
Discussiones Mathematicae 71
Graph Theory 29 (2009 ) 71–86

RESTRAINED DOMINATION IN UNICYCLIC GRAPHS

1Johannes H. Hattingh, 2Ernst J. Joubert, 3Marc Loizeaux,
4Andrew R. Plummer and 3Lucas van der Merwe

1Department of Mathematics and Statistics

Georgia State University

Atlanta, GA 30303–3083, USA

2Department of Mathematics

University of Johannesburg

P.O. Box 524, Auckland Park 2006, South Africa

3Department of Mathematics

University of Tennessee, Chattanooga

615 McCallie Avenue, Chattanooga, TN 37403, USA

4Department of Linguistics

The Ohio State University

222 Oxley Hall, 1712 Neil Avenue, Columbus, OH 43210, USA

Abstract

Let G = (V, E) be a graph. A set S ⊆ V is a restrained dominating
set if every vertex in V −S is adjacent to a vertex in S and to a vertex
in V −S. The restrained domination number of G, denoted by γr(G),
is the minimum cardinality of a restrained dominating set of G. A
unicyclic graph is a connected graph that contains precisely one cycle.
We show that if U is a unicyclic graph of order n, then γr(U) ≥ dn

3
e,

and provide a characterization of graphs achieving this bound.
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1. Introduction

In this paper, we follow the notation of [1]. Specifically, let G = (V,E) be
a graph with vertex set V and edge set E. A set S ⊆ V is a dominating

set (DS) of G if every vertex in V − S is adjacent to a vertex in S. The
domination number of G, denoted by γ(G), is the minimum cardinality of a
DS of G. The concept of domination in graphs, with its many variations, is
now well studied in graph theory. The recent book of Chartrand and Lesniak
[1] includes a chapter on domination. A thorough study of domination
appears in [10, 11].

In this paper, we continue the study of a variation of the domination
theme, namely that of restrained domination — see [2, 3, 4, 5, 6, 7, 8, 9,
12, 13].

A set S ⊆ V is a restrained dominating set (RDS) if every vertex in
V −S is adjacent to a vertex in S and to a vertex in V −S. Every graph has
a RDS, since S = V is such a set. The restrained domination number of G,
denoted by γr(G), is the minimum cardinality of a RDS of G. A RDS of
G of cardinality γr(G) is called a γr-set of G.

Throughout, let n and m denote the order and size of G, respectively.
A unicyclic graph U of order n is a connected graph that contains exactly
one cycle. Thus, U has size n. A vertex of degree one will be called a
leaf, while a vertex adjacent to a leaf will be called a remote vertex. The
open neighborhood of a vertex u, denoted N(u), is the set {v ∈ V | v is
adjacent to u}, while the closed neighborhood of u, denoted N [u], is defined
as N(u) ∪ {u}.

A graph G is status labeled if every vertex in V is labeled either A
or B. A vertex v ∈ V has status A (B, respectively) if v is labeled A (B,
respectively). The status of a vertex v will be denoted Sta(v). We define
Sta(A) (Sta(B), respectively) as the set of vertices in V with status A (B,
respectively).

Theorem 1. Let G be a connected graph of order n and size m. Then

γr(G) ≥ n − 2m
3 .

Proof. Let S be a γr-set of G, and consider H = 〈V −S〉. Let n1 and m1 be
the order and size of 〈V −S〉, respectively. Thus, m1 = 1

2

∑

v∈V −S degH(v) ≥
1
2 (n − γr(G)). Let m2 denote the number of edges between S and V − S.
Since S is a DS, every vertex in V −S is adjacent to at least one vertex in S.
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Thus, m2 ≥ n − γr(G). Hence, m ≥ m1 + m2 ≥ 1
2 (n − γr(G)) + n − γr(G),

which implies that γr(G) ≥ n − 2
3m.

The following known result of [4] is an immediate consequence of Theorem 1.

Corollary 2. Let T be a tree of order n. Then γr(T ) ≥ dn+2
3 e.

In similar fashion, we derive our first main result.

Corollary 3. Let U be a unicyclic graph of order n. Then γr(U) ≥ dn
3 e.

Domke et al. [4] provided a constructive characterization of trees achieving
the lower bound given in Corollary 2. Hattingh and Plummer [9] gave a
simpler characterization, independent of γr-set consideration. In the sequel,
we constructively characterize unicyclic graphs achieving the lower bound
given in Corollary 3, utilizing constructive operations governed by status
labeling.

2. Unicylic Graphs U of Order n with γr(U) =
⌈

n
3

⌉

Let E denote the class of all unicyclic graphs U of order n such that γr(U) =
⌈

n
3

⌉

. In order to provide the characterization, we state and prove a few
observations.

Let U ∈ E and let S be a γr-set of U .

Observation 1. If n ≡ 0 mod 3, then S is independent and every vertex

in V − S has degree 2.

Proof. Assume that n ≡ 0 mod 3. If v ∈ V such that deg(v) = 1, then
v ∈ S. Thus deg(v) ≥ 2, for all v ∈ V − S. Now, let y ∈ V − S. Suppose
that |N(y) ∩ (V − S)| ≥ 2. By assumption, |V − S| = 2n

3 . Therefore, n =
m ≥ n − γr(U) + 1

2(n − γr(U) + 1), which implies that γr(U) ≥
⌈

n+1
3

⌉

>
⌈

n
3

⌉

, a contradiction. Suppose that |N(y) ∩ S| ≥ 2. Then n = m ≥ n−
γr(U) + 1 + 1

2 (n − γr(U)), which implies that γr(U) ≥
⌈

n+2
3

⌉

>
⌈

n
3

⌉

, a
contradiction. Thus, every vertex in V −S is adjacent to exactly one vertex
of S and adjacent to exactly one vertex of V − S.

Since |V −S| = 2n
3 , the vertices in V −S form a matching with exactly

n
3 edges. Since m = n, there are 2n

3 edges between S and V − S. Hence, S
is independent.
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Observation 2. If n ≡ 1 mod 3, then S has exactly one of the following

properties:

1. m(〈S〉) = 1, while every vertex in V − S has degree 2.

2. There is a vertex y ∈ V − S such that deg(y) = 3 and |N(y) ∩ S| = 2.
Furthermore, S is independent and every vertex in V − S − {y} has

degree 2.

3. There are exactly two vertices x, y ∈ V − S such that deg(x) = deg(y)
= 3, and |N(x) ∩ (V − S)| = |N(y) ∩ (V − S)| = 2. Furthermore, S is

independent and every vertex in V − S − {x, y} has degree 2.

4. There is exactly one vertex y ∈ V − S such that deg(y) = 4 and

|N(y) ∩ (V − S)| = 3. Furthermore, S is independent and every ver-

tex in V − S − {y} has degree 2.

Proof. Assume that n ≡ 1 mod 3. Suppose first that, for all y ∈ V − S,
deg(y) = 2 and that S is independent. Clearly, |S| = n+2

3 and |V − S| =
2(n−1)

3 . There are exactly 2(n−1)
3 edges between V − S and S, and there

are n−1
3 edges in 〈V − S〉. Hence, n = m = 2(n−1)

3 + n−1
3 = n − 1, a

contradiction. Thus, there is a vertex y ∈ V − S such that deg(y) ≥ 3 or
m(〈S〉) ≥ 1.

Suppose m(〈S〉) ≥ 1. If m(〈S〉) ≥ 2, then n = m ≥ n−γr(U)+2+ 1
2(n−

γr(U)), implying that γr(U) ≥
⌈

n+4
3

⌉

>
⌈

n
3

⌉

, a contradiction. Therefore,
m(〈S〉) = 1.

Suppose there is a vertex y ∈ V −S such that deg(y) ≥ 3. If |N(y)∩S|
≥ 2, then n = m ≥ n − γr(U) + 2 + 1

2(n − γr(U)), implying that γr(U) ≥
⌈

n+4
3

⌉

>
⌈

n
3

⌉

, a contradiction. If |N(y) ∩ (V − S)| ≥ 2, then n = m ≥
n − γr(U) + 1 + 1

2(n − γr(U) + 1), implying that γr(U) ≥
⌈

n+3
3

⌉

>
⌈

n
3

⌉

, a
contradiction. Therefore, every vertex in V − S has degree 2. Thus, S has
Property 1.

We may assume that S is independent and there is a vertex y ∈ V − S
such that deg(y) ≥ 3.

Suppose that |N(y) ∩ S| ≥ 2. If |N(y) ∩ S| ≥ 3, then n = m ≥ n−
γr(U) + 2 + 1

2(n − γr(U)), implying that γr(U) ≥
⌈

n+4
3

⌉

>
⌈

n
3

⌉

, a contra-
diction. Thus, |N(y) ∩ S| = 2. If deg(y) ≥ 4, then |N(y) ∩ (V − S)| ≥ 2,
and so n = m ≥ n − γr(U) + 1 + 1

2 (n − γr(U) + 1), implying that γr(U) ≥
⌈

n+3
3

⌉

>
⌈

n
3

⌉

, a contradiction. If deg(x) ≥ 3 for x ∈ V −S−{y}, then either
γr(U) ≥

⌈

n+4
3

⌉

or γr(U) ≥
⌈

n+3
3

⌉

, a contradiction in either case. Thus, S
has Property 2.
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Suppose that, for all x ∈ V − S such that deg(x) ≥ 3, |N(x) ∩ S| = 1. If
v ∈ V −S such that deg(v) ≥ 5, then n = m ≥ n−γr(U)+ 1

2(n−γr(U)+3),
a contradiction. Thus, for all v ∈ V − S, deg(v) ≤ 4. Suppose there is a
vertex y ∈ V − S such that deg(y) = 4. Then every vertex in V − S − {y}
must have degree 2. Thus, S has Property 4.

Therefore, we may assume that, if y ∈ V −S such that deg(y) ≥ 3, then
deg(y) = 3, while |N(y) ∩ S| = 1. Suppose there are three or more vertices
y ∈ V −S such that deg(y) = 3. Then n = m ≥ n−γr(U)+ 1

2 (n−γr(U)+3),
and so γr(U) ≥

⌈

n+3
3

⌉

, a contradiction. Suppose there is exactly one y ∈

V − S such that deg(y) = 3. Recall that there are 2(n−1)
3 vertices in V − S.

Moreover, for all v ∈ V − S − {y}, deg(v) = 2, and since |N(y) ∩ S| = 1,

there are 2(n−1)
3 −3 > 0 vertices to be matched in 〈V −S〉. This is impossible

as 2(n−1)
3 − 3 is odd. Thus, there are exactly two vertices x, y ∈ V − S such

that deg(x) = deg(y) = 3. Thus, S has Property 3.

Observation 3. If n ≡ 2 mod 3, then there is exactly one vertex y ∈
V − S such that deg(y) = 3 and |N(y) ∩ (V − S)| = 2. Furthermore, S is

independent and every vertex in V − S − {y} has degree 2.

Proof. Suppose n ≡ 2 mod 3. If S is dependent, then n = m ≥ n −
γr(U) + 1 + 1

2 (n − γr(U)), and so γr(U) ≥
⌈

n+2
3

⌉

>
⌈

n
3

⌉

, a contradiction.
Suppose that, for all v ∈ V − S, deg(v) = 2. Let n = 3q + 2, where q ≥ 1.
Then |S| = q + 1 and |V − S| = 2q + 1. Notice that V − S must form a
matching, and since |V − S| = 2q+1 is odd, this is not possible. Thus, there
is a y ∈ V − S such that deg(y) ≥ 3. If |N(v) ∩ S| ≥ 2 for some v ∈ V − S,
then γr(U) ≥

⌈

n+2
3

⌉

>
⌈

n
3

⌉

, a contradiction. Thus, |N(v) ∩ S| = 1 for
all v ∈ V − S. Suppose deg(y) ≥ 4, or x ∈ V − S such that x 6= y and
deg(x) ≥ 3. Then n = m ≥ n − γr(U) + 1

2(n − γr(U) + 2), which implies
that γr(U) ≥

⌈

n+2
3

⌉

>
⌈

n
3

⌉

, a contradiction. Thus, the observation holds.

Let K be the status labeled graph obtained from the complete graph K2

with vertex set {k1, k2} by setting Sta(k1) = A and Sta(k2) = B.
Let PAAB be the status labeled graph obtained from the path P3 with

consecutive vertices p1, p2, p3 by setting Sta(p1) = Sta(p2) = A and Sta(p3) =
B. Similarly, let PABA be the status labeled graph obtained from the path
P3 with consecutive vertices p1, p2, p3 by setting Sta(p1) = Sta(p3) = A and
Sta(p2) = B.

The following status labeled graphs will serve as the basis for our char-
acterization.
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Let B1 be the status labeled graph obtained from the cycle C3 with consecu-
tive vertices v1, v2, v3, v1 by setting Sta(v1) = B and Sta(v2) = Sta(v3) = A.

Let B2 be the status labeled graph obtained from the cycle C4 with
consecutive vertices v1, v2, v3, v4, v1 by setting Sta(v1) = Sta(v2) = B and
Sta(v3) = Sta(v4) = A.

Lastly, let B3 be the status labeled graph obtained from C5 with con-
secutive vertices v1, v2, v3, v4, v5, v1 by setting Sta(v1) = Sta(v3) = B and
Sta(v2) = Sta(v4) = Sta(v5) = A, and joining v2 to the vertex k1 of K.

Note that if U ∼= Bi for i ∈ {1, 2, 3}, then Sta(B) is a γr-set of U of
cardinality

⌈

n
3

⌉

.
Let U be a status labeled unicyclic graph. Define the following opera-

tions on U :

O1: Suppose v is a vertex of U such that Sta(v) = B. Join v to the vertex
p1 of PAAB .

O2: Suppose uv is an edge of U . One of the following is performed:

1. If Sta(u) = B, then delete the edge uv and join the vertex u (v,
respectively) to the vertex p1 (p3, respectively) of PAAB .

2. If Sta(u) = Sta(v) = A, then delete the edge uv, join the vertex u
(v, respectively) to the vertex p1 (p3, respectively) of PABA.

O3: Suppose uv is an edge of U , and suppose Sta(u) = Sta(v) = A. Delete
the edge uv, and join u and v to vertex k1 of K.

Observation 4. If U ′ is the status labeled graph obtained by applying one

of the above operations on U , then Sta(B) is a RDS of U ′.

Let C be the family of status labeled unicyclic graphs U , where U is one of
the following six types:

Type 1: U is obtained from B1 by ` ≥ 0 applications of O1 or O2.

Type 2: U is obtained from a Type 1 graph by joining a vertex v in this
Type 1 graph to a vertex w of K1, setting Sta(w) = B, and then following
this by ` ≥ 0 applications of O1 or O2.

Type 3: U is obtained from:

1. a Type 1 graph by joining some v ∈ Sta(A) to the vertex k1 of K,
followed by ` ≥ 0 applications of O1 or O2.

2. a Type 1 graph by exactly one application of O3, followed by ` ≥ 0
applications of O1 or O2.
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Type 4: U is obtained from:

1. a Type 3 graph by joining some v ∈ Sta(A) to the vertex k1 of K,
followed by ` ≥ 0 applications of O1 or O2.

2. a Type 3 graph by exactly one application of O3, followed by ` ≥ 0
applications of O1 or O2.

Type 5: U is obtained from B2 by ` ≥ 0 applications of O1 or O2.

Type 6: U is obtained from B3 by ` ≥ 0 applications of O1 or O2.

Observation 5. If U is in C, then Sta(B) is a γr-set of U of cardinality
⌈

n
3

⌉

.

Proof. Suppose that U is in C. Then U is of Type i, where 1 ≤ i ≤ 6.
That Sta(B) is a RDS of U follows from Observation 4, the fact that if
an isolated vertex of status B is joined to any vertex of a status labeled
unicyclic graph in which Sta(B) is a RDS, then in the resulting unicyclic
graph Sta(B) is still a RDS, and the fact that if the vertex k1 of K is joined
to any vertex of status A of a status labeled unicyclic graph in which Sta(B)
is a RDS, then in the resulting unicyclic graph Sta(B) is still a RDS.

If U is a Type 1 graph, then n(U) ≡ 0 mod 3 and |Sta(B)| = n
3 , since

B1 contributes one vertex out of three to Sta(B), while each of the ` ≥ 0
applications of O1 or O2 contributes one vertex out of three to Sta(B).

Suppose U is a Type 2 graph obtained from the Type 1 graph U ′ by
joining a vertex v in U to a vertex w of K1, setting Sta(w) = B, and then
following this by ` ≥ 0 applications of O1 or O2.

Then n(U ′) ≡ 0 mod 3 and U ′ has exactly n(U ′)
3 vertices of status B, and

so n(U) ≡ 1 mod 3 and |Sta(B)| = n(U)−1
3 + 1 = n+2

3 , since w contributes
one vertex to both Sta(B) and n(U), while each of the ` ≥ 0 applications of
O1 or O2 contributes one vertex out of three to Sta(B). As n ≡ 1 mod 3,
we have dn

3 e = n+2
3 , and so |Sta(B)| = dn

3 e.

For a Type 3 graph, n ≡ 2 mod 3, while |Sta(B)| = n−2
3 + 1 = n+1

3 =
dn

3 e.
For a Type 4 graph, n ≡ 1 mod 3, while |Sta(B)| = d n−2

3 e + 1 =
dn+1

3 e = dn
3 e.

For graphs of Type 5 and Type 6, n ≡ 1 mod 3, while |Sta(B)| =
n−1

3 + 1 = n+2
3 = dn

3 e.
Thus,

⌈

n
3

⌉

= |Sta(B)| ≥ γr(U) ≥
⌈

n
3

⌉

, and the observation holds.
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Let U be a unicyclic graph and denote its unique cycle by C. A reference

path of U is a path v = u0, u1, . . . , ut, where v ∈ C, ut is a leaf, and ui 6∈ C
for i = 1, . . . , t. We are now ready to state our characterization.

Theorem 4. Let U be a unicyclic graph of order n ≥ 3. Then U ∈ E if

and only if U can be status labeled in such a way that it is in C.

Proof. Suppose U ∈ C. By Observation 5, U ∈ E .
Now, assume U ∈ E and let S be a γr-set of U . We proceed by induction on
n. If n = 3, then U = C3, and so it can be status labeled as B1 which is in
C. Therefore, assume n ≥ 4 and, for all U ′ ∈ E such that 3 ≤ n(U ′) < n, U ′

can be status labeled so that it is in C. (Henceforth, we will abuse notation
slightly by just saying that U ′ ∈ C.) Suppose U is a cycle. If n ≡ 2 mod 3,
then Observation 3 is contradicted. Thus, n ≡ 0 or 1 mod 3, and so U is of
Type 1 or Type 5. Thus, there exists v ∈ V (U) such that deg(v) ≥ 3.

Throughout, S will denote a γr-set for U . Before proceeding further,
we prove the following two claims.

Claim 1. Suppose v′ = w0, w1, . . . , ws is a reference path of U . If ws−1

∈ S, then U ∈ C.

Proof. As ws ∈ S, S is not independent, and so, by Observations 1, 2 and
3, n = 3q + 1 for some positive integer q, and Property 1 of Observation 2
is satisfied. Let U ′ = U − ws, and notice that S ′ = S − {ws} is a RDS of
U ′, while n(U ′) = 3q. Moreover, S ′ is a RDS of U ′ of size d 3q+1

3 e − 1 = q,

whence q = 3q
3 ≤ γr(U

′) ≤ |S′| = q. Thus, U ′ ∈ E , and, by the induction
assumption, U ′ ∈ C. As n(U ′) ≡ 0 mod 3, the graph U ′ is of Type 1. U can
now be obtained from U ′ by joining ws to ws−1, and setting Sta(ws) = B,
and so U is of Type 2.

Claim 2. Suppose v′ = w0, w1, . . . , ws is a reference path in U . If ws−1 is
adjacent to a vertex w′

s ∈ S − {ws}, then U ∈ C.

Proof. As w′

s, ws ∈ S, ws−1 6∈ S, since otherwise either Observation 1, 2
or 3 will be contradicted. Let U ′ = U −ws and notice that S ′ = S −{ws} is
a RDS of U ′. Then, since |N(ws−1) ∩ S| ≥ 2, Observations 1 and 3 imply
that n = 3q + 1 for some positive integer q. Therefore, n(U ′) = 3q. Also, S ′

is a RDS of U ′ of size d 3q+1
3 e − 1 = q, whence q = 3q

3 ≤ γr(U
′) ≤ |S′| = q.

Thus, U ′ ∈ E , and, by the induction assumption, U ′ ∈ C. As n(U ′) ≡ 0
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mod 3, the graph U ′ is of Type 1. U can now be obtained from U ′ by
joining ws to ws−1, and setting Sta(ws) = B, and so U is of Type 2.

By Claims 1 and 2, we conclude that if w is a remote vertex of U , then
w 6∈ S and deg(w) = 2.

Let C denote the unique cycle of U . Among all vertices v ∈ C such
that deg(v) ≥ 3, choose the reference path P = v, u1, . . . , ut for which t is
as large as possible. We call a reference path an Rt path if deg(v) = 3 and
deg(ui) = 2 for i = 1, . . . , t − 1.

We begin by reducing reference paths to either R1, R2 or R3.

Case 1. t ≥ 2.
Since ut−1 is a remote vertex, deg(ut−1) = 2, ut−1 6∈ S and so ut−2 6∈ S.

Case 1.1. t = 2. Note that v = ut−2.
Suppose that deg(v) ≥ 4. Then v is either a remote vertex or v lies on a
reference path v, u′

1, u
′

2, where {u′

1, u
′

2} ∩ {u1, u2} = ∅, deg(u′

1) = 2 and
u′

1 /∈ S.
As v 6∈ S, Property 4 of Observation 2 must be satisfied. Then deg(v)

= 4, |N(v) ∩ (V − S)| ≥ 3, u2 ∈ S and n = 3q + 1 where q is a positive
integer. Let U ′ = U − u1 − u2, and notice that S ′ = S − {u2} is a RDS of
U ′. Then U ′ has order n− 2 = 3(q − 1) + 2 and |S ′| = q. Thus, U ′ ∈ E , and
Observation 3 holds for U ′. Moreover, by the induction assumption, U ′ ∈ C.
In fact, U ′ is of Type 3. By Observation 3 and 5, Sta(B) is a γr(U

′)-set
which is independent. If v is a remote vertex, then since the leaf adjacent
to v is in Sta(B), v 6∈ Sta(B). If v is not a remote vertex, then v ∈ Sta(B)
would imply that u′

1 ∈ Sta(B), which contradicts the fact that Sta(B) is
independent. Thus, Sta(v) = A. U can now be obtained from U ′ by joining
v to vertex u1 of 〈{u1, u2}〉, and setting Sta(u1) = A and Sta(u2) = B, and
so U is of Type 4. Thus, if t = 2, then deg(v) = 3 and deg(u1) = 2.

Case 1.2. t ≥ 3.
We first show that deg(ut−2) = 2. Suppose, to the contrary, that deg(ut−2)
≥ 3. Since ut−2 6∈ S, Observation 1 implies that n 6≡ 0 mod 3.

Let U ′ = U −ut−1 −ut. Suppose n = 3q +2 for some positive integer q.
Since ut−2 6∈ S, we have, by Observation 3, deg(ut−2) = 3 and |N(ut−2) ∩
(V − S)| ≥ 2, and so S ′ = S − {ut} is a RDS of U ′. Thus, U ′ ∈ E and U ′

must be of Type 1. By Observation 1, Sta(B) is an independent set of U ′,
and so Sta(ut−2) = A. We obtain U by attaching ut−1 to ut−2, and setting
Sta(ut−1) = A and Sta(ut) = B. Hence, U is of Type 3.
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Suppose n = 3q + 1 for some positive integer q. Since ut−2 6∈ S and
deg(ut−2) ≥ 3, one of the Properties 2, 3 or 4 of Observation 2 must hold.
Suppose Property 2 holds. Then deg(ut−2) = 3 and |N(ut−2) ∩ S| = 2.
Then, besides ut−3 ∈ S, ut−2 is adjacent to exactly one other vertex in S,
say w. If deg(w) ≥ 2, then, by our choice of the reference path P , w must
be adjacent a leaf, which contradicts the fact that S is an independent set.
Thus, w is a leaf, and it follows by Claim 2 that U ∈ C. Hence, suppose
either Property 3 or 4 holds. In both cases, ut−2 is adjacent to a vertex in
V −S−{ut−1}. It follows that S ′ = S −{ut} is a RDS of U ′. Thus, U ′ ∈ E
and U ′ must be of Type 3. By Observation 3, Sta(B) is an independent
set of U ′, and so Sta(ut−2) = A. We obtain U by attaching ut−1 to ut−2,
and setting Sta(ut−1) = A and Sta(ut) = B. Hence, U is of Type 4.

We may assume that deg(ut−2) = 2, whence ut−3 ∈ S. Note that ut−3

is not adjacent to a leaf, since otherwise U ∈ C by Claim 1. Suppose ut−3

lies on the reference path v = u0, . . . , ut−3, u
′

t−2, u
′

t−1, where deg(u′

t−2) = 2.
Since ut−3 ∈ S, it follows that {ut−3, u

′

t−2, u
′

t−1} ⊆ S, and Observations 1,
2 and 3 cannot be satisfied.

Suppose that t ≥ 4. We may assume that every reference path that
contains ut−3 has the form v, u1, . . . , ut−3, u

′

t−2, u
′

t−1, u
′

t, where deg(u′

t−2) =
deg(u′

t−1) = 2, ut−3 ∈ S and u′

t−2, u
′

t−1 /∈ S. Let U ′ be obtained by removing
from U every path of the form u′

t−2, u
′

t−1, u
′

t. Then U ′ ∈ E . By the induction
assumption, U ′ is of Type i for some i ∈ {1, . . . , 6}. Since ut−3 is a leaf of U ′,
Sta(ut−3) = B. It follows that U can be obtained from U ′ by deg(ut−3) − 1
applications of O1 by joining ut−3 to the vertex u′

t−2 of each of the deleted
paths u′

t−2, u
′

t−1, u
′

t, and setting Sta(u′

t−2) = Sta(u′

t−1) = A and Sta(u′

t) =
B. Thus, U is of Type i.

So suppose t = 3. Furthermore, suppose deg(v) ≥ 4. We may assume
that v lies on more than one reference path of the form v, u′

1, u
′

2, u
′

3, where
deg(u′

2) = deg(u′

1) = 2, v ∈ S and u1, u2 /∈ S. Let U ′ be obtained by
removing the vertices u′

1, u
′

2 and u′

3. Then degU ′(v) ≥ 3, U ′ ∈ E , and so U ′

is of Type i for some i ∈ {1, . . . , 6}. If v 6∈ Sta(B), then {u2, u3} ⊆ Sta(B),
contradicting Observations 1, 2 and 3. Thus, Sta(v) = B. It follows that
U can be obtained from U ′ by applying O1 once by joining v to the vertex
u1 of the deleted path u1, u2, u3, and setting Sta(u1) = Sta(u2) = A and
Sta(u3) = B. Thus, U is of Type i. Thus, if t ≥ 3, then t = 3 and
deg(v) = 3.

Case 2. t = 1. By Claim 1, deg(v) = 3, since otherwise U ∈ C. Thus, if
t = 1, then deg(v) = 3.
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We have now reduced P to either an R1, R2 or R3 path. We may therefore
assume that each reference path of U is either an R1, R2 or R3 path.

Suppose vi, u1 is an R1 path of U . By Claim 2, N [vi] ∩ S = {u1} since
otherwise U ∈ C. Since vi 6∈ S and deg(vi) = 3, Observation 1 implies
that n 6≡ 0 mod 3. Let vi−1 and vi+1 be the neighbors of vi on the cycle
C of U . Since the cycle in U contains at least four vertices, consider the
path vi−2, vi−1, vi, vi+1, vi+2 on C. If vi−2 = vi+2, then U is of Type 3 or
Type 4. Thus, vi−2 6= vi+2.

In what follows, U ′ is the graph obtained by removing vi and u1 and
joining vi−1 and vi+1. Then S′ = S −{u1} is a γr(U

′)-set of size dn−2
3 e, and

so U ′ ∈ E . By the induction hypothesis, U ′ ∈ C. If n ≡ 1 mod 3, then U ′ is
of Type 3; if n ≡ 2 mod 3, then U ′ is of Type 1.

We first show that deg(vi+1) = 2. Suppose, to the contrary, deg(vi+1) ≥
3. Then, since vi+1 6∈ S, we have (cf. Observation 3) n ≡ 1 mod 3, S is
independent, deg(vi+1) = 3, and vi+1 lies on either an R1 or an R2 path.
Suppose vi+1 lies on an R1 path. Then (cf. Observation 3 applied to U ′),
it follows that {vi−1, vi+1} ⊆ Sta(A). By applying O3 once, and setting
Sta(vi) = A and Sta(u1) = B, we see that U is of Type 4.

Suppose vi+1 lies on an R2 path vi+1, u
′

1, u
′

2. Let U ′′ = U − u′

1 − u′

2,
and S′′ = S − {u′

2}. Then S′′ is a γr(U
′′)-set of size dn−2

3 e, and so U ′′ ∈ E .
By the induction hypothesis, U ′′ ∈ C. As n ≡ 1 mod 3, U ′′ is of Type 3.
Observation 3 holds for U ′′, and so Sta(B) is an independent set, whence
vi 6∈ Sta(B), while N(vi)∩Sta(B) = {u1}. Thus, Sta(vi+1) = A. We obtain
U by attaching u′

1 to vi+1, and setting Sta(u′

1) = A and Sta(u′

2) = B. Hence,
U is of Type 4.

Similarly, deg(vi−1) = 2. It now follows that {vi−2, vi+2} ⊆ S.

Suppose both vi−2 and vi+2 lie on R3 paths. To avoid contradicting
Observations 2 and 3, vertices vi−2 and vi+2 cannot lie on an R1 or R2
path.

Suppose n = 3q + 1 where q ≥ 2. Observation 3 holds for U ′. Thus,
Sta(B) is an independent γr(U

′)-set, and so {vi−2, vi+2} ⊆ Sta(B), whence
{vi−1, vi+1} ⊆ Sta(A). By applying O3 once, and setting Sta(vi) and
Sta(u1) = B, we see that U is of Type 4.

Suppose n = 3q + 2 where q ≥ 2. Then U ′ has order n − 2 = 3q, and
|S′| = q. Thus, U ′ ∈ C and U ′ must be of Type 1. It follows again that
{vi−1, vi+1} ⊆ Sta(A). By applying O3 once, and setting Sta(vi) = A and
Sta(u1) = B, we see that U is of Type 3.
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We may assume that either vi−2 or vi+2 has degree 2 — suppose
deg(vi+2) = 2.

Suppose deg(vi+3) ≥ 3. Then Property 3 of Observation 2 holds, S is
independent, and so vi+3 6∈ S. If vi+3 lies on an R1 path, then |N(vi+3) ∩
S| ≥ 2, which is a contradiction. Thus, vi+3 lies on a R2 path vi+1, u

′

1, u
′

2.
Let U ′′ = U − u′

1 − u′

2, and S′′ = S − {u′

2}. Then S′′ is a γr(U
′′)-set of

size dn−2
3 e, and so U ′′ ∈ E . By the induction hypothesis, U ′′ ∈ C. As

n ≡ 1 mod 3, U ′′ is of Type 3. Observation 3 holds for U ′′, and so Sta(B)
is an independent set, whence vi 6∈ Sta(B), while N(vi) ∩ Sta(B) = {u1}.
Thus, Sta(vi+1) = A, Sta(vi+2) = B, while Sta(vi+3) = A. We obtain U by
attaching u′

1 to vi+3, and setting Sta(u′

1) = A and Sta(u′

2) = B. Hence, U
is of Type 4.

Consider the path vi, vi+1, vi+2, vi+3, vi+4, where vi+2 ∈ S and vi, vi+1,
vi+3, vi+4 /∈ S. We form U ′′′ by removing the vertices vi+1, vi+2, vi+3 and

joining vi and vi+4. The set S ′′′ = S−{vi+2} is a γr(U
′′′)-set of size dn(U ′′′)

3 e,
and so U ′′′ ∈ E . By the induction hypothesis, U ′′′ ∈ C and U ′′′ is of any
type except of Type 1. By Observations 2 and 3, {vi, vi+4} 6⊆ Sta(B).
Thus, Sta(vi) = Sta(vi+4) = A, Sta(vi) = B and Sta(vi+4) = A or Sta(vi) =
A and Sta(vi+4) = B. U can now be obtained by reinserting the path
vi+1, vi+2, vi+3 and labeling the vertices consecutively by either (1) A, B, A
(2) A, A, B or (3) B, A, A, and so we have applied O2 to U ′′′. Thus, U is
of any type except of Type 1.

Therefore, we may assume that U has no R1 paths.

Suppose U has at least one R2 path vi, u1, u2. By Claim 1, u1 6∈ S, and
so vi 6∈ S. Without loss of generality, assume vi−1 ∈ S. By Observations 1,
2 and 3, U can have at most two R2 paths. Then Observation 2 or 3 holds.
If U has a cycle of three or five vertices, then we are done. If U has a cycle
of four vertices, we have a contradiction. Thus, U has a cycle on at least six
vertices.

Suppose U has exactly two R2 paths, and let vj , u
′

1, u
′

2 be the other
R2 path. Then, as before, vj , u

′

1 6∈ S. Thus, Property 3 of Observation 2
holds, and so n = 3q + 1 where q ≥ 3. Moreover, vi+1 6∈ S, and so vi+2 ∈ S,
vi+3, vi+4 6∈ S, while vi+5 ∈ S. Note that vi−1 = vi+5 is possible.

Suppose j = i + 1. Let r′ (0 ≤ r′ ≤ 1) denote the number of R3 paths
attached to vi+2. We form U ′ by removing the vertices vi+2, vi+3, vi+4, and
the 3r′ vertices of the possible R3 path, and then joining vi+1 and vi+5.
Then the order of U ′ is n− 3 − 3r′ = 3(q − r′ − 1) + 1, and γr(U

′) = q − r′.
Thus, U ′ ∈ E and Observation 2 holds. Hence, vi+1, vi, u

′

1 ∈ Sta(A), and



Restrained Domination in Unicyclic Graphs 83

therefore Sta(vi+5) = B. Then U ′ must be of Type i, where i ∈ {2, 4, 5, 6}.
Remove the edge vi+1vi+5, reinsert the path vi+2, vi+3, vi+4 and label the
vertices consecutively B, A, A. By applying O1 to vi+2 (if necessary), we
obtain U . Hence, U is of Type i, where i ∈ {2, 4, 5, 6}.

Thus, vi+1 is not on an R2 path.

Suppose vi+2 is not on an R3 path, and suppose j = i + 3. We form
U ′ by removing the vertices vi+1, vi+2, vi+3, u

′

1, u
′

2, and then joining vi and
vi+4. Then the order of U ′ is n− 5 = 3(q− 2)+2, and γr(U

′) = q− 1. Thus,
U ′ ∈ E , U ′ is of Type 3, and Observation 3 holds. Thus, Sta(vi) = A.

Suppose that Sta(vi+4) = B. Remove the edge vivi+4, reinsert the path
vi+1, vi+2, vi+3 and label the vertices consecutively B, A, A. We obtain U
by attaching u′

1 to vi+3, and setting Sta(u′

1) = A and Sta(u′

2) = B. Hence,
U is of Type 4.

Thus, Sta(vi+4) = A. Remove the edge vivi+4, reinsert the path vi+1,
vi+2, vi+3 and label the vertices consecutively A, B, A. We obtain U by
attaching u′

1 to vi+3, and setting Sta(u′

1) = A and Sta(u′

2) = B. Hence, U
is of Type 4.

Thus, j 6= i+3. We form U ′ by removing the vertices vi+1, vi+2, vi+3, and
then joining vi and vi+4. The order of U ′ is n−3 = 3(q−1)+1, and γr(U

′) =
q. Thus, U ′ ∈ E , U ′ is of Type i, where i ∈ {2, 4, 5, 6}. By Property 3 of
Observation 2, Sta(vi) = A. Suppose Sta(vi+4) = B. Remove the edge
vivi+4, reinsert the path vi+1, vi+2, vi+3 and label the vertices consecutively
B, A, A. Thus, U is of Type i, where i ∈ {2, 4, 5, 6}.

Thus, Sta(vi+4) = A. Remove the edge vivi+4, reinsert the path vi+1,
vi+2, vi+3 and label the vertices consecutively A, B, A. Thus, U is of Type i,
where i ∈ {2, 4, 5, 6}.

Now, suppose that vi+2 is on an R3 path.

Suppose j ∈ {i + 3, i + 4}. Let U ′ = U − u′

1 − u′

2. Then the order
of U ′ is n − 2 = 3q − 1 = 3(q − 1) + 2, and γr(U

′) = q. Thus, U ′ ∈ E ,
U ′ is of Type 3, and Observation 3 holds. Hence, Sta(vi+2) = B, and
so Sta(vi+1) = Sta(vi+3) = A, whence Sta(vi+4) = A. We obtain U by
attaching u′

1 to vj, and setting Sta(u′

1) = A and Sta(u′

2) = B. Hence, U is
of Type 4.

Thus, j 6∈ {i + 3, i + 4}. Let r′ (0 ≤ r′ ≤ 1) denote the number of R3
paths attached to vi+5. We form U ′ by removing the vertices vi+3, vi+4, vi+5,
and the 3r′ vertices of the R3 paths on vi+5, and then joining vi+2 and
vi+6. Note that vi+6 6= vi, since j 6∈ {i, . . . , i + 5}. Now, the order of U ′

is n − 3 − 3r′ = 3(q − 1 − r′) + 1 and γr(U
′) = q − r′. Thus, U ′ ∈ E ,
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U ′ is of Type i, where i ∈ {2, 4, 5, 6}, and Property 3 of Observation 2
holds. Hence, Sta(vi+2) = B, and so Sta(vi+1) = Sta(vi+6) = A. Remove
the edge vi+2vi+6, reinsert the path vi+3, vi+4, vi+5, and label the vertices
consecutively A, A, B. By applying O1 to vi+5 (if necessary), we obtain U .
Hence, U is of Type i, where i ∈ {2, 4, 5, 6}.

Thus, vi, u1, u2 is the only R2 path of U .

Suppose n = 3q + 2 for some q ≥ 2, and so Observation 3 holds. Since
vi−1 ∈ S, vi+1 6∈ S, and so vi+2 ∈ S, vi+3 6∈ S, vi+4 6∈ S, while vi+5 ∈ S.
Note that vi−1 = vi+5 is possible.

Suppose vi+2 is not on an R3 path. We form U ′ by removing the
vertices vi+1, vi+2, vi+3, and then joining vi and vi+4. The order of U ′ is
n − 3 = 3(q − 1) + 2, and γr(U

′) = q. Thus, U ′ ∈ E , U ′ is of Type 3.
By Observation 3, Sta(vi) = A. Suppose Sta(vi+4) = B. Remove the edge
vivi+4, reinsert the path vi+1, vi+2, vi+3 and label the vertices consecutively
B, A, A. Thus, U is of Type 3. Hence, Sta(vi+4) = A. Remove the edge
vivi+4, reinsert the path vi+1, vi+2, vi+3 and label the vertices consecutively
A, B, A. Thus, U is of Type 3.

So suppose vi+2 is on an R3 path. Let r′ (0 ≤ r′ ≤ 1) denote the
number of R3 paths attached to vi+5. We form U ′ by removing the ver-
tices vi+3, vi+4, vi+5, and the 3r′ vertices of the R3 paths on vi+5, and
then joining vi+2 and vi+6. Note that vi+6 = vi is possible. Now, the
order of U ′ is n − 3 − 3r′ = 3(q − 1 − r′) + 2 and γr(U

′) = q − r′. Thus,
U ′ ∈ E , U ′ is of Type 3, and Observation 3 holds. Hence, Sta(vi+2) =
B, and so Sta(vi+1) = Sta(vi+6) = A. Remove the edge vi+2vi+6, rein-
sert the path vi+3, vi+4, vi+5, and label the vertices consecutively A, A,
B. By applying O1 to vi+5 (if necessary), we obtain U . Hence, U is of
Type 3.

Suppose n = 3q + 1 for some q ≥ 2, and so Property 2 of Observation 2
holds. Consider the path vi, vi+1, vi+2, vi+3, vi+4, where {vi+1, vi+4} ⊆ S
and {vi, vi+2, vi+3} ∩ S = ∅. Let r′ (0 ≤ r′ ≤ 1) denote the number of R3
paths on vi+1. We form U ′ by removing the vertices vi+1, vi+2, vi+3, and the
3r′ vertices of the R3 paths, and then joining vi and vi+4. The order of U ′

is n−3−3r′ = 3(q− r′−1)+1 and γr(U
′) = q− r′. Thus, U ′ ∈ E , Property

2 of Observation 2 holds, while U ′ is of Type i, where i ∈ {2, 4, 5, 6}. Thus,
Sta(vi) = A, and Sta(vi−1) = B = Sta(vi+4). Remove the edge vivi+4,
reinsert the path vi+1, vi+2, vi+3, and label the vertices consecutively B,
A, A. By applying O1 to vi+1 (if necessary), we obtain U . Thus, U is of
Type i, where i ∈ {2, 4, 5, 6}.



Restrained Domination in Unicyclic Graphs 85

Thus, we may assume that U has only R3 paths, and so V −S has only degree
two vertices. Therefore, Observation 1 or Observation 2 holds, respectively.
So n = 3q +1 (3q, respectively), where q ≥ 2. If U has a cycle on three, four
or six vertices, then we are done. If U has a cycle on five vertices, then we
reach a contradiction. Let vi be a vertex that lies on an R3 path. Consider
the path vi, vi+1, vi+2, vi+3, vi+4, where vi+1 6∈ S, vi+2 /∈ S and vi+3 ∈ S.
Let r′ (0 ≤ r′ ≤ 1) be the number of R3 paths attached to vi+3. We
form U ′ by removing vi+1, vi+2, vi+3, and the 3r′ vertices on the R3 paths
on vi+3, and then joining vi and vi+4. Then U ′ has order n − 3 − 3r′ =
3(q−r′−1)+1 (n−3−3r′ = 3(q−r′−1), respectively), and γr(U

′) = q−r′

(γr(U
′) = q−r′−1, respectively). Thus, U ′ ∈ E , and U ′ is of Type i, where

i ∈ {2, 4, 5, 6} (Type 1, respectively). Thus, Observation 2 (Observation 1,
respectively) holds. Hence, Sta(vi) = B. Remove the edge vivi+4, reinsert
the path vi+1, vi+2, vi+3, and label the vertices consecutively A, A, B. Thus,
U is of Type i, where i ∈ {2, 4, 5, 6}, or U is of Type 1 and the proof is
complete.
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