RESTRAINED DOMINATION IN UNICYCLIC GRAPHS

${ }^{1}$ Johannes H. Hattingh, ${ }^{2}$ Ernst J. Joubert, ${ }^{3}$ Marc Loizeaux,
${ }^{4}$ Andrew R. Plummer and ${ }^{3}$ Lucas van der Merwe
${ }^{1}$ Department of Mathematics and Statistics
Georgia State University
Atlanta, GA 30303-3083, USA
${ }^{2}$ Department of Mathematics University of Johannesburg
P.O. Box 524, Auckland Park 2006, South Africa
${ }^{3}$ Department of Mathematics
University of Tennessee, Chattanooga
615 McCallie Avenue, Chattanooga, TN 37403, USA
${ }^{4}$ Department of Linguistics
The Ohio State University
222 Oxley Hall, 1712 Neil Avenue, Columbus, OH 43210, USA

Abstract

Let $G=(V, E)$ be a graph. A set $S \subseteq V$ is a restrained dominating set if every vertex in $V-S$ is adjacent to a vertex in S and to a vertex in $V-S$. The restrained domination number of G, denoted by $\gamma_{r}(G)$, is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, then $\gamma_{r}(U) \geq\left\lceil\frac{n}{3}\right\rceil$, and provide a characterization of graphs achieving this bound.

Keywords: restrained domination, unicyclic graph.
2000 Mathematics Subject Classification: 05C69.

1. Introduction

In this paper, we follow the notation of [1]. Specifically, let $G=(V, E)$ be a graph with vertex set V and edge set E. A set $S \subseteq V$ is a dominating set (DS) of G if every vertex in $V-S$ is adjacent to a vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a DS of G. The concept of domination in graphs, with its many variations, is now well studied in graph theory. The recent book of Chartrand and Lesniak [1] includes a chapter on domination. A thorough study of domination appears in $[10,11]$.

In this paper, we continue the study of a variation of the domination theme, namely that of restrained domination - see $[2,3,4,5,6,7,8,9$, $12,13]$.

A set $S \subseteq V$ is a restrained dominating set (RDS) if every vertex in $V-S$ is adjacent to a vertex in S and to a vertex in $V-S$. Every graph has a RDS, since $S=V$ is such a set. The restrained domination number of G, denoted by $\gamma_{r}(G)$, is the minimum cardinality of a RDS of G. A RDS of G of cardinality $\gamma_{r}(G)$ is called a γ_{r}-set of G.

Throughout, let n and m denote the order and size of G, respectively. A unicyclic graph U of order n is a connected graph that contains exactly one cycle. Thus, U has size n. A vertex of degree one will be called a leaf, while a vertex adjacent to a leaf will be called a remote vertex. The open neighborhood of a vertex u, denoted $N(u)$, is the set $\{v \in V \mid v$ is adjacent to $u\}$, while the closed neighborhood of u, denoted $N[u]$, is defined as $N(u) \cup\{u\}$.

A graph G is status labeled if every vertex in V is labeled either A or B. A vertex $v \in V$ has status $A(B$, respectively) if v is labeled $A(B$, respectively). The status of a vertex v will be denoted $\operatorname{Sta}(v)$. We define $\operatorname{Sta}(A)(\operatorname{Sta}(B)$, respectively) as the set of vertices in V with status A (B, respectively).

Theorem 1. Let G be a connected graph of order n and size m. Then $\gamma_{r}(G) \geq n-\frac{2 m}{3}$.

Proof. Let S be a γ_{r}-set of G, and consider $H=\langle V-S\rangle$. Let n_{1} and m_{1} be the order and size of $\langle V-S\rangle$, respectively. Thus, $m_{1}=\frac{1}{2} \sum_{v \in V-S} \operatorname{deg}_{H}(v) \geq$ $\frac{1}{2}\left(n-\gamma_{r}(G)\right)$. Let m_{2} denote the number of edges between S and $V-S$. Since S is a DS, every vertex in $V-S$ is adjacent to at least one vertex in S.

Thus, $m_{2} \geq n-\gamma_{r}(G)$. Hence, $m \geq m_{1}+m_{2} \geq \frac{1}{2}\left(n-\gamma_{r}(G)\right)+n-\gamma_{r}(G)$, which implies that $\gamma_{r}(G) \geq n-\frac{2}{3} m$.
The following known result of [4] is an immediate consequence of Theorem 1.
Corollary 2. Let T be a tree of order n. Then $\gamma_{r}(T) \geq\left\lceil\frac{n+2}{3}\right\rceil$.
In similar fashion, we derive our first main result.
Corollary 3. Let U be a unicyclic graph of order n. Then $\gamma_{r}(U) \geq\left\lceil\frac{n}{3}\right\rceil$.
Domke et al. [4] provided a constructive characterization of trees achieving the lower bound given in Corollary 2. Hattingh and Plummer [9] gave a simpler characterization, independent of γ_{r}-set consideration. In the sequel, we constructively characterize unicyclic graphs achieving the lower bound given in Corollary 3, utilizing constructive operations governed by status labeling.

2. Unicylic Graphs U of Order n with $\gamma_{r}(U)=\left\lceil\frac{n}{3}\right\rceil$

Let \mathcal{E} denote the class of all unicyclic graphs U of order n such that $\gamma_{r}(U)=$ $\left\lceil\frac{n}{3}\right\rceil$. In order to provide the characterization, we state and prove a few observations.

Let $U \in \mathcal{E}$ and let S be a γ_{r}-set of U.
Observation 1. If $n \equiv 0 \bmod 3$, then S is independent and every vertex in $V-S$ has degree 2 .

Proof. Assume that $n \equiv 0 \bmod 3$. If $v \in V$ such that $\operatorname{deg}(v)=1$, then $v \in S$. Thus $\operatorname{deg}(v) \geq 2$, for all $v \in V-S$. Now, let $y \in V-S$. Suppose that $|N(y) \cap(V-S)| \geq 2$. By assumption, $|V-S|=\frac{2 n}{3}$. Therefore, $n=$ $m \geq n-\gamma_{r}(U)+\frac{1}{2}\left(n-\gamma_{r}(U)+1\right)$, which implies that $\gamma_{r}(U) \geq\left\lceil\frac{n+1}{3}\right\rceil>$ $\left\lceil\frac{n}{3}\right\rceil$, a contradiction. Suppose that $|N(y) \cap S| \geq 2$. Then $n=m \geq n-$ $\gamma_{r}(U)+1+\frac{1}{2}\left(n-\gamma_{r}(U)\right)$, which implies that $\gamma_{r}(U) \geq\left\lceil\frac{n+2}{3}\right\rceil>\left\lceil\frac{n}{3}\right\rceil$, a contradiction. Thus, every vertex in $V-S$ is adjacent to exactly one vertex of S and adjacent to exactly one vertex of $V-S$.

Since $|V-S|=\frac{2 n}{3}$, the vertices in $V-S$ form a matching with exactly $\frac{n}{3}$ edges. Since $m=n$, there are $\frac{2 n}{3}$ edges between S and $V-S$. Hence, S is independent.

Observation 2. If $n \equiv 1 \bmod 3$, then S has exactly one of the following properties:

1. $m(\langle S\rangle)=1$, while every vertex in $V-S$ has degree 2 .
2. There is a vertex $y \in V-S$ such that $\operatorname{deg}(y)=3$ and $|N(y) \cap S|=2$. Furthermore, S is independent and every vertex in $V-S-\{y\}$ has degree 2.
3. There are exactly two vertices $x, y \in V-S$ such that $\operatorname{deg}(x)=\operatorname{deg}(y)$ $=3$, and $|N(x) \cap(V-S)|=|N(y) \cap(V-S)|=2$. Furthermore, S is independent and every vertex in $V-S-\{x, y\}$ has degree 2 .
4. There is exactly one vertex $y \in V-S$ such that $\operatorname{deg}(y)=4$ and $|N(y) \cap(V-S)|=3$. Furthermore, S is independent and every vertex in $V-S-\{y\}$ has degree 2 .

Proof. Assume that $n \equiv 1 \bmod 3$. Suppose first that, for all $y \in V-S$, $\operatorname{deg}(y)=2$ and that S is independent. Clearly, $|S|=\frac{n+2}{3}$ and $|V-S|=$ $\frac{2(n-1)}{3}$. There are exactly $\frac{2(n-1)}{3}$ edges between $V-S$ and S, and there are $\frac{n-1}{3}$ edges in $\langle V-S\rangle$. Hence, $n=m=\frac{2(n-1)}{3}+\frac{n-1}{3}=n-1$, a contradiction. Thus, there is a vertex $y \in V-S$ such that $\operatorname{deg}(y) \geq 3$ or $m(\langle S\rangle) \geq 1$.

Suppose $m(\langle S\rangle) \geq 1$. If $m(\langle S\rangle) \geq 2$, then $n=m \geq n-\gamma_{r}(U)+2+\frac{1}{2}(n-$ $\gamma_{r}(U)$), implying that $\gamma_{r}(U) \geq\left\lceil\frac{n+4}{3}\right\rceil>\left\lceil\frac{n}{3}\right\rceil$, a contradiction. Therefore, $m(\langle S\rangle)=1$.

Suppose there is a vertex $y \in V-S$ such that $\operatorname{deg}(y) \geq 3$. If $|N(y) \cap S|$ ≥ 2, then $n=m \geq n-\gamma_{r}(U)+2+\frac{1}{2}\left(n-\gamma_{r}(U)\right)$, implying that $\gamma_{r}(U) \geq$ $\left\lceil\frac{n+4}{3}\right\rceil>\left\lceil\frac{n}{3}\right\rceil$, a contradiction. If $|N(y) \cap(V-S)| \geq 2$, then $n=m \geq$ $n-\gamma_{r}(U)+1+\frac{1}{2}\left(n-\gamma_{r}(U)+1\right)$, implying that $\gamma_{r}(U) \geq\left\lceil\frac{n+3}{3}\right\rceil>\left\lceil\frac{n}{3}\right\rceil$, a contradiction. Therefore, every vertex in $V-S$ has degree 2 . Thus, S has Property 1.

We may assume that S is independent and there is a vertex $y \in V-S$ such that $\operatorname{deg}(y) \geq 3$.

Suppose that $|N(y) \cap S| \geq 2$. If $|N(y) \cap S| \geq 3$, then $n=m \geq n-$ $\gamma_{r}(U)+2+\frac{1}{2}\left(n-\gamma_{r}(U)\right)$, implying that $\gamma_{r}(U) \geq\left\lceil\frac{n+4}{3}\right\rceil>\left\lceil\frac{n}{3}\right\rceil$, a contradiction. Thus, $|N(y) \cap S|=2$. If $\operatorname{deg}(y) \geq 4$, then $|N(y) \cap(V-S)| \geq 2$, and so $n=m \geq n-\gamma_{r}(U)+1+\frac{1}{2}\left(n-\gamma_{r}(U)+1\right)$, implying that $\gamma_{r}(U) \geq$ $\left\lceil\frac{n+3}{3}\right\rceil>\left\lceil\frac{n}{3}\right\rceil$, a contradiction. If $\operatorname{deg}(x) \geq 3$ for $x \in V-S-\{y\}$, then either $\gamma_{r}(U) \geq\left\lceil\frac{n+4}{3}\right\rceil$ or $\gamma_{r}(U) \geq\left\lceil\frac{n+3}{3}\right\rceil$, a contradiction in either case. Thus, S has Property 2.

Suppose that, for all $x \in V-S$ such that $\operatorname{deg}(x) \geq 3,|N(x) \cap S|=1$. If $v \in V-S$ such that $\operatorname{deg}(v) \geq 5$, then $n=m \geq n-\gamma_{r}(U)+\frac{1}{2}\left(n-\gamma_{r}(U)+3\right)$, a contradiction. Thus, for all $v \in V-S, \operatorname{deg}(v) \leq 4$. Suppose there is a vertex $y \in V-S$ such that $\operatorname{deg}(y)=4$. Then every vertex in $V-S-\{y\}$ must have degree 2. Thus, S has Property 4.

Therefore, we may assume that, if $y \in V-S$ such that $\operatorname{deg}(y) \geq 3$, then $\operatorname{deg}(y)=3$, while $|N(y) \cap S|=1$. Suppose there are three or more vertices $y \in V-S$ such that $\operatorname{deg}(y)=3$. Then $n=m \geq n-\gamma_{r}(U)+\frac{1}{2}\left(n-\gamma_{r}(U)+3\right)$, and so $\gamma_{r}(U) \geq\left\lceil\frac{n+3}{3}\right\rceil$, a contradiction. Suppose there is exactly one $y \in$ $V-S$ such that $\operatorname{deg}(y)=3$. Recall that there are $\frac{2(n-1)}{3}$ vertices in $V-S$. Moreover, for all $v \in V-S-\{y\}, \operatorname{deg}(v)=2$, and since $|N(y) \cap S|=1$, there are $\frac{2(n-1)}{3}-3>0$ vertices to be matched in $\langle V-S\rangle$. This is impossible as $\frac{2(n-1)}{3}-3$ is odd. Thus, there are exactly two vertices $x, y \in V-S$ such that $\operatorname{deg}(x)=\operatorname{deg}(y)=3$. Thus, S has Property 3 .

Observation 3. If $n \equiv 2 \bmod 3$, then there is exactly one vertex $y \in$ $V-S$ such that $\operatorname{deg}(y)=3$ and $|N(y) \cap(V-S)|=2$. Furthermore, S is independent and every vertex in $V-S-\{y\}$ has degree 2.

Proof. Suppose $n \equiv 2 \bmod 3$. If S is dependent, then $n=m \geq n-$ $\gamma_{r}(U)+1+\frac{1}{2}\left(n-\gamma_{r}(U)\right)$, and so $\gamma_{r}(U) \geq\left\lceil\frac{n+2}{3}\right\rceil>\left\lceil\frac{n}{3}\right\rceil$, a contradiction. Suppose that, for all $v \in V-S, \operatorname{deg}(v)=2$. Let $n=3 q+2$, where $q \geq 1$. Then $|S|=q+1$ and $|V-S|=2 q+1$. Notice that $V-S$ must form a matching, and since $|V-S|=2 q+1$ is odd, this is not possible. Thus, there is a $y \in V-S$ such that $\operatorname{deg}(y) \geq 3$. If $|N(v) \cap S| \geq 2$ for some $v \in V-S$, then $\gamma_{r}(U) \geq\left\lceil\frac{n+2}{3}\right\rceil>\left\lceil\frac{n}{3}\right\rceil$, a contradiction. Thus, $|N(v) \cap S|=1$ for all $v \in V-S$. Suppose $\operatorname{deg}(y) \geq 4$, or $x \in V-S$ such that $x \neq y$ and $\operatorname{deg}(x) \geq 3$. Then $n=m \geq n-\gamma_{r}(U)+\frac{1}{2}\left(n-\gamma_{r}(U)+2\right)$, which implies that $\gamma_{r}(U) \geq\left\lceil\frac{n+2}{3}\right\rceil>\left\lceil\frac{n}{3}\right\rceil$, a contradiction. Thus, the observation holds.
Let K be the status labeled graph obtained from the complete graph K_{2} with vertex set $\left\{k_{1}, k_{2}\right\}$ by setting $\operatorname{Sta}\left(k_{1}\right)=A$ and $\operatorname{Sta}\left(k_{2}\right)=B$.

Let $P_{A A B}$ be the status labeled graph obtained from the path P_{3} with consecutive vertices p_{1}, p_{2}, p_{3} by setting $\operatorname{Sta}\left(p_{1}\right)=\operatorname{Sta}\left(p_{2}\right)=A$ and $\operatorname{Sta}\left(p_{3}\right)=$ B. Similarly, let $P_{A B A}$ be the status labeled graph obtained from the path P_{3} with consecutive vertices p_{1}, p_{2}, p_{3} by setting $\operatorname{Sta}\left(p_{1}\right)=\operatorname{Sta}\left(p_{3}\right)=A$ and $\operatorname{Sta}\left(p_{2}\right)=B$.

The following status labeled graphs will serve as the basis for our characterization.

Let B_{1} be the status labeled graph obtained from the cycle C_{3} with consecutive vertices $v_{1}, v_{2}, v_{3}, v_{1}$ by setting $\operatorname{Sta}\left(v_{1}\right)=B$ and $\operatorname{Sta}\left(v_{2}\right)=\operatorname{Sta}\left(v_{3}\right)=A$.

Let B_{2} be the status labeled graph obtained from the cycle C_{4} with consecutive vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$ by setting $\operatorname{Sta}\left(v_{1}\right)=\operatorname{Sta}\left(v_{2}\right)=B$ and $\operatorname{Sta}\left(v_{3}\right)=\operatorname{Sta}\left(v_{4}\right)=A$.

Lastly, let B_{3} be the status labeled graph obtained from C_{5} with consecutive vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}$ by setting $\operatorname{Sta}\left(v_{1}\right)=\operatorname{Sta}\left(v_{3}\right)=B$ and $\operatorname{Sta}\left(v_{2}\right)=\operatorname{Sta}\left(v_{4}\right)=\operatorname{Sta}\left(v_{5}\right)=A$, and joining v_{2} to the vertex k_{1} of K.

Note that if $U \cong B_{i}$ for $i \in\{1,2,3\}$, then $\operatorname{Sta}(B)$ is a γ_{r}-set of U of cardinality $\left\lceil\frac{n}{3}\right\rceil$.

Let U be a status labeled unicyclic graph. Define the following operations on U :
\mathcal{O}_{1} : Suppose v is a vertex of U such that $\operatorname{Sta}(v)=B$. Join v to the vertex p_{1} of $P_{A A B}$.
\mathcal{O}_{2} : Suppose $u v$ is an edge of U. One of the following is performed:

1. If $\operatorname{Sta}(u)=B$, then delete the edge $u v$ and join the vertex $u(v$, respectively) to the vertex p_{1} (p_{3}, respectively) of $P_{A A B}$.
2. If $\operatorname{Sta}(u)=\operatorname{Sta}(v)=A$, then delete the edge $u v$, join the vertex u (v, respectively) to the vertex p_{1} (p_{3}, respectively) of $P_{A B A}$.
\mathcal{O}_{3} : Suppose $u v$ is an edge of U, and suppose $\operatorname{Sta}(u)=\operatorname{Sta}(v)=A$. Delete the edge $u v$, and join u and v to vertex k_{1} of K.

Observation 4. If U^{\prime} is the status labeled graph obtained by applying one of the above operations on U, then $\operatorname{Sta}(B)$ is a RDS of U^{\prime}.

Let \mathcal{C} be the family of status labeled unicyclic graphs U, where U is one of the following six types:

Type 1: U is obtained from B_{1} by $\ell \geq 0$ applications of \mathcal{O}_{1} or \mathcal{O}_{2}.
Type 2: U is obtained from a Type 1 graph by joining a vertex v in this Type 1 graph to a vertex w of K_{1}, setting $\operatorname{Sta}(w)=B$, and then following this by $\ell \geq 0$ applications of \mathcal{O}_{1} or \mathcal{O}_{2}.
Type 3: U is obtained from:

1. a Type 1 graph by joining some $v \in \operatorname{Sta}(A)$ to the vertex k_{1} of K, followed by $\ell \geq 0$ applications of \mathcal{O}_{1} or \mathcal{O}_{2}.
2. a Type 1 graph by exactly one application of \mathcal{O}_{3}, followed by $\ell \geq 0$ applications of \mathcal{O}_{1} or \mathcal{O}_{2}.

Type 4: U is obtained from:

1. a Type 3 graph by joining some $v \in \operatorname{Sta}(A)$ to the vertex k_{1} of K, followed by $\ell \geq 0$ applications of \mathcal{O}_{1} or \mathcal{O}_{2}.
2. a Type $\mathbf{3}$ graph by exactly one application of \mathcal{O}_{3}, followed by $\ell \geq 0$ applications of \mathcal{O}_{1} or \mathcal{O}_{2}.

Type 5: U is obtained from B_{2} by $\ell \geq 0$ applications of \mathcal{O}_{1} or \mathcal{O}_{2}.
Type 6: U is obtained from B_{3} by $\ell \geq 0$ applications of \mathcal{O}_{1} or \mathcal{O}_{2}.
Observation 5. If U is in \mathcal{C}, then $\operatorname{Sta}(B)$ is a γ_{r}-set of U of cardinality $\left\lceil\frac{n}{3}\right\rceil$.

Proof. Suppose that U is in \mathcal{C}. Then U is of Type i, where $1 \leq \mathbf{i} \leq 6$. That $\operatorname{Sta}(B)$ is a RDS of U follows from Observation 4, the fact that if an isolated vertex of status B is joined to any vertex of a status labeled unicyclic graph in which $\operatorname{Sta}(B)$ is a RDS, then in the resulting unicyclic graph $\operatorname{Sta}(B)$ is still a RDS, and the fact that if the vertex k_{1} of K is joined to any vertex of status A of a status labeled unicyclic graph in which $\operatorname{Sta}(B)$ is a RDS, then in the resulting unicyclic graph $\operatorname{Sta}(B)$ is still a RDS.

If U is a Type 1 graph , then $n(U) \equiv 0 \bmod 3$ and $|\operatorname{Sta}(B)|=\frac{n}{3}$, since B_{1} contributes one vertex out of three to $\operatorname{Sta}(B)$, while each of the $\ell \geq 0$ applications of \mathcal{O}_{1} or \mathcal{O}_{2} contributes one vertex out of three to $\operatorname{Sta}(B)$.

Suppose U is a Type 2 graph obtained from the Type 1 graph U^{\prime} by joining a vertex v in U to a vertex w of K_{1}, $\operatorname{setting} \operatorname{Sta}(w)=B$, and then following this by $\ell \geq 0$ applications of \mathcal{O}_{1} or \mathcal{O}_{2}.

Then $n\left(U^{\prime}\right) \equiv 0 \bmod 3$ and U^{\prime} has exactly $\frac{n\left(U^{\prime}\right)}{3}$ vertices of status B, and so $n(U) \equiv 1 \bmod 3$ and $|\operatorname{Sta}(B)|=\frac{n(U)-1}{3}+1=\frac{n+2}{3}$, since w contributes one vertex to both $\operatorname{Sta}(B)$ and $n(U)$, while each of the $\ell \geq 0$ applications of \mathcal{O}_{1} or \mathcal{O}_{2} contributes one vertex out of three to $\operatorname{Sta}(B)$. As $n \equiv 1 \bmod 3$, we have $\left\lceil\frac{n}{3}\right\rceil=\frac{n+2}{3}$, and so $|\operatorname{Sta}(B)|=\left\lceil\frac{n}{3}\right\rceil$.

For a Type 3 graph, $n \equiv 2 \bmod 3$, while $|\operatorname{Sta}(B)|=\frac{n-2}{3}+1=\frac{n+1}{3}=$ $\left\lceil\frac{n}{3}\right\rceil$.

For a Type 4 graph, $n \equiv 1 \bmod 3$, while $|\operatorname{Sta}(B)|=\left\lceil\frac{n-2}{3}\right\rceil+1=$ $\left\lceil\frac{n+1}{3}\right\rceil=\left\lceil\frac{n}{3}\right\rceil$.

For graphs of Type $\mathbf{5}$ and Type 6, $n \equiv 1 \bmod 3$, while $|\operatorname{Sta}(B)|=$ $\frac{n-1}{3}+1=\frac{n+2}{3}=\left\lceil\frac{n}{3}\right\rceil$.

Thus, $\left\lceil\frac{n}{3}\right\rceil=|\operatorname{Sta}(B)| \geq \gamma_{r}(U) \geq\left\lceil\frac{n}{3}\right\rceil$, and the observation holds.

Let U be a unicyclic graph and denote its unique cycle by C. A reference path of U is a path $v=u_{0}, u_{1}, \ldots, u_{t}$, where $v \in C, u_{t}$ is a leaf, and $u_{i} \notin C$ for $i=1, \ldots, t$. We are now ready to state our characterization.

Theorem 4. Let U be a unicyclic graph of order $n \geq 3$. Then $U \in \mathcal{E}$ if and only if U can be status labeled in such a way that it is in \mathcal{C}.

Proof. Suppose $U \in \mathcal{C}$. By Observation $5, U \in \mathcal{E}$.
Now, assume $U \in \mathcal{E}$ and let S be a γ_{r}-set of U. We proceed by induction on n. If $n=3$, then $U=C_{3}$, and so it can be status labeled as B_{1} which is in \mathcal{C}. Therefore, assume $n \geq 4$ and, for all $U^{\prime} \in \mathcal{E}$ such that $3 \leq n\left(U^{\prime}\right)<n, U^{\prime}$ can be status labeled so that it is in \mathcal{C}. (Henceforth, we will abuse notation slightly by just saying that $U^{\prime} \in \mathcal{C}$.) Suppose U is a cycle. If $n \equiv 2 \bmod 3$, then Observation 3 is contradicted. Thus, $n \equiv 0 \operatorname{or} 1 \bmod 3$, and so U is of Type 1 or Type 5. Thus, there exists $v \in V(U)$ such that $\operatorname{deg}(v) \geq 3$.

Throughout, S will denote a γ_{r}-set for U. Before proceeding further, we prove the following two claims.

Claim 1. Suppose $v^{\prime}=w_{0}, w_{1}, \ldots, w_{s}$ is a reference path of U. If w_{s-1} $\in S$, then $U \in \mathcal{C}$.

Proof. As $w_{s} \in S, S$ is not independent, and so, by Observations 1,2 and $3, n=3 q+1$ for some positive integer q, and Property 1 of Observation 2 is satisfied. Let $U^{\prime}=U-w_{s}$, and notice that $S^{\prime}=S-\left\{w_{s}\right\}$ is a RDS of U^{\prime}, while $n\left(U^{\prime}\right)=3 q$. Moreover, S^{\prime} is a RDS of U^{\prime} of size $\left\lceil\frac{3 q+1}{3}\right\rceil-1=q$, whence $q=\frac{3 q}{3} \leq \gamma_{r}\left(U^{\prime}\right) \leq\left|S^{\prime}\right|=q$. Thus, $U^{\prime} \in \mathcal{E}$, and, by the induction assumption, $U^{\prime} \in \mathcal{C}$. As $n\left(U^{\prime}\right) \equiv 0 \bmod 3$, the graph U^{\prime} is of Type 1. U can now be obtained from U^{\prime} by joining w_{s} to w_{s-1}, and setting $\operatorname{Sta}\left(w_{s}\right)=B$, and so U is of Type 2.

Claim 2. Suppose $v^{\prime}=w_{0}, w_{1}, \ldots, w_{s}$ is a reference path in U. If w_{s-1} is adjacent to a vertex $w_{s}^{\prime} \in S-\left\{w_{s}\right\}$, then $U \in \mathcal{C}$.

Proof. As $w_{s}^{\prime}, w_{s} \in S, w_{s-1} \notin S$, since otherwise either Observation 1, 2 or 3 will be contradicted. Let $U^{\prime}=U-w_{s}$ and notice that $S^{\prime}=S-\left\{w_{s}\right\}$ is a RDS of U^{\prime}. Then, since $\left|N\left(w_{s-1}\right) \cap S\right| \geq 2$, Observations 1 and 3 imply that $n=3 q+1$ for some positive integer q. Therefore, $n\left(U^{\prime}\right)=3 q$. Also, S^{\prime} is a RDS of U^{\prime} of size $\left\lceil\frac{3 q+1}{3}\right\rceil-1=q$, whence $q=\frac{3 q}{3} \leq \gamma_{r}\left(U^{\prime}\right) \leq\left|S^{\prime}\right|=q$. Thus, $U^{\prime} \in \mathcal{E}$, and, by the induction assumption, $U^{\prime} \in \mathcal{C}$. As $n\left(U^{\prime}\right) \equiv 0$
$\bmod 3$, the graph U^{\prime} is of Type 1. U can now be obtained from U^{\prime} by joining w_{s} to w_{s-1}, and setting $\operatorname{Sta}\left(w_{s}\right)=B$, and so U is of Type 2 .
By Claims 1 and 2, we conclude that if w is a remote vertex of U, then $w \notin S$ and $\operatorname{deg}(w)=2$.

Let C denote the unique cycle of U. Among all vertices $v \in C$ such that $\operatorname{deg}(v) \geq 3$, choose the reference path $P=v, u_{1}, \ldots, u_{t}$ for which t is as large as possible. We call a reference path an $\mathbf{R t}$ path if $\operatorname{deg}(v)=3$ and $\operatorname{deg}\left(u_{i}\right)=2$ for $i=1, \ldots, t-1$.

We begin by reducing reference paths to either R1, R2 or R3.
Case 1. $t \geq 2$.
Since u_{t-1} is a remote vertex, $\operatorname{deg}\left(u_{t-1}\right)=2, u_{t-1} \notin S$ and so $u_{t-2} \notin S$.
Case 1.1. $t=2$. Note that $v=u_{t-2}$.
Suppose that $\operatorname{deg}(v) \geq 4$. Then v is either a remote vertex or v lies on a reference path $v, u_{1}^{\prime}, u_{2}^{\prime}$, where $\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\} \cap\left\{u_{1}, u_{2}\right\}=\emptyset, \operatorname{deg}\left(u_{1}^{\prime}\right)=2$ and $u_{1}^{\prime} \notin S$.

As $v \notin S$, Property 4 of Observation 2 must be satisfied. Then $\operatorname{deg}(v)$ $=4,|N(v) \cap(V-S)| \geq 3, u_{2} \in S$ and $n=3 q+1$ where q is a positive integer. Let $U^{\prime}=U-u_{1}-u_{2}$, and notice that $S^{\prime}=S-\left\{u_{2}\right\}$ is a RDS of U^{\prime}. Then U^{\prime} has order $n-2=3(q-1)+2$ and $\left|S^{\prime}\right|=q$. Thus, $U^{\prime} \in \mathcal{E}$, and Observation 3 holds for U^{\prime}. Moreover, by the induction assumption, $U^{\prime} \in \mathcal{C}$. In fact, U^{\prime} is of Type 3. By Observation 3 and $5, \operatorname{Sta}(B)$ is a $\gamma_{r}\left(U^{\prime}\right)$-set which is independent. If v is a remote vertex, then since the leaf adjacent to v is in $\operatorname{Sta}(B), v \notin \operatorname{Sta}(B)$. If v is not a remote vertex, then $v \in \operatorname{Sta}(B)$ would imply that $u_{1}^{\prime} \in \operatorname{Sta}(B)$, which contradicts the fact that $\operatorname{Sta}(B)$ is independent. Thus, $\operatorname{Sta}(v)=A$. U can now be obtained from U^{\prime} by joining v to vertex u_{1} of $\left\langle\left\{u_{1}, u_{2}\right\}\right\rangle$, and setting $\operatorname{Sta}\left(u_{1}\right)=A$ and $\operatorname{Sta}\left(u_{2}\right)=B$, and so U is of Type 4. Thus, if $t=2$, then $\operatorname{deg}(v)=3$ and $\operatorname{deg}\left(u_{1}\right)=2$.

Case 1.2. $t \geq 3$.
We first show that $\operatorname{deg}\left(u_{t-2}\right)=2$. Suppose, to the contrary, that $\operatorname{deg}\left(u_{t-2}\right)$ ≥ 3. Since $u_{t-2} \notin S$, Observation 1 implies that $n \not \equiv 0 \bmod 3$.

Let $U^{\prime}=U-u_{t-1}-u_{t}$. Suppose $n=3 q+2$ for some positive integer q. Since $u_{t-2} \notin S$, we have, by Observation 3, $\operatorname{deg}\left(u_{t-2}\right)=3$ and $\mid N\left(u_{t-2}\right) \cap$ $(V-S) \mid \geq 2$, and so $S^{\prime}=S-\left\{u_{t}\right\}$ is a RDS of U^{\prime}. Thus, $U^{\prime} \in \mathcal{E}$ and U^{\prime} must be of Type 1. By Observation 1, $\operatorname{Sta}(B)$ is an independent set of U^{\prime}, and so $\operatorname{Sta}\left(u_{t-2}\right)=A$. We obtain U by attaching u_{t-1} to u_{t-2}, and setting $\operatorname{Sta}\left(u_{t-1}\right)=A$ and $\operatorname{Sta}\left(u_{t}\right)=B$. Hence, U is of Type 3.

Suppose $n=3 q+1$ for some positive integer q. Since $u_{t-2} \notin S$ and $\operatorname{deg}\left(u_{t-2}\right) \geq 3$, one of the Properties 2, 3 or 4 of Observation 2 must hold. Suppose Property 2 holds. Then $\operatorname{deg}\left(u_{t-2}\right)=3$ and $\left|N\left(u_{t-2}\right) \cap S\right|=2$. Then, besides $u_{t-3} \in S, u_{t-2}$ is adjacent to exactly one other vertex in S, say w. If $\operatorname{deg}(w) \geq 2$, then, by our choice of the reference path P, w must be adjacent a leaf, which contradicts the fact that S is an independent set. Thus, w is a leaf, and it follows by Claim 2 that $U \in \mathcal{C}$. Hence, suppose either Property 3 or 4 holds. In both cases, u_{t-2} is adjacent to a vertex in $V-S-\left\{u_{t-1}\right\}$. It follows that $S^{\prime}=S-\left\{u_{t}\right\}$ is a RDS of U^{\prime}. Thus, $U^{\prime} \in \mathcal{E}$ and U^{\prime} must be of Type 3. By Observation 3, $\operatorname{Sta}(B)$ is an independent set of U^{\prime}, and so $\operatorname{Sta}\left(u_{t-2}\right)=A$. We obtain U by attaching u_{t-1} to u_{t-2}, and setting $\operatorname{Sta}\left(u_{t-1}\right)=A$ and $\operatorname{Sta}\left(u_{t}\right)=B$. Hence, U is of Type 4.

We may assume that $\operatorname{deg}\left(u_{t-2}\right)=2$, whence $u_{t-3} \in S$. Note that u_{t-3} is not adjacent to a leaf, since otherwise $U \in \mathcal{C}$ by Claim 1 . Suppose u_{t-3} lies on the reference path $v=u_{0}, \ldots, u_{t-3}, u_{t-2}^{\prime}, u_{t-1}^{\prime}$, where $\operatorname{deg}\left(u_{t-2}^{\prime}\right)=2$. Since $u_{t-3} \in S$, it follows that $\left\{u_{t-3}, u_{t-2}^{\prime}, u_{t-1}^{\prime}\right\} \subseteq S$, and Observations 1, 2 and 3 cannot be satisfied.

Suppose that $t \geq 4$. We may assume that every reference path that contains u_{t-3} has the form $v, u_{1}, \ldots, u_{t-3}, u_{t-2}^{\prime}, u_{t-1}^{\prime}, u_{t}^{\prime}$, where $\operatorname{deg}\left(u_{t-2}^{\prime}\right)=$ $\operatorname{deg}\left(u_{t-1}^{\prime}\right)=2, u_{t-3} \in S$ and $u_{t-2}^{\prime}, u_{t-1}^{\prime} \notin S$. Let U^{\prime} be obtained by removing from U every path of the form $u_{t-2}^{\prime}, u_{t-1}^{\prime}, u_{t}^{\prime}$. Then $U^{\prime} \in \mathcal{E}$. By the induction assumption, U^{\prime} is of Type \mathbf{i} for some $\mathbf{i} \in\{1, \ldots, 6\}$. Since u_{t-3} is a leaf of U^{\prime}, $\operatorname{Sta}\left(u_{t-3}\right)=B$. It follows that U can be obtained from U^{\prime} by $\operatorname{deg}\left(u_{t-3}\right)-1$ applications of \mathcal{O}_{1} by joining u_{t-3} to the vertex u_{t-2}^{\prime} of each of the deleted paths $u_{t-2}^{\prime}, u_{t-1}^{\prime}, u_{t}^{\prime}$, and setting $\operatorname{Sta}\left(u_{t-2}^{\prime}\right)=\operatorname{Sta}\left(u_{t-1}^{\prime}\right)=A$ and $\operatorname{Sta}\left(u_{t}^{\prime}\right)=$ B. Thus, U is of Type i.

So suppose $t=3$. Furthermore, suppose $\operatorname{deg}(v) \geq 4$. We may assume that v lies on more than one reference path of the form $v, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}$, where $\operatorname{deg}\left(u_{2}^{\prime}\right)=\operatorname{deg}\left(u_{1}^{\prime}\right)=2, v \in S$ and $u_{1}, u_{2} \notin S$. Let U^{\prime} be obtained by removing the vertices $u_{1}^{\prime}, u_{2}^{\prime}$ and u_{3}^{\prime}. Then $\operatorname{deg}_{U^{\prime}}(v) \geq 3, U^{\prime} \in \mathcal{E}$, and so U^{\prime} is of Type \mathbf{i} for some $\mathbf{i} \in\{1, \ldots, 6\}$. If $v \notin \operatorname{Sta}(B)$, then $\left\{u_{2}, u_{3}\right\} \subseteq \operatorname{Sta}(B)$, contradicting Observations 1, 2 and 3 . Thus, $\operatorname{Sta}(v)=B$. It follows that U can be obtained from U^{\prime} by applying \mathcal{O}_{1} once by joining v to the vertex u_{1} of the deleted path u_{1}, u_{2}, u_{3}, and setting $\operatorname{Sta}\left(u_{1}\right)=\operatorname{Sta}\left(u_{2}\right)=A$ and $\operatorname{Sta}\left(u_{3}\right)=B$. Thus, U is of Type i. Thus, if $t \geq 3$, then $t=3$ and $\operatorname{deg}(v)=3$.

Case 2. $t=1$. By Claim $1, \operatorname{deg}(v)=3$, since otherwise $U \in \mathcal{C}$. Thus, if $t=1$, then $\operatorname{deg}(v)=3$.

We have now reduced P to either an R1, R2 or R3 path. We may therefore assume that each reference path of U is either an $\mathbf{R 1}, \mathbf{R} 2$ or $\mathbf{R 3}$ path.

Suppose v_{i}, u_{1} is an $\mathbf{R 1}$ path of U. By Claim 2, $N\left[v_{i}\right] \cap S=\left\{u_{1}\right\}$ since otherwise $U \in \mathcal{C}$. Since $v_{i} \notin S$ and $\operatorname{deg}\left(v_{i}\right)=3$, Observation 1 implies that $n \not \equiv 0 \bmod 3$. Let v_{i-1} and v_{i+1} be the neighbors of v_{i} on the cycle C of U. Since the cycle in U contains at least four vertices, consider the path $v_{i-2}, v_{i-1}, v_{i}, v_{i+1}, v_{i+2}$ on C. If $v_{i-2}=v_{i+2}$, then U is of Type $\mathbf{3}$ or Type 4. Thus, $v_{i-2} \neq v_{i+2}$.

In what follows, U^{\prime} is the graph obtained by removing v_{i} and u_{1} and joining v_{i-1} and v_{i+1}. Then $S^{\prime}=S-\left\{u_{1}\right\}$ is a $\gamma_{r}\left(U^{\prime}\right)$-set of size $\left\lceil\frac{n-2}{3}\right\rceil$, and so $U^{\prime} \in \mathcal{E}$. By the induction hypothesis, $U^{\prime} \in \mathcal{C}$. If $n \equiv 1 \bmod 3$, then U^{\prime} is of Type 3; if $n \equiv 2 \bmod 3$, then U^{\prime} is of Type 1 .

We first show that $\operatorname{deg}\left(v_{i+1}\right)=2$. Suppose, to the contrary, $\operatorname{deg}\left(v_{i+1}\right) \geq$ 3. Then, since $v_{i+1} \notin S$, we have (cf. Observation 3) $n \equiv 1 \bmod 3, S$ is independent, $\operatorname{deg}\left(v_{i+1}\right)=3$, and v_{i+1} lies on either an R1 or an R2 path. Suppose v_{i+1} lies on an $\mathbf{R 1}$ path. Then (cf. Observation 3 applied to U^{\prime}), it follows that $\left\{v_{i-1}, v_{i+1}\right\} \subseteq \operatorname{Sta}(A)$. By applying \mathcal{O}_{3} once, and setting $\operatorname{Sta}\left(v_{i}\right)=A$ and $\operatorname{Sta}\left(u_{1}\right)=B$, we see that U is of Type 4.

Suppose v_{i+1} lies on an R2 path $v_{i+1}, u_{1}^{\prime}, u_{2}^{\prime}$. Let $U^{\prime \prime}=U-u_{1}^{\prime}-u_{2}^{\prime}$, and $S^{\prime \prime}=S-\left\{u_{2}^{\prime}\right\}$. Then $S^{\prime \prime}$ is a $\gamma_{r}\left(U^{\prime \prime}\right)$-set of size $\left\lceil\frac{n-2}{3}\right\rceil$, and so $U^{\prime \prime} \in \mathcal{E}$. By the induction hypothesis, $U^{\prime \prime} \in \mathcal{C}$. As $n \equiv 1 \bmod 3, U^{\prime \prime}$ is of Type 3. Observation 3 holds for $U^{\prime \prime}$, and so $\operatorname{Sta}(B)$ is an independent set, whence $v_{i} \notin \operatorname{Sta}(B)$, while $N\left(v_{i}\right) \cap \operatorname{Sta}(B)=\left\{u_{1}\right\}$. Thus, $\operatorname{Sta}\left(v_{i+1}\right)=A$. We obtain U by attaching u_{1}^{\prime} to v_{i+1}, and setting $\operatorname{Sta}\left(u_{1}^{\prime}\right)=A$ and $\operatorname{Sta}\left(u_{2}^{\prime}\right)=B$. Hence, U is of Type 4.

Similarly, $\operatorname{deg}\left(v_{i-1}\right)=2$. It now follows that $\left\{v_{i-2}, v_{i+2}\right\} \subseteq S$.
Suppose both v_{i-2} and v_{i+2} lie on R3 paths. To avoid contradicting Observations 2 and 3, vertices v_{i-2} and v_{i+2} cannot lie on an R1 or R2 path.

Suppose $n=3 q+1$ where $q \geq 2$. Observation 3 holds for U^{\prime}. Thus, $\operatorname{Sta}(B)$ is an independent $\gamma_{r}\left(U^{\prime}\right)$-set, and so $\left\{v_{i-2}, v_{i+2}\right\} \subseteq \operatorname{Sta}(B)$, whence $\left\{v_{i-1}, v_{i+1}\right\} \subseteq \operatorname{Sta}(A)$. By applying \mathcal{O}_{3} once, and setting $\operatorname{Sta}\left(v_{i}\right)$ and $\operatorname{Sta}\left(u_{1}\right)=B$, we see that U is of Type 4.

Suppose $n=3 q+2$ where $q \geq 2$. Then U^{\prime} has order $n-2=3 q$, and $\left|S^{\prime}\right|=q$. Thus, $U^{\prime} \in \mathcal{C}$ and U^{\prime} must be of Type 1. It follows again that $\left\{v_{i-1}, v_{i+1}\right\} \subseteq \operatorname{Sta}(A)$. By applying \mathcal{O}_{3} once, and setting $\operatorname{Sta}\left(v_{i}\right)=A$ and $\operatorname{Sta}\left(u_{1}\right)=B$, we see that U is of Type 3.

We may assume that either v_{i-2} or v_{i+2} has degree 2 - suppose $\operatorname{deg}\left(v_{i+2}\right)=2$.

Suppose $\operatorname{deg}\left(v_{i+3}\right) \geq 3$. Then Property 3 of Observation 2 holds, S is independent, and so $v_{i+3} \notin S$. If v_{i+3} lies on an R1 path, then $\mid N\left(v_{i+3}\right) \cap$ $S \mid \geq 2$, which is a contradiction. Thus, v_{i+3} lies on a R2 path $v_{i+1}, u_{1}^{\prime}, u_{2}^{\prime}$. Let $U^{\prime \prime}=U-u_{1}^{\prime}-u_{2}^{\prime}$, and $S^{\prime \prime}=S-\left\{u_{2}^{\prime}\right\}$. Then $S^{\prime \prime}$ is a $\gamma_{r}\left(U^{\prime \prime}\right)$-set of size $\left\lceil\frac{n-2}{3}\right\rceil$, and so $U^{\prime \prime} \in \mathcal{E}$. By the induction hypothesis, $U^{\prime \prime} \in \mathcal{C}$. As $n \equiv 1 \bmod 3, U^{\prime \prime}$ is of Type 3. Observation 3 holds for $U^{\prime \prime}$, and so $\operatorname{Sta}(B)$ is an independent set, whence $v_{i} \notin \operatorname{Sta}(B)$, while $N\left(v_{i}\right) \cap \operatorname{Sta}(B)=\left\{u_{1}\right\}$. Thus, $\operatorname{Sta}\left(v_{i+1}\right)=A, \operatorname{Sta}\left(v_{i+2}\right)=B$, while $\operatorname{Sta}\left(v_{i+3}\right)=A$. We obtain U by attaching u_{1}^{\prime} to v_{i+3}, and setting $\operatorname{Sta}\left(u_{1}^{\prime}\right)=A$ and $\operatorname{Sta}\left(u_{2}^{\prime}\right)=B$. Hence, U is of Type 4.

Consider the path $v_{i}, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}$, where $v_{i+2} \in S$ and v_{i}, v_{i+1}, $v_{i+3}, v_{i+4} \notin S$. We form $U^{\prime \prime \prime}$ by removing the vertices $v_{i+1}, v_{i+2}, v_{i+3}$ and joining v_{i} and v_{i+4}. The set $S^{\prime \prime \prime}=S-\left\{v_{i+2}\right\}$ is a $\gamma_{r}\left(U^{\prime \prime \prime}\right)$-set of size $\left\lceil\frac{n\left(U^{\prime \prime \prime}\right)}{3}\right\rceil$, and so $U^{\prime \prime \prime} \in \mathcal{E}$. By the induction hypothesis, $U^{\prime \prime \prime} \in \mathcal{C}$ and $U^{\prime \prime \prime}$ is of any type except of Type 1. By Observations 2 and $3,\left\{v_{i}, v_{i+4}\right\} \nsubseteq \operatorname{Sta}(B)$. Thus, $\operatorname{Sta}\left(v_{i}\right)=\operatorname{Sta}\left(v_{i+4}\right)=A, \operatorname{Sta}\left(v_{i}\right)=B$ and $\operatorname{Sta}\left(v_{i+4}\right)=A$ or $\operatorname{Sta}\left(v_{i}\right)=$ A and $\operatorname{Sta}\left(v_{i+4}\right)=B . U$ can now be obtained by reinserting the path $v_{i+1}, v_{i+2}, v_{i+3}$ and labeling the vertices consecutively by either (1) A, B, A (2) A, A, B or (3) B, A, A, and so we have applied \mathcal{O}_{2} to $U^{\prime \prime \prime}$. Thus, U is of any type except of Type 1 .

Therefore, we may assume that U has no $\mathbf{R} 1$ paths.
Suppose U has at least one R2 path v_{i}, u_{1}, u_{2}. By Claim 1, $u_{1} \notin S$, and so $v_{i} \notin S$. Without loss of generality, assume $v_{i-1} \in S$. By Observations 1, 2 and $3, U$ can have at most two R2 paths. Then Observation 2 or 3 holds. If U has a cycle of three or five vertices, then we are done. If U has a cycle of four vertices, we have a contradiction. Thus, U has a cycle on at least six vertices.

Suppose U has exactly two R2 paths, and let $v_{j}, u_{1}^{\prime}, u_{2}^{\prime}$ be the other R2 path. Then, as before, $v_{j}, u_{1}^{\prime} \notin S$. Thus, Property 3 of Observation 2 holds, and so $n=3 q+1$ where $q \geq 3$. Moreover, $v_{i+1} \notin S$, and so $v_{i+2} \in S$, $v_{i+3}, v_{i+4} \notin S$, while $v_{i+5} \in S$. Note that $v_{i-1}=v_{i+5}$ is possible.

Suppose $j=i+1$. Let $r^{\prime}\left(0 \leq r^{\prime} \leq 1\right)$ denote the number of $\mathbf{R} 3$ paths attached to v_{i+2}. We form U^{\prime} by removing the vertices $v_{i+2}, v_{i+3}, v_{i+4}$, and the $3 r^{\prime}$ vertices of the possible $\mathbf{R} 3$ path, and then joining v_{i+1} and v_{i+5}. Then the order of U^{\prime} is $n-3-3 r^{\prime}=3\left(q-r^{\prime}-1\right)+1$, and $\gamma_{r}\left(U^{\prime}\right)=q-r^{\prime}$. Thus, $U^{\prime} \in \mathcal{E}$ and Observation 2 holds. Hence, $v_{i+1}, v_{i}, u_{1}^{\prime} \in \operatorname{Sta}(A)$, and
therefore $\operatorname{Sta}\left(v_{i+5}\right)=B$. Then U^{\prime} must be of Type \mathbf{i}, where $\mathbf{i} \in\{2,4,5,6\}$. Remove the edge $v_{i+1} v_{i+5}$, reinsert the path $v_{i+2}, v_{i+3}, v_{i+4}$ and label the vertices consecutively B, A, A. By applying \mathcal{O}_{1} to v_{i+2} (if necessary), we obtain U. Hence, U is of Type \mathbf{i}, where $\mathbf{i} \in\{2,4,5,6\}$.

Thus, v_{i+1} is not on an $\mathbf{R 2}$ path.
Suppose v_{i+2} is not on an R3 path, and suppose $j=i+3$. We form U^{\prime} by removing the vertices $v_{i+1}, v_{i+2}, v_{i+3}, u_{1}^{\prime}, u_{2}^{\prime}$, and then joining v_{i} and v_{i+4}. Then the order of U^{\prime} is $n-5=3(q-2)+2$, and $\gamma_{r}\left(U^{\prime}\right)=q-1$. Thus, $U^{\prime} \in \mathcal{E}, U^{\prime}$ is of Type 3, and Observation 3 holds. Thus, $\operatorname{Sta}\left(v_{i}\right)=A$.

Suppose that $\operatorname{Sta}\left(v_{i+4}\right)=B$. Remove the edge $v_{i} v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$ and label the vertices consecutively B, A, A. We obtain U by attaching u_{1}^{\prime} to v_{i+3}, and setting $\operatorname{Sta}\left(u_{1}^{\prime}\right)=A$ and $\operatorname{Sta}\left(u_{2}^{\prime}\right)=B$. Hence, U is of Type 4.

Thus, $\operatorname{Sta}\left(v_{i+4}\right)=A$. Remove the edge $v_{i} v_{i+4}$, reinsert the path v_{i+1}, v_{i+2}, v_{i+3} and label the vertices consecutively A, B, A. We obtain U by attaching u_{1}^{\prime} to v_{i+3}, and setting $\operatorname{Sta}\left(u_{1}^{\prime}\right)=A$ and $\operatorname{Sta}\left(u_{2}^{\prime}\right)=B$. Hence, U is of Type 4.

Thus, $j \neq i+3$. We form U^{\prime} by removing the vertices $v_{i+1}, v_{i+2}, v_{i+3}$, and then joining v_{i} and v_{i+4}. The order of U^{\prime} is $n-3=3(q-1)+1$, and $\gamma_{r}\left(U^{\prime}\right)=$ q. Thus, $U^{\prime} \in \mathcal{E}, U^{\prime}$ is of Type \mathbf{i}, where $\mathbf{i} \in\{2,4,5,6\}$. By Property 3 of Observation 2, $\operatorname{Sta}\left(v_{i}\right)=A$. Suppose $\operatorname{Sta}\left(v_{i+4}\right)=B$. Remove the edge $v_{i} v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$ and label the vertices consecutively B, A, A. Thus, U is of Type \mathbf{i}, where $\mathbf{i} \in\{2,4,5,6\}$.

Thus, $\operatorname{Sta}\left(v_{i+4}\right)=A$. Remove the edge $v_{i} v_{i+4}$, reinsert the path v_{i+1}, v_{i+2}, v_{i+3} and label the vertices consecutively A, B, A. Thus, U is of Type \mathbf{i}, where $\mathbf{i} \in\{2,4,5,6\}$.

Now, suppose that v_{i+2} is on an R3 path.
Suppose $j \in\{i+3, i+4\}$. Let $U^{\prime}=U-u_{1}^{\prime}-u_{2}^{\prime}$. Then the order of U^{\prime} is $n-2=3 q-1=3(q-1)+2$, and $\gamma_{r}\left(U^{\prime}\right)=q$. Thus, $U^{\prime} \in \mathcal{E}$, U^{\prime} is of Type 3, and Observation 3 holds. Hence, $\operatorname{Sta}\left(v_{i+2}\right)=B$, and so $\operatorname{Sta}\left(v_{i+1}\right)=\operatorname{Sta}\left(v_{i+3}\right)=A$, whence $\operatorname{Sta}\left(v_{i+4}\right)=A$. We obtain U by attaching u_{1}^{\prime} to v_{j}, and setting $\operatorname{Sta}\left(u_{1}^{\prime}\right)=A$ and $\operatorname{Sta}\left(u_{2}^{\prime}\right)=B$. Hence, U is of Type 4.

Thus, $j \notin\{i+3, i+4\}$. Let $r^{\prime}\left(0 \leq r^{\prime} \leq 1\right)$ denote the number of R3 paths attached to v_{i+5}. We form U^{\prime} by removing the vertices $v_{i+3}, v_{i+4}, v_{i+5}$, and the $3 r^{\prime}$ vertices of the $\mathbf{R} 3$ paths on v_{i+5}, and then joining v_{i+2} and v_{i+6}. Note that $v_{i+6} \neq v_{i}$, since $j \notin\{i, \ldots, i+5\}$. Now, the order of U^{\prime} is $n-3-3 r^{\prime}=3\left(q-1-r^{\prime}\right)+1$ and $\gamma_{r}\left(U^{\prime}\right)=q-r^{\prime}$. Thus, $U^{\prime} \in \mathcal{E}$,
U^{\prime} is of Type i, where $\mathbf{i} \in\{2,4,5,6\}$, and Property 3 of Observation 2 holds. Hence, $\operatorname{Sta}\left(v_{i+2}\right)=B$, and so $\operatorname{Sta}\left(v_{i+1}\right)=\operatorname{Sta}\left(v_{i+6}\right)=A$. Remove the edge $v_{i+2} v_{i+6}$, reinsert the path $v_{i+3}, v_{i+4}, v_{i+5}$, and label the vertices consecutively A, A, B. By applying \mathcal{O}_{1} to v_{i+5} (if necessary), we obtain U. Hence, U is of Type \mathbf{i}, where $\mathbf{i} \in\{2,4,5,6\}$.

Thus, v_{i}, u_{1}, u_{2} is the only $\mathbf{R 2}$ path of U.
Suppose $n=3 q+2$ for some $q \geq 2$, and so Observation 3 holds. Since $v_{i-1} \in S, v_{i+1} \notin S$, and so $v_{i+2} \in S, v_{i+3} \notin S, v_{i+4} \notin S$, while $v_{i+5} \in S$. Note that $v_{i-1}=v_{i+5}$ is possible.

Suppose v_{i+2} is not on an $\mathbf{R} 3$ path. We form U^{\prime} by removing the vertices $v_{i+1}, v_{i+2}, v_{i+3}$, and then joining v_{i} and v_{i+4}. The order of U^{\prime} is $n-3=3(q-1)+2$, and $\gamma_{r}\left(U^{\prime}\right)=q$. Thus, $U^{\prime} \in \mathcal{E}, U^{\prime}$ is of Type 3. By Observation 3, $\operatorname{Sta}\left(v_{i}\right)=A$. Suppose $\operatorname{Sta}\left(v_{i+4}\right)=B$. Remove the edge $v_{i} v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$ and label the vertices consecutively B, A, A. Thus, U is of Type 3. Hence, $\operatorname{Sta}\left(v_{i+4}\right)=A$. Remove the edge $v_{i} v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$ and label the vertices consecutively A, B, A. Thus, U is of Type 3.

So suppose v_{i+2} is on an $\mathbf{R} 3$ path. Let $r^{\prime}\left(0 \leq r^{\prime} \leq 1\right)$ denote the number of R3 paths attached to v_{i+5}. We form U^{\prime} by removing the vertices $v_{i+3}, v_{i+4}, v_{i+5}$, and the $3 r^{\prime}$ vertices of the $\mathbf{R} 3$ paths on v_{i+5}, and then joining v_{i+2} and v_{i+6}. Note that $v_{i+6}=v_{i}$ is possible. Now, the order of U^{\prime} is $n-3-3 r^{\prime}=3\left(q-1-r^{\prime}\right)+2$ and $\gamma_{r}\left(U^{\prime}\right)=q-r^{\prime}$. Thus, $U^{\prime} \in \mathcal{E}, U^{\prime}$ is of Type 3, and Observation 3 holds. Hence, $\operatorname{Sta}\left(v_{i+2}\right)=$ B, and so $\operatorname{Sta}\left(v_{i+1}\right)=\operatorname{Sta}\left(v_{i+6}\right)=A$. Remove the edge $v_{i+2} v_{i+6}$, reinsert the path $v_{i+3}, v_{i+4}, v_{i+5}$, and label the vertices consecutively A, A, B. By applying \mathcal{O}_{1} to v_{i+5} (if necessary), we obtain U. Hence, U is of Type 3.

Suppose $n=3 q+1$ for some $q \geq 2$, and so Property 2 of Observation 2 holds. Consider the path $v_{i}, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}$, where $\left\{v_{i+1}, v_{i+4}\right\} \subseteq S$ and $\left\{v_{i}, v_{i+2}, v_{i+3}\right\} \cap S=\emptyset$. Let $r^{\prime}\left(0 \leq r^{\prime} \leq 1\right)$ denote the number of R3 paths on v_{i+1}. We form U^{\prime} by removing the vertices $v_{i+1}, v_{i+2}, v_{i+3}$, and the $3 r^{\prime}$ vertices of the $\mathbf{R} 3$ paths, and then joining v_{i} and v_{i+4}. The order of U^{\prime} is $n-3-3 r^{\prime}=3\left(q-r^{\prime}-1\right)+1$ and $\gamma_{r}\left(U^{\prime}\right)=q-r^{\prime}$. Thus, $U^{\prime} \in \mathcal{E}$, Property 2 of Observation 2 holds, while U^{\prime} is of Type \mathbf{i}, where $\mathbf{i} \in\{2,4,5,6\}$. Thus, $\operatorname{Sta}\left(v_{i}\right)=A$, and $\operatorname{Sta}\left(v_{i-1}\right)=B=\operatorname{Sta}\left(v_{i+4}\right)$. Remove the edge $v_{i} v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$, and label the vertices consecutively B, A, A. By applying \mathcal{O}_{1} to v_{i+1} (if necessary), we obtain U. Thus, U is of Type i, where $\mathbf{i} \in\{2,4,5,6\}$.

Thus, we may assume that U has only $\mathbf{R 3}$ paths, and so $V-S$ has only degree two vertices. Therefore, Observation 1 or Observation 2 holds, respectively. So $n=3 q+1$ ($3 q$, respectively), where $q \geq 2$. If U has a cycle on three, four or six vertices, then we are done. If U has a cycle on five vertices, then we reach a contradiction. Let v_{i} be a vertex that lies on an R3 path. Consider the path $v_{i}, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}$, where $v_{i+1} \notin S, v_{i+2} \notin S$ and $v_{i+3} \in S$. Let $r^{\prime}\left(0 \leq r^{\prime} \leq 1\right)$ be the number of R3 paths attached to v_{i+3}. We form U^{\prime} by removing $v_{i+1}, v_{i+2}, v_{i+3}$, and the $3 r^{\prime}$ vertices on the $\mathbf{R} 3$ paths on v_{i+3}, and then joining v_{i} and v_{i+4}. Then U^{\prime} has order $n-3-3 r^{\prime}=$ $3\left(q-r^{\prime}-1\right)+1\left(n-3-3 r^{\prime}=3\left(q-r^{\prime}-1\right)\right.$, respectively), and $\gamma_{r}\left(U^{\prime}\right)=q-r^{\prime}$ $\left(\gamma_{r}\left(U^{\prime}\right)=q-r^{\prime}-1\right.$, respectively). Thus, $U^{\prime} \in \mathcal{E}$, and U^{\prime} is of Type i, where $\mathbf{i} \in\{2,4,5,6\}$ (Type 1, respectively). Thus, Observation 2 (Observation 1, respectively) holds. Hence, $\operatorname{Sta}\left(v_{i}\right)=B$. Remove the edge $v_{i} v_{i+4}$, reinsert the path $v_{i+1}, v_{i+2}, v_{i+3}$, and label the vertices consecutively A, A, B. Thus, U is of Type \mathbf{i}, where $\mathbf{i} \in\{2,4,5,6\}$, or U is of Type $\mathbf{1}$ and the proof is complete.

References

[1] G. Chartrand and L. Lesniak, Graphs \& Digraphs: Fourth Edition (Chapman \& Hall, Boca Raton, FL, 2005).
[2] P. Dankelmann, D. Day, J.H. Hattingh, M.A. Henning, L.R. Markus and H.C. Swart, On equality in an upper bound for the restrained and total domination numbers of a graph, to appear in Discrete Math.
[3] P. Dankelmann, J.H. Hattingh, M.A. Henning and H.C. Swart, Trees with equal domination and restrained domination numbers, J. Global Optim. 34 (2006) 597-607.
[4] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi and L.R. Markus, Restrained domination in trees, Discrete Math. 211 (2000) 1-9.
[5] G.S. Domke, J.H. Hattingh, M.A. Henning and L.R. Markus, Restrained domination in graphs with minimum degree two, J. Combin. Math. Combin. Comput. 35 (2000) 239-254.
[6] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar and L.R. Markus, Restrained domination in graphs, Discrete Math. 203 (1999) 61-69.
[7] J.H. Hattingh and M.A. Henning, Restrained domination excellent trees, Ars Combin. 87 (2008) 337-351.
[8] J.H. Hattingh, E. Jonck, E. J. Joubert and A.R. Plummer, Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs, Discrete Math. 308 (2008) 1080-1087.
[9] J.H. Hattingh and A.R. Plummer, A note on restrained domination in trees, to appear in Ars Combin.
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1997).
[11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1997).
[12] M.A. Henning, Graphs with large restrained domination number, Discrete Math. 197/198 (1999) 415-429.
[13] B. Zelinka, Remarks on restrained and total restrained domination in graphs, Czechoslovak Math. J. 55 (130) (2005) 393-396.

Received 8 November 2007
Revised 6 October 2008
Accepted 6 October 2008

