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Abstract

Let G = (V, E) be a graph. A set S C V is a restrained dominating
set if every vertex in V' — S is adjacent to a vertex in .S and to a vertex
in V' — S. The restrained domination number of G, denoted by v,-(G),
is the minimum cardinality of a restrained dominating set of G. A
unicyclic graph is a connected graph that contains precisely one cycle.

n

We show that if U is a unicyclic graph of order n, then v, (U) > [5],
and provide a characterization of graphs achieving this bound.

Keywords: restrained domination, unicyclic graph.

2000 Mathematics Subject Classification: 05C69.



72 J.H. HaTtTINGH, E.J. JOUBERT, M. LOIZEAUX, ...

1. INTRODUCTION

In this paper, we follow the notation of [1]. Specifically, let G = (V, E) be
a graph with vertex set V and edge set E. A set S C V is a dominating
set (DS) of G if every vertex in V — S is adjacent to a vertex in S. The
domination number of G, denoted by v(G), is the minimum cardinality of a
DS of G. The concept of domination in graphs, with its many variations, is
now well studied in graph theory. The recent book of Chartrand and Lesniak
[1] includes a chapter on domination. A thorough study of domination
appears in [10, 11].

In this paper, we continue the study of a variation of the domination
theme, namely that of restrained domination — see [2, 3, 4, 5, 6, 7, 8, 9,
12, 13).

A set S C V is a restrained dominating set (RDS) if every vertex in
V — S is adjacent to a vertex in S and to a vertex in V —S. Every graph has
a RDS, since S = V is such a set. The restrained domination number of G,
denoted by v,.(G), is the minimum cardinality of a RDS of G. A RDS of
G of cardinality v, (G) is called a 7,-set of G.

Throughout, let n and m denote the order and size of (G, respectively.
A unicyclic graph U of order n is a connected graph that contains exactly
one cycle. Thus, U has size n. A vertex of degree one will be called a
leaf, while a vertex adjacent to a leaf will be called a remote vertex. The
open neighborhood of a vertex u, denoted N(u), is the set {v € V' |v is
adjacent to u}, while the closed neighborhood of u, denoted N[u], is defined
as N(u) U {u}.

A graph G is status labeled if every vertex in V is labeled either A
or B. A vertex v € V has status A (B, respectively) if v is labeled A (B,
respectively). The status of a vertex v will be denoted Sta(v). We define
Sta(A) (Sta(B), respectively) as the set of vertices in V' with status A (B,
respectively).

Theorem 1. Let G be a connected graph of order n and size m. Then
7(G) =2 n— 2Tm

Proof. Let S be a ~,-set of G, and consider H = (V —S). Let ny and m; be
the order and size of (V —S), respectively. Thus, m1 = 3>, ., _gdegy(v) >
2(n — %,(G)). Let my denote the number of edges between S and V — S.
Since S is a DS, every vertex in V' — S is adjacent to at least one vertex in S.
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Thus, mo > n — VT(G) Hence, m > mi+mg > %(’I’L - ’yT(G)) +n— VT(G%
which implies that v, (G) > n — Zm. |

The following known result of [4] is an immediate consequence of Theorem 1.
Corollary 2. Let T be a tree of order n. Then ~v,(T) > [%:2].

In similar fashion, we derive our first main result.

Corollary 3. Let U be a unicyclic graph of order n. Then ~,.(U) > [5].

Domke et al. [4] provided a constructive characterization of trees achieving
the lower bound given in Corollary 2. Hattingh and Plummer [9] gave a
simpler characterization, independent of ,-set consideration. In the sequel,
we constructively characterize unicyclic graphs achieving the lower bound
given in Corollary 3, utilizing constructive operations governed by status
labeling.

2. UNicyLIC GRAPHS U OF ORDER n WITH 7,(U) = [ %]

Let € denote the class of all unicyclic graphs U of order n such that v, (U) =
{%] In order to provide the characterization, we state and prove a few
observations.

Let U € £ and let S be a ~,-set of U.

Observation 1. If n = 0mod 3, then S is independent and every vertex
in'V — 5 has degree 2.

Proof. Assume that n = 0 mod 3. If v € V such that deg(v) = 1, then
v € S. Thus deg(v) > 2, for all v € V — S. Now, let y € V — S. Suppose
that |[N(y) N (V = S)| > 2. By assumption, [V — S| = 2. Therefore, n =
m > n—7(U) + 3(n — % (U) + 1), which implies that v,(U) > [2] >
[2], a contradiction. Suppose that [N(y)NS| > 2. Then n = m > n—
Y (U) + 1+ &(n — %(U)), which implies that v,(U) > [2=2] > [%], a
contradiction. Thus, every vertex in V — S is adjacent to exactly one vertex
of S and adjacent to exactly one vertex of V — S.

Since |V — S| = 2?", the vertices in V' — S form a matching with exactly
2 edges. Since m = n, there are 22 edges between S and V' — S. Hence, S

3 3
is independent. ]
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Observation 2. If n = 1 mod 3, then S has exactly one of the following
properties:

1. m((S)) = 1, while every vertex in V — S has degree 2.

2. There is a vertex y € V. — S such that deg(y) = 3 and |[N(y)NS| = 2.

Furthermore, S is independent and every vertex in V. — S — {y} has
degree 2.

3. There are exactly two vertices x,y € V — S such that deg(x) = deg(y)
=3, and [N(z)N(V = S)| = |[N(y) N (V = 8S)| = 2. Furthermore, S is
independent and every vertex in V — S — {x,y} has degree 2.

4. There is exactly one vertex y € V — S such that deg(y) = 4 and

IN(y) N (V = S)| = 3. Furthermore, S is independent and every ver-
tex in V. — S —{y} has degree 2.

Proof. Assume that n = 1 mod 3. Suppose first that, for all y € V — 5,
deg(y) = 2 and that S is independent. Clearly, |S| = "TH and [V — S| =

@. There are exactly @ edges between V — S and S, and there
are "T_l edges in (V. —S). Hence, n = m = —2(n;1) =+ "T_l =n-—-1,a

m((S)) > 1.

Suppose m((S)) > 1. If m((S)) > 2, thenn = m > n—v,(U)+2+1(n—
v(U)), implying that v,(U) > [2] > [2], a contradiction. Therefore,
m((8) = 1.

Suppose there is a vertex y € V' — S such that deg(y) > 3. If [N(y) N S|
> 2, then n =m > n—7(U) + 2+ £(n —~,(U)), implying that »,(U) >
["TH] > [%], a contradiction. If |[N(y)N(V —S)| > 2, then n = m >
n—v(U) 4+ 1+ 3(n—~(U)+ 1), implying that v,.(U) > [%£2] > [%], a
contradiction. Therefore, every vertex in V' — S has degree 2. Thus, S has
Property 1.

We may assume that S is independent and there is a vertex y € V — §
such that deg(y) > 3.

Suppose that [N(y) NS| > 2. If [N(y) N S| > 3, then n = m > n—
Y (U) + 2+ 3(n — 7 (U)), implying that v,.(U) > [24] > [2], a contra-
diction. Thus, |[N(y) N S| = 2. If deg(y) > 4, then |[N(y) N (V — 5)| > 2,
and son =m >n—7,.(U) + 1+ 3(n —~.(U) + 1), implying that ~,(U) >
[243] > [2], a contradiction. If deg(z) > 3 for x € V — S —{y}, then either
w(U) > ["TH] or v (U) > {"T'F?’], a contradiction in either case. Thus, S
has Property 2.
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Suppose that, for all x € V' — S such that deg(x) > 3, [N(x) N S| = 1. If
v € V — S such that deg(v) > 5, then n = m > n—~,(U) + 3 (n—7,(U) +3),
a contradiction. Thus, for all v € V — S, deg(v) < 4. Suppose there is a
vertex y € V — S such that deg(y) = 4. Then every vertex in V — S — {y}
must have degree 2. Thus, S has Property 4.

Therefore, we may assume that, if y € V' — S such that deg(y) > 3, then
deg(y) = 3, while |N(y) N S| = 1. Suppose there are three or more vertices
y € V— S such that deg(y) = 3. Thenn =m > n—~,(U)+3(n—,(U)+3),
and so v,(U) > ["T‘H)’], a contradiction. Suppose there is exactly one y €
V — S such that deg(y) = 3. Recall that there are 2(n3_1) vertices in V — S.
Moreover, for all v € V — S — {y}, deg(v) = 2, and since |[N(y)N S| =1,

there are @ —3 > 0 vertices to be matched in (V' —.5). This is impossible

as @ — 3 is odd. Thus, there are exactly two vertices x,y € V — S such
that deg(x) = deg(y) = 3. Thus, S has Property 3. ]

Observation 3. If n = 2mod 3, then there is exactly one vertex y €
V — S such that deg(y) = 3 and |[N(y) N (V —S)| = 2. Furthermore, S is
independent and every vertex in V. — S — {y} has degree 2.

Proof. Suppose n = 2mod 3. If S is dependent, then n = m > n —
%(U) + 1+ 3(n — % (U)), and so v,(U) > [Z2] > [2], a contradiction.
Suppose that, for all v € V — S, deg(v) = 2. Let n = 3¢ + 2, where ¢ > 1.
Then |S| = ¢+ 1 and |V — S| = 2¢ + 1. Notice that V' — S must form a
matching, and since |V — S| = 2¢+1 is odd, this is not possible. Thus, there
isay €V — S such that deg(y) > 3. If [N(v) N S| > 2 for some v € V — S5,
then v,(U) > [2£2] > [%], a contradiction. Thus, [N(v)N S| = 1 for
all v € V — S. Suppose deg(y) > 4, or x € V — S such that = # y and
deg(z) > 3. Then n =m > n —v(U) + 4(n — 7 (U) + 2), which implies
that v,(U) > [22] > [%], a contradiction. Thus, the observation holds. m

Let K be the status labeled graph obtained from the complete graph Ko
with vertex set {ki, ka} by setting Sta(k;) = A and Sta(ke) = B.

Let Paap be the status labeled graph obtained from the path Ps; with
consecutive vertices pi, p2, ps by setting Sta(p;) = Sta(pz) = A and Sta(ps) =
B. Similarly, let Popa be the status labeled graph obtained from the path
P5 with consecutive vertices p1, p2, ps by setting Sta(p;) = Sta(ps) = A and
Sta(p2) = B.

The following status labeled graphs will serve as the basis for our char-
acterization.
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Let Bp be the status labeled graph obtained from the cycle C5 with consecu-
tive vertices vy, v2,vs,v1 by setting Sta(v;) = B and Sta(va) = Sta(vs) = A.

Let Bs be the status labeled graph obtained from the cycle C4 with
consecutive vertices vy, v, vs,v4,v1 by setting Sta(vi) = Sta(vy) = B and
Sta(vg) = Sta(vs) = A.

Lastly, let Bs be the status labeled graph obtained from C35 with con-
secutive vertices vy, va,v3,v4, 05,01 by setting Sta(v;) = Sta(vs) = B and
Sta(vy) = Sta(vs) = Sta(vs) = A, and joining vy to the vertex k; of K.

Note that if U = B; for ¢ € {1,2,3}, then Sta(B) is a 7,-set of U of
cardinality [%]

Let U be a status labeled unicyclic graph. Define the following opera-
tions on U:

O1: Suppose v is a vertex of U such that Sta(v) = B. Join v to the vertex
p1 of Paap.
Os: Suppose uv is an edge of U. One of the following is performed:

1. If Sta(u) = B, then delete the edge uv and join the vertex u (v,
respectively) to the vertex p; (ps, respectively) of Paap.

2. If Sta(u) = Sta(v) = A, then delete the edge uv, join the vertex u
(v, respectively) to the vertex p; (ps, respectively) of Papa.

Os: Suppose uv is an edge of U, and suppose Sta(u) = Sta(v) = A. Delete
the edge uv, and join u and v to vertex ki of K.

Observation 4. If U’ is the status labeled graph obtained by applying one
of the above operations on U, then Sta(B) is a RDS of U’.

Let C be the family of status labeled unicyclic graphs U, where U is one of
the following six types:

Type 1: U is obtained from By by ¢ > 0 applications of O or Os.

Type 2: U is obtained from a Type 1 graph by joining a vertex v in this
Type 1 graph to a vertex w of K7, setting Sta(w) = B, and then following
this by £ > 0 applications of O or Os.

Type 3: U is obtained from:

1. a Type 1 graph by joining some v € Sta(A) to the vertex ki of K,
followed by £ > 0 applications of Oy or Os.

2. a Type 1 graph by exactly one application of Oz, followed by ¢ > 0
applications of O or Os.
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Type 4: U is obtained from:

1. a Type 3 graph by joining some v € Sta(A) to the vertex kj of K,
followed by ¢ > 0 applications of O; or Os.

2. a Type 3 graph by exactly one application of Oz, followed by ¢ > 0
applications of O or Os.

Type 5: U is obtained from By by ¢ > 0 applications of Q1 or Os.
Type 6: U is obtained from B3 by ¢ > 0 applications of Q1 or Os.

Observation 5. If U is in C, then Sta(B) is a v,-set of U of cardinality

51

Proof. Suppose that U is in C. Then U is of Type i, where 1 < i < 6.
That Sta(B) is a RDS of U follows from Observation 4, the fact that if
an isolated vertex of status B is joined to any vertex of a status labeled
unicyclic graph in which Sta(B) is a RDS, then in the resulting unicyclic
graph Sta(B) is still a RDS, and the fact that if the vertex k; of K is joined
to any vertex of status A of a status labeled unicyclic graph in which Sta(B)
is a RDS, then in the resulting unicyclic graph Sta(B) is still a RDS.

If U is a Type 1 graph, then n(U) = 0 mod 3 and [Sta(B)| = %, since
By contributes one vertex out of three to Sta(B), while each of the £ > 0
applications of O; or Qs contributes one vertex out of three to Sta(B).

Suppose U is a Type 2 graph obtained from the Type 1 graph U’ by
joining a vertex v in U to a vertex w of K7, setting Sta(w) = B, and then
following this by ¢ > 0 applications of O or Os.

Then n(U’) = 0 mod 3 and U’ has exactly "(g/) vertices of status B, and
so n(U) =1 mod 3 and |Sta(B)| = % +1 = ™2 since w contributes
one vertex to both Sta(B) and n(U), while each of the ¢ > 0 applications of
O; or Oy contributes one vertex out of three to Sta(B). As n = 1 mod 3,
we have [2] = 22 and so [Sta(B)| = [%].

For a Type 3 graph, n = 2 mod 3, while |Sta(B)| = 252 + 1 = 2 =
(51

’ For a Type 4 graph, n = 1 mod 3, while [Sta(B)| = [252] + 1 =
(221 =151,

For graphs of Type 5 and Type 6, n = 1 mod 3, while [Sta(B)| =
n—1 _nt+2 _rn
f 1= =05l

Thus, [%2] = [Sta(B)| > 7(U) > [%], and the observation holds. |
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Let U be a unicyclic graph and denote its unique cycle by C. A reference
path of U is a path v = ug, uq,...,us, where v € C, u; is a leaf, and u; € C
fori=1,...,t. We are now ready to state our characterization.

Theorem 4. Let U be a unicyclic graph of order n > 3. Then U € & if
and only if U can be status labeled in such a way that it is in C.

Proof. Suppose U € C. By Observation 5, U € &.
Now, assume U € £ and let S be a ~,-set of U. We proceed by induction on
n. If n = 3, then U = C3, and so it can be status labeled as By which is in
C. Therefore, assume n > 4 and, for all U’ € £ such that 3 < n(U’) <n, U’
can be status labeled so that it is in C. (Henceforth, we will abuse notation
slightly by just saying that U’ € C.) Suppose U is a cycle. If n = 2 mod 3,
then Observation 3 is contradicted. Thus, n = 0 or 1 mod 3, and so U is of
Type 1 or Type 5. Thus, there exists v € V(U) such that deg(v) > 3.
Throughout, .S will denote a ,-set for U. Before proceeding further,
we prove the following two claims.

Claim 1. Suppose v/ = wg, w1, ...,ws is a reference path of U. If ws
€S, then U €C.

Proof. Asws € S, S is not independent, and so, by Observations 1, 2 and
3, n = 3q + 1 for some positive integer g, and Property 1 of Observation 2
is satisfied. Let U' = U — ws, and notice that S’ = S — {w,} is a RDS of
U’, while n(U’) = 3q. Moreover, S’ is a RDS of U’ of size (%} —1=gq,
whence ¢ = %q < 7(U") < |8 = q. Thus, U’ € &, and, by the induction
assumption, U’ € C. As n(U’) = 0 mod 3, the graph U’ is of Type 1. U can
now be obtained from U’ by joining ws to ws_1, and setting Sta(ws) = B,
and so U is of Type 2. [ |

Claim 2. Suppose v/ = wg, w1, ..., ws is a reference path in U. If w,_q is
adjacent to a vertex w, € S — {ws}, then U € C.

Proof. Aswl,ws € S, ws_1 € S, since otherwise either Observation 1, 2
or 3 will be contradicted. Let U’ = U — w; and notice that S" = S — {ws} is
a RDS of U’. Then, since |N(ws—1) N S| > 2, Observations 1 and 3 imply
that n = 3¢ + 1 for some positive integer q. Therefore, n(U’) = 3¢. Also, S’
is a RDS of U’ of size [%] — 1 = ¢, whence ¢ = %q <(U) <5 =q.
Thus, U’ € &, and, by the induction assumption, U’ € C. As n(U’) = 0
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mod 3, the graph U’ is of Type 1. U can now be obtained from U’ by
joining ws to ws_1, and setting Sta(ws) = B, and so U is of Type 2. [

By Claims 1 and 2, we conclude that if w is a remote vertex of U, then
w ¢ S and deg(w) = 2.

Let C denote the unique cycle of U. Among all vertices v € C' such
that deg(v) > 3, choose the reference path P = v, uq,...,u; for which ¢ is
as large as possible. We call a reference path an Rt path if deg(v) = 3 and
deg(u;) =2fori=1,...,t—1.

We begin by reducing reference paths to either R1, R2 or R3.

Case 1. t > 2.
Since u;—1 is a remote vertex, deg(us—1) = 2, uy—1 ¢ S and so uy_o & S.

Case 1.1. t = 2. Note that v = u;_s.

Suppose that deg(v) > 4. Then v is either a remote vertex or v lies on a
reference path v, u),u), where {u},uf} N {ui,us} = 0, deg(u}) = 2 and
uy ¢ S.

As v € S, Property 4 of Observation 2 must be satisfied. Then deg(v)
=4, [INw)N(V =215) >3, uz € S and n = 3¢ + 1 where ¢ is a positive
integer. Let U’ = U — u; — ug, and notice that S" =S — {us} is a RDS of
U’'. Then U’ has order n —2 =3(¢— 1) + 2 and |S’| = ¢. Thus, U’ € &€, and
Observation 3 holds for U’. Moreover, by the induction assumption, U’ € C.
In fact, U’ is of Type 3. By Observation 3 and 5, Sta(B) is a ~,.(U’)-set
which is independent. If v is a remote vertex, then since the leaf adjacent
to v is in Sta(B), v ¢ Sta(B). If v is not a remote vertex, then v € Sta(B)
would imply that u} € Sta(B), which contradicts the fact that Sta(B) is
independent. Thus, Sta(v) = A. U can now be obtained from U’ by joining
v to vertex u; of ({u1,us}), and setting Sta(u;) = A and Sta(ug) = B, and
so U is of Type 4. Thus, if t = 2, then deg(v) = 3 and deg(uy) = 2.

Case 1.2. t > 3.

We first show that deg(u;—2) = 2. Suppose, to the contrary, that deg(u¢—2)
> 3. Since uy—o € S, Observation 1 implies that n # 0 mod 3.

Let U' = U —uy_1 — ug. Suppose n = 3q + 2 for some positive integer q.
Since uy—o ¢ S, we have, by Observation 3, deg(us—2) = 3 and |N(us—2) N
(V-=8)>2 andso S =S5 —{u:} is a RDS of U'. Thus, U’ € £ and U’
must be of Type 1. By Observation 1, Sta(B) is an independent set of U’,
and so Sta(u;—2) = A. We obtain U by attaching u;—1 to u;—2, and setting
Sta(u¢—1) = A and Sta(u;) = B. Hence, U is of Type 3.
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Suppose n = 3q + 1 for some positive integer ¢. Since us;_o ¢ S and
deg(ui—2) > 3, one of the Properties 2, 3 or 4 of Observation 2 must hold.
Suppose Property 2 holds. Then deg(u;—2) = 3 and |N(us—2) N S| = 2.
Then, besides us—3 € S, us_o is adjacent to exactly one other vertex in 5,
say w. If deg(w) > 2, then, by our choice of the reference path P, w must
be adjacent a leaf, which contradicts the fact that S is an independent set.
Thus, w is a leaf, and it follows by Claim 2 that U € C. Hence, suppose
either Property 3 or 4 holds. In both cases, u;—s is adjacent to a vertex in
V —8—{us_1}. It follows that S = S — {u;} is a RDS of U’. Thus, U’ € £
and U’ must be of Type 3. By Observation 3, Sta(B) is an independent
set of U’, and so Sta(u;—3) = A. We obtain U by attaching us—1 to us_a,
and setting Sta(u;—1) = A and Sta(u;) = B. Hence, U is of Type 4.

We may assume that deg(u;—o) = 2, whence u;—3 € S. Note that us_3
is not adjacent to a leaf, since otherwise U € C by Claim 1. Suppose u;_3
lies on the reference path v = wo, ..., us—3, uj_o,u;_;, where deg(u}_,) = 2.
Since uy—3 € S, it follows that {us—s3,u;_o,u; 1} € S, and Observations 1,
2 and 3 cannot be satisfied.

Suppose that ¢ > 4. We may assume that every reference path that
contains us—3 has the form v, uq, ..., u_g,uj_o,u;_1,u;, where deg(u}_,) =
deg(u}_q) =2, ui—3 € Sand u;_,,u;_; ¢ S. Let U’ be obtained by removing
from U every path of the form u; o, u}_,,u}. Then U’ € £. By the induction
assumption, U’ is of Type ifor somei € {1,...,6}. Since u;_3 is a leaf of U’,
Sta(ui—3) = B. It follows that U can be obtained from U’ by deg(u;—3) — 1
applications of Op by joining u;_3 to the vertex u;_, of each of the deleted
paths w}_o,u;_;,uj, and setting Sta(uj_) = Sta(u;_;) = A and Sta(u;) =
B. Thus, U is of Type i.

So suppose t = 3. Furthermore, suppose deg(v) > 4. We may assume
that v lies on more than one reference path of the form v, u, ub, us, where
deg(uh) = deg(u}) = 2, v € S and uj,uy ¢ S. Let U’ be obtained by
removing the vertices v}, u), and ufs. Then deg;,(v) > 3, U’ € &, and so U’
is of Type i for some i€ {1,...,6}. If v € Sta(B), then {us,us} C Sta(B),
contradicting Observations 1, 2 and 3. Thus, Sta(v) = B. It follows that
U can be obtained from U’ by applying @7 once by joining v to the vertex
up of the deleted path wy,us,us, and setting Sta(u;) = Sta(uz) = A and
Sta(uz) = B. Thus, U is of Type i. Thus, if ¢ > 3, then ¢ = 3 and
deg(v) = 3.

Case 2. t = 1. By Claim 1, deg(v) = 3, since otherwise U € C. Thus, if
t =1, then deg(v) = 3.
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We have now reduced P to either an R1, R2 or R3 path. We may therefore
assume that each reference path of U is either an R1, R2 or R3 path.

Suppose v;, u; is an R1 path of U. By Claim 2, N[v;] NS = {u;} since
otherwise U € C. Since v; ¢ S and deg(v;) = 3, Observation 1 implies
that n £ 0 mod 3. Let v;_; and v;;1 be the neighbors of v; on the cycle
C of U. Since the cycle in U contains at least four vertices, consider the
path v;_o,v;-1,v;,Vi41, 040 on C. If v;_9 = v; 49, then U is of Type 3 or
Type 4. Thus, v;—o # vito.

In what follows, U’ is the graph obtained by removing v; and u; and
joining v;—1 and v;y1. Then S = S — {u1} is a v, (U’)-set of size [252], and
so U’ € £. By the induction hypothesis, U’ € C. If n = 1 mod 3, then U’ is
of Type 3; if n = 2 mod 3, then U’ is of Type 1.

We first show that deg(v;+1) = 2. Suppose, to the contrary, deg(v;y1) >
3. Then, since v;y; ¢ S, we have (cf. Observation 3) n = 1 mod 3, S is
independent, deg(v;+1) = 3, and v;4; lies on either an R1 or an R2 path.
Suppose v;+1 lies on an R1 path. Then (cf. Observation 3 applied to U’),
it follows that {v;—1,v;41} C Sta(A). By applying O3 once, and setting
Sta(v;) = A and Sta(u1) = B, we see that U is of Type 4.

Suppose v;11 lies on an R2 path v;41,u},ub. Let U = U — v} — u,
and S” = S — {ub}. Then S” is a v, (U")-set of size [%52], and so U” € €.
By the induction hypothesis, U” € C. As n =1 mod 3, U” is of Type 3.
Observation 3 holds for U”, and so Sta(B) is an independent set, whence
v; & Sta(B), while N(v;) NSta(B) = {u1}. Thus, Sta(v;+1) = A. We obtain
U by attaching u) to v;1, and setting Sta(u}) = A and Sta(u,) = B. Hence,
U is of Type 4.

Similarly, deg(v;—1) = 2. It now follows that {v;_2,v;12} C S.
Suppose both v;_s and v;4s lie on R3 paths. To avoid contradicting

Observations 2 and 3, vertices v;_s and v;4o cannot lie on an R1 or R2
path.

Suppose n = 3q + 1 where ¢ > 2. Observation 3 holds for U’. Thus,
Sta(B) is an independent ~,.(U’)-set, and so {v;_2,v;42} C Sta(B), whence
{vi—1,vi41} C Sta(A). By applying O3 once, and setting Sta(v;) and
Sta(ui) = B, we see that U is of Type 4.

Suppose n = 3¢ + 2 where ¢ > 2. Then U’ has order n — 2 = 3¢, and
|S'| = q. Thus, U’ € C and U’ must be of Type 1. It follows again that
{vi—1,viy1} C Sta(A). By applying O3 once, and setting Sta(v;) = A and
Sta(ui) = B, we see that U is of Type 3.
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We may assume that either v;_o or wv;;0 has degree 2 — suppose
deg(vit2) = 2.

Suppose deg(v;4+3) > 3. Then Property 3 of Observation 2 holds, S is
independent, and so v; 13 € S. If v;13 lies on an R1 path, then |N(v;43) N
S| > 2, which is a contradiction. Thus, v;y3 lies on a R2 path vy, u}, ub.
Let U" = U —u} —ul, and S” = S — {u}}. Then S” is a 7, (U")-set of
size ["T_Z], and so U” € £. By the induction hypothesis, U” € C. As
n =1 mod 3, U” is of Type 3. Observation 3 holds for U”, and so Sta(B)
is an independent set, whence v; ¢ Sta(B), while N(v;) N Sta(B) = {u1}.
Thus, Sta(v;+1) = A, Sta(vit2) = B, while Sta(v;+3) = A. We obtain U by
attaching v} to v;+3, and setting Sta(u}) = A and Sta(uy) = B. Hence, U
is of Type 4.

Consider the path v;, vi41, V42, Vit3, Virq, Where vi10 € S and v;, V41,
Viy3,Vita & S. We form U"” by removing the vertices v;i1,v;y2,v;+3 and
joining v; and v; 4. The set S = S —{v;12} is a v, (U")-set of size (n([ém)},
and so U” € £. By the induction hypothesis, U"”" € C and U"” is of any
type except of Type 1. By Observations 2 and 3, {v;,v;44} Z Sta(B).
Thus, Sta(v;) = Sta(vitq4) = A, Sta(v;) = B and Sta(v;4+4) = A or Sta(v;) =
A and Sta(viy4) = B. U can now be obtained by reinserting the path
Vit1,Vit2, Vi+s and labeling the vertices consecutively by either (1) A, B, A
(2) A, A, Bor (3) B, A, A, and so we have applied O3 to U"”'. Thus, U is
of any type except of Type 1.

Therefore, we may assume that U has no R1 paths.

Suppose U has at least one R2 path v;, u1,us. By Claim 1, u; € S, and
so v; € S. Without loss of generality, assume v;_; € S. By Observations 1,
2 and 3, U can have at most two R2 paths. Then Observation 2 or 3 holds.
If U has a cycle of three or five vertices, then we are done. If U has a cycle
of four vertices, we have a contradiction. Thus, U has a cycle on at least six
vertices.

Suppose U has exactly two R2 paths, and let v;,u},u5 be the other
R2 path. Then, as before, vj,u) ¢ S. Thus, Property 3 of Observation 2
holds, and so n = 3q + 1 where ¢ > 3. Moreover, v;+1 € S, and so v;43 € S,
Vir3,Virqa € S, while v;15 € S. Note that v;_1 = v;5 is possible.

Suppose j =i+ 1. Let 7/ (0 <’ < 1) denote the number of R3 paths
attached to v;19. We form U’ by removing the vertices v;y2,v;13,vitrq, and
the 3r’ vertices of the possible R3 path, and then joining v;;1 and v;;s5.
Then the order of U isn—3—3r' =3(¢—7"—1)+ 1, and 7,.(U') = ¢ —1".
Thus, U’ € € and Observation 2 holds. Hence, v;11,v;,u} € Sta(4), and
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therefore Sta(vi45) = B. Then U’ must be of Type i, where i € {2,4,5,6}.
Remove the edge v;4+1vi+5, reinsert the path v;ys,v;13,v;44 and label the
vertices consecutively B, A, A. By applying O1 to v;;o (if necessary), we
obtain U. Hence, U is of Type i, where i € {2,4,5,6}.

Thus, v;4+1 is not on an R2 path.

Suppose v; 12 is not on an R3 path, and suppose j = ¢ + 3. We form
U’ by removing the vertices v;11, vit2, vit3, u}, ub, and then joining v; and
Vi+4. Then the order of U" is n —5 = 3(¢—2) + 2, and v, (U’) = ¢— 1. Thus,
U €&, U’ is of Type 3, and Observation 3 holds. Thus, Sta(v;) = A.

Suppose that Sta(v;+4) = B. Remove the edge v;v; 14, reinsert the path
Vi+1,Vi+2, Vi+3 and label the vertices consecutively B, A, A. We obtain U
by attaching u} to v;;3, and setting Sta(u}) = A and Sta(u)) = B. Hence,
U is of Type 4.

Thus, Sta(vi+4) = A. Remove the edge v;v;14, reinsert the path v;iq,
vi+2,Vi+3 and label the vertices consecutively A, B, A. We obtain U by
attaching u} to v;13, and setting Sta(u}) = A and Sta(u)) = B. Hence, U
is of Type 4.

Thus, j # i+3. We form U’ by removing the vertices v;1, v;i12,v;+3, and
then joining v; and v;44. The order of U' isn—3 = 3(¢—1)+1, and ~,.(U’) =
q. Thus, U" € £, U’ is of Type i, where i € {2,4,5,6}. By Property 3 of
Observation 2, Sta(v;) = A. Suppose Sta(vit4) = B. Remove the edge
ViVi+4, reinsert the path v;41,v;12,v;43 and label the vertices consecutively
B, A, A. Thus, U is of Type i, where i € {2,4,5,6}.

Thus, Sta(v;+4) = A. Remove the edge v;v; 4, reinsert the path v;41,
vir2, V13 and label the vertices consecutively A, B, A. Thus, U is of Type i,
where i € {2,4,5,6}.

Now, suppose that v;;2 is on an R3 path.

Suppose j € {i +3,i +4}. Let U = U — u} — uf. Then the order
of U'isn—2=33—-1=3(¢q—1)+2, and v,.(U") = q. Thus, U’ € &,
U’ is of Type 3, and Observation 3 holds. Hence, Sta(v;y2) = B, and
so Sta(vit1) = Sta(vits) = A, whence Sta(viys) = A. We obtain U by
attaching u} to vj, and setting Sta(u}) = A and Sta(u,) = B. Hence, U is
of Type 4.

Thus, j & {i +3,i +4}. Let ' (0 <’ < 1) denote the number of R3
paths attached to v;15. We form U’ by removing the vertices v;13, vi14, Vit5,
and the 3r’ vertices of the R3 paths on v;,5, and then joining v;i2 and
vir6. Note that v;1g # v;, since j &€ {i,...,7i + 5}. Now, the order of U’
isn—3-3"=3(g—1-7")4+1and v (U’') = ¢ —r'. Thus, U € &,
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U’ is of Type i, where i € {2,4,5,6}, and Property 3 of Observation 2
holds. Hence, Sta(vi12) = B, and so Sta(vi+1) = Sta(viys) = A. Remove
the edge v;12v;1¢, reinsert the path v;13,v;14,v;45, and label the vertices
consecutively A, A, B. By applying O; to v;y5 (if necessary), we obtain U.
Hence, U is of Type i, where i € {2,4,5,6}.

Thus, v;, u1,us is the only R2 path of U.

Suppose n = 3q + 2 for some ¢ > 2, and so Observation 3 holds. Since
vi—1 € 5, vi11 ¢ S, and so vi42 € S, viys € S, Vit4 ¢ S, while v;45 € S.
Note that v;—1 = v;y5 is possible.

Suppose v; 2 is not on an R3 path. We form U’ by removing the
vertices v;y1, V12, vi+3, and then joining v; and v;14. The order of U’ is
n—3=23(¢—1)+2, and v.(U") = q. Thus, U € &, U’ is of Type 3.
By Observation 3, Sta(v;) = A. Suppose Sta(vi+4) = B. Remove the edge
V;Vi+4, Teinsert the path v;11,v;49,v;13 and label the vertices consecutively
B, A, A. Thus, U is of Type 3. Hence, Sta(v;+4) = A. Remove the edge
V;Vi+4, reinsert the path v;41,v;49,v;13 and label the vertices consecutively
A, B, A. Thus, U is of Type 3.

So suppose v;42 is on an R3 path. Let ' (0 < ' < 1) denote the
number of R3 paths attached to v;15. We form U’ by removing the ver-
tices wvi13,vit4,vir5, and the 3r’ vertices of the R3 paths on v;,5, and
then joining wv;y2 and v;y¢. Note that v;1§ = v; is possible. Now, the
order of U'isn —3—-3r" =3(¢—1—17')+ 2 and ~,(U’) = ¢ — r'. Thus,
U € &, U is of Type 3, and Observation 3 holds. Hence, Sta(v;12) =
B, and so Sta(v;11) = Sta(viy¢) = A. Remove the edge v;12v;46, rein-
sert the path wv;i3,v44,v;15, and label the vertices consecutively A, A,
B. By applying O; to v;45 (if necessary), we obtain U. Hence, U is of
Type 3.

Suppose n = 3¢ + 1 for some ¢ > 2, and so Property 2 of Observation 2
holds. Consider the path v;, vit1,vit2,Vits, Viys, where {vir1,vi44} C S
and {v;,vi12,v43} NS = 0. Let 7' (0 <1’ < 1) denote the number of R3
paths on v; 1. We form U’ by removing the vertices v; i1, vi12,v;t3, and the
3r’ vertices of the R3 paths, and then joining v; and v;y4. The order of U’
isn—3-3r"=3(q—r"—1)+1 and ~,(U") = g—r'. Thus, U’ € &, Property
2 of Observation 2 holds, while U’ is of Type i, where i € {2,4,5,6}. Thus,
Sta(v;) = A, and Sta(v;—1) = B = Sta(vi+4). Remove the edge v;v; 4,
reinsert the path v;y1,v;12,v;43, and label the vertices consecutively B,
A, A. By applying Op to v;11 (if necessary), we obtain U. Thus, U is of
Type i, where i € {2,4,5,6}.
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Thus, we may assume that U has only R3 paths, and so V' —5 has only degree
two vertices. Therefore, Observation 1 or Observation 2 holds, respectively.
So n = 3¢+ 1 (3¢, respectively), where ¢ > 2. If U has a cycle on three, four
or six vertices, then we are done. If U has a cycle on five vertices, then we
reach a contradiction. Let v; be a vertex that lies on an R3 path. Consider
the path v, viy1,Vit2,Vits, Virs, where vip 1 & S,v;i40 ¢ S and vip3 € S.
Let ' (0 < 7/ < 1) be the number of R3 paths attached to v;y3. We
form U’ by removing v;11,v;12,v;+3, and the 3r’ vertices on the R3 paths
on v;y3, and then joining v; and v;14. Then U’ has order n — 3 — 3r’ =
3(g—r"—=1)+1 (n—3-3r" =3(q—7r"—1), respectively), and v, (U’") = ¢—1'
(7 (U") = g—1"—1, respectively). Thus, U’ € £, and U’ is of Type i, where
i€{2,4,56} (Type 1, respectively). Thus, Observation 2 (Observation 1,
respectively) holds. Hence, Sta(v;) = B. Remove the edge v;v; 14, reinsert
the path v; 1, v;19,v;13, and label the vertices consecutively A, A, B. Thus,
U is of Type i, where i € {2,4,5,6}, or U is of Type 1 and the proof is
complete. [ |
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