5 is colored H. Without
loss of generality, suppose c0(vv1) = H, c0(vv3) = c0(vv5) = F . Here, c0 is
already a desired FH5-coloring c of G since G− v has no F -path from v3 to
v5 due to the absence of F -cycles in G′ going through v3z3 and z3v5.

Case 2. Exactly two of the edges vv1, vv3 and vv5 are colored H. Thus,
c0 is not an FH5-coloring (as there are six edges incident to v that are
colored H in c0). We will recolor some edges to yield an FH5-coloring c.

Without loss of generality, suppose c0(vv1) = c0(vv3) = H, c0(vv5) = F .
By our construction of c0 from c′, this implies that c′(z3v5) = c′(v5z5) = F
in G′, and at least one edge of C+ incident to v1 is colored H in c′ and
similarly at least one edge of C+ incident to v3 is colored H in c′. This
yields three subcases to consider.

Subcase 2.1. Both the edges of C+ incident to one of v1 or v3 are colored
H: say, c′(v1z1) = c′(v1z5) = H. To obtain c, swap the colors on the edges
vv2 and v1v2 (similarly, swap the colors on edges vv4 and v3v4, if it had been
v3 whose both edges in C+ were colored H).

So, now we are left with two subcases where each of v1 and v3 has
exactly one of their C+ edges colored F and one colored H.

Subcase 2.2. One of the edges of C+ at v1 or v3 colored F is incident with
one of the two edges of C+ at v5 (both of are which colored F in the case
under consideration): suppose, without loss of generality, that c′(v1z5) = F .
We recolor vv2 with F to obtain a desired FH5-coloring c of G (since there is
no F -cycle in G′ going through v1z5 and z5v5, there is no F -cycle containing
the F -path v1v2vv5 in G).

Subcase 2.3. c′(v1z5) = c′(v3z3) = H, which means that c′(v1z1) =
c′(v3z1) = F . This implies the absence of an F -path from v1 to v3 in c0.
As a consequence, either there is no F -path from v5 to v1 or there is no
F -path from v3 to v5. If the former is true, we recolor vv2 with F to obtain
c; otherwise, we recolor vv4 with F .

Case 3. All three of the edges vv1, vv3, and vv5 are colored H in c0. In
c0, all the seven edges of v are colored H. To obtain c, it suffices to recolor
edges vv1 and vv2 with F , and recolor v1v2 with H.
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So, we have proved that the final charge of each 7-vertex is non-negative.
This completes the proof of Theorem 1.

3. Remarks

The proof above shows that a planar C4-free graph has one of the config-
urations that cannot exist in a minimal counterexample. Since these con-
figurations can be identified in polynomial time (in terms of the number
of vertices), our proof yields a polynomial time algorithm for decomposing
a planar C4-free graph into a forest and a graph of maximum degree at
most 5.

In the rest of this section, we construct a planar C4-free graph that
cannot be decomposed into a forest and a graph of maximum degree 3.
This leaves open the question whether every planar C4-free graph can be
decomposed into a forest and a graph of maximum degree at most 4.

It is well-known that there are infinitely many cubic planar graphs with
girth 5, and the dodecahedron (having 20 vertices) is the smallest of them.
Let G be an n-vertex cubic planar graph with girth 5, having m edges and
f faces. We construct a planar graph G′ from G as follows:

(1) for every face f , add a vertex vf and connect vf with each vertex on
the boundary of f with an edge and then subdivide such edge with a new
vertex;

(2) for every edge e of the original graph G, add a vertex and join it by
edges with both ends of e.

Denote the numbers of vertices, edges, faces, and vertices of degree 2 in
G′ by n′, m′, f ′ and n′

2, respectively. By construction,

n′ = n + (f + 2m) + m = n + 3 ×
3

2
n +

1

2
n + 2 = 6n + 2,

m′ = 3m + 4m = 7m =
21

2
n, and n′

2 = m + 2m =
9

2
n.

Suppose E(G′) has a partition into a spanning tree F and a subgraph H
such that ∆(H) ≤ 3. Since F is a spanning tree we have:

(a) for every 2-vertex v in G′, degH(v) ≤ 1;

(b) for each face f of G, at least one 2-vertex in G′ adjacent to vf has two
neighbors in F and hence is isolated in H.
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Therefore,
∑

v∈V (G′) degH(v) ≤ 3(n′−n′
2)+n′

2−f = 3(6n+2)−2× 9
2n− 1

2n−2

= 17
2 n + 4.
Hence, m′ = |E(F )|+|E(H)| ≤ n′−1+ 1

2(17
2 n+4) = 41

4 n+3 < 21
2 n = m′,

a contradiction for all n ≥ 14.
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