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Abstract

Let D be a digraph. V (D) denotes the set of vertices of D; a set
N ⊆ V (D) is said to be a k-kernel of D if it satisfies the following two
conditions: for every pair of different vertices u, v ∈ N it holds that
every directed path between them has length at least k and for every
vertex x ∈ V (D) − N there is a vertex y ∈ N such that there is an
xy-directed path of length at most k − 1.

In this paper, we consider some operations on digraphs and prove
the existence of k-kernels in digraphs formed by these operations from
another digraphs.
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1. Introduction

We refer the reader to [1] for general concepts. In this paper, D denotes a
digraph; V (D) is the set of vertices and A(D) denotes the set of arcs.

A directed path is a sequence P = (x0, x1, . . . , xn) of distinct vertices
of D such that (xi, xi+1) ∈ A(D) for each i, 0 ≤ i ≤ n − 1. The length
of P is n and we denote `(P ) = n. For x, y ∈ V (D), the distance from x
to y in D is denoted as dD(x, y) and defined as: dD(x, y) = min{`(P )|P
is an xy − directed path } whenever there exists an xy-directed path in D,
otherwise, we define dD(x, y) = ∞. If P is a directed path and a, b ∈ V (P ),
then (a, P, b) denotes the ab-directed path contained in P .

A set N ⊆ V (D) is said to be k-independent whenever for any two
different vertices x, y ∈ N we have dD(x, y) ≥ k and dD(y, x) ≥ k. N is
said to be (k − 1)-absorbent whenever for each x ∈ V (D) − N there exists
y ∈ N such that dD(x, y) ≤ k − 1. The set N is said to be a k-kernel if it is
k-independent and (k − 1)-absorbent.

We note that a 2-kernel is a kernel of a digraph in the sense of J. von
Neumann and O. Morgenstern [20]. The problem of the existence of a kernel
in a digraph has been studied in [2, 3, 4, 7, 17, 18].

The existence of kernels of digraphs formed by some operations from
another digraphs have been studied by several authors, namely: M. Blidia,
P. Duchet, H. Jacob, F. Maffray and H. Meyniel [16]; M. Harminc and T.
Olejńıková [11]; J. Topp [19], H. Galeana-Sánchez and V. Neumann-Lara
[7, 8].

The concept of k-kernel was introduced by M. Kwaśnik in [14]. Clearly,
this concept generalizes the concept of a kernel of a digraph. It has been
studied by several authors: M. Harminc [9], M. Kwaśnik [14, 15], M.
Kucharska [12, 13], H. Galeana-Sánchez [5, 6], A. W loch and I. W loch [21].

In [10], M. Harminc constructed all kernels of the line digraph of D from
the kernels of D and in [19] the author considered some special digraphs:
S(D); Q(D), T (D) and L(D) which were called the subdivision digraph, the
middle digraph, the total digraph and the line digraph of D, respectively
and studied some neccessary or sufficient conditions for the existence or
uniqueness of kernels of these digraphs.

In this paper, for a given digraph D and any k ≥ 2 we define: the
k-subdivision Sk(D), a generalization of the subdivision S(D), the digraph
Rk(D), the k-middle digraph Qk(D) and the k-total digraph T k(D). Also
the following results are proved: for any digraph D and for any k ≥ 2 the
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digraphs Sk(D), Rk(D) and Qk(D) have a k-kernel. For any digraph D and
for k ≥ 3 the digraph T k(D) has a k-kernel.

2. k-Kernels in: Sk(D), Rk(D), Qk(D) and T k(D)

Let D be a digraph. The line digraph L(D) of D is the digraph defined as
follows: V (L(D)) = A(D) and (a = (u, v), b = (z, w)) ∈ A(L(D)) if and
only if v = z [1].

[19]: For a given digraph D, the subdivision digraph S(D) of D is defined
by: V (S(D)) = V (D) ∪ A(D) and

Γ+(x) =

{

{x} × Γ+
D(x), whenever x ∈ V (D),

{v}, whenever x = (u, v) ∈ A(D).

Notice that for a vertex x of the subdivision digraph of D we have the
following: If x corresponds to a vertex of D, then x is adjacent to the arcs
which are incident from x in D; and if x corresponds to an arc of D, then
x is adjacent only to the terminal endpoint of x. Also notice that S(D) is
obtained from D by changing each arc of D for a directed path of length
two.

Let D be a digraph. We define the k-subdivision digraph of D, denoted
Sk(D), as follows:

Sk(D) = S(D) − {(u, a)|a ∈ A(D) and u is the initial endpoint of a}

∪

(

⋃

a∈A(D)

βa

)

for each a = (u, v) ∈ A(D), βa = (a0 = u, a1, . . . , an(a)k+k−1 = a = (u, v))
is a ua-directed path whose length is ≡ k − 1(mod k) (n(a) ∈ N) and the
following two properties hold:

(i) V (βa) ∩ V (S(D)) = {u, a},

(ii) For any a, b ∈ A(D) with a 6= b we have (V (βa) − {u}) ∩ V (βb) = ∅.

Notice that Sk(D) is obtained from D by substituting each arc of D for a
directed path whose length is ≡ 0(mod k) (for an example see Figure 1).

We write V 0(D) = {x ∈ V (D) | δ+
D(x) = 0}.



42 H. Galeana-Sánchez and L. Pastrana

S  (D)3

4 2

3

1

z

u v

w

u v

2

1

3

4

z w

Figure 1

Finally, we define the digraphs Rk(D), Qk(D) and T k(D) as follows
Rk(D) = Sk(D)∪D, Qk(D) = Sk(D)∪L(D) and T k(D) = Sk(D)∪D∪L(D)
(for an example see Figure 2).
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Theorem 2.1. For any digraph D and for any integer k (k ≥ 2), the

k-subdivision digraph Sk(D) of D has a k-kernel.

Proof. Let D and Sk(D) be digraphs as in the hypothesis. For each
a ∈ A(D) we denote Na = {ai ∈ V (βa) | i ≡ 0(mod k)}. We will prove that
N = V 0(D) ∪

⋃

a∈A(D) Na is a k-kernel of Sk(D). Observe that V (D) ⊆ N.

Claim 1. N is a k-independent set of vertices of Sk(D).
Let x, y ∈ N, x 6= y. We will prove dSk(D)(x, y) ≥ k and dSk(D)(y, x) ≥ k.

Case 1. x ∈ V 0(D) and y ∈ V 0(D).
Since δ+

Sk(D)
(x) = δ+

D(x) = 0 and δ+
Sk(D)

(y) = δ+
D(y) = 0, it follows that

dSk(D)(x, y) = dSk(D)(y, x) = ∞.

Case 2. x ∈ V 0(D) and y ∈
⋃

a∈A(D) Na.

Since δ+
Sk(D)

(x) = δ+
D(x) = 0, we have dSk(D)(x, y) = ∞. Let c = (u, v) ∈

A(D) such that y ∈ Nc. From the definition of Sk(D) we have dSk(D)(y, x) =
dSk(D)(y, c = (u, v)) + dSk(D)(c, x). Now since y = ci with i ≡ 0(mod k) and
`(βc) ≡ k− 1(mod k) it follows that dSk(D)(y, c = (u, v)) = dβc

(y, c) ≥ k− 1.

Clearly, dSk(D)(c, x) ≥ 1 (as c ∈ A(D) and x ∈ V 0(D) ⊆ V (D)). Therefore
dSk(D)(y, x) ≥ (k − 1) + 1 = k.

Case 3. x ∈
⋃

a∈A(D) Na and y ∈ V 0(D).
Proceed exactly as in Case 2 interchanging x with y.

Case 4. x ∈
⋃

a∈A(D) Na and y ∈
⋃

a∈A(D) Na.

Case 4.1. There exists c = (u, v) ∈ A(D) such that {x, y} ⊆ Nc.
From the definition of Nc we have x = cmk and y = ctk for some 0 ≤ m ≤
n(c), 0 ≤ t ≤ n(c). Assume without loss of generality t > m.

From the definition of Sk(D) and the fact x 6= v (as `(βc) ≡ k − 1
(mod k)) we have: dSk(D)(x, y) = dβc

(x, y) = (t − m)k ≥ k. On the
other hand, we have dSk(D)(y, x) = dSk(D)(y, c) + dSk(D)(c, v) + dSk(D)(v, x).
Since dSk(D)(y, c) = dβc

(y, c) ≥ k − 1 and dSk(D)(c, v) = 1, we obtain
dSk(D)(y, x) ≥ k.

Observation 1. Observe that in this case we have the same inequalites

when we are working in Qk(D), i.e., dQk(D)(y, x) ≥ k, because the definition

of Qk(D) implies: dQk(D)(y, x) = dQk(D)(y, c) + dQk(D)(c, x). And clearly,

dQk(D)(y, c) ≥ k − 1 and dQk(D)(c, x) ≥ 1.
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Case 4.2. x ∈ Na and y ∈ Nb for some a, b ∈ A(D) with a 6= b. Assume
without loss of generality that a = (u, v) and b = (w, z).

dSk(D)(x, y) = dSk(D)(x, a) + dSk(D)(a, v) + dSk(D)(v, y). From the defi-

nition of Na we have dSk(D)(x, a) ≥ k − 1 and from the definition of Sk(D),
dSk(D)(a, v) = 1. Therefore dSk(D)(x, y) ≥ k.

Observation 2. Notice that in this case we have dQk(D)(x, a) = dSk(D)(x, a)
and dQk(D)(a, y) ≥ 1 (as a 6= y). Thus dQk(D)(x, y) = dQk(D)(x, a) +
dQk(D)(a, y) ≥ k.

Interchanging x with y we obtain dSk(D)(y, x) ≥ k.

Claim 2. N is a (k − 1)-absorbent set of vertices of Sk(D).

Let x ∈ V (Sk(D) − N). We will prove that there exists y ∈ N such that
dSk(D)(x, y) ≤ k − 1. Since V 0 ⊆ N, it follows from the definition of Sk(D)

and the fact x ∈ V (Sk(D)−N) that x ∈
⋃

a∈A(D) βa. Let c = (u, v) ∈ A(D)
be such that x ∈ βc.

Case 1. x ∈ βc − {ci | n(c)k + 1 ≤ i ≤ n(c)k + (k − 1)}.

Since x 6∈ N (and then x 6∈ Nc), it follows that x = cmk+j for some m and
j with 0 ≤ m ≤ n(c) and 1 ≤ j ≤ k − 1. From the definition of Sk(D)
we have dSk(D)(x, c(m+1)k) = dβc

(cmk+j , (c(m+1)k) = k − j ≤ k − 1. Clearly,
c(m+1)k ∈ N.

Case 2. x ∈ {ci|n(c)k + 1 ≤ i ≤ n(c)k + (k − 1) = (u, v) = c}.

Clearly, dSk(D)(x, v) = dSk(D)(x, c) + dSk(D)(c, v); dSk(D)(x, c) ≤ k − 2 and
dSk(D)(c, v) = 1. Thus dSk(D)(x, v) ≤ k − 1 with v ∈ N (recall V (D) ⊆ N).

Theorem 2.2. For any digraph D and for any integer k (k ≥ 2), the k-

middle digraph Qk(D) of D has a k-kernel.

Proof. Consider the set N ⊆ V (Sk(D)) = V (Qk(D)) defined in the proof
of Theorem 2.1. Since Sk(D) is a spanning subdigraph of Qk(D) and N is
a (k − 1)-absorbent set of vertices of Sk(D), it follows that N is a (k − 1)-
absorbent set of vertices of Qk(D).

The proof that N is k-independent in Qk(D) is the same as the proof
that N is k-independent in Sk(D), we only need to recall Observations 1
and 2 given along this proof.
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Theorem 2.3. Let D be any digraph and for any integer k (k ≥ 2), then

the digraph Rk(D) has a k-kernel.

Proof. Let D, k and Rk(D) be as in the hypothesis. For each a = (u, v) ∈
A(D) we define Na as follows: Na is the unique k-kernel of (βa−{u})∪{(a =
(u, v), v)} whenever δ+

D(v) = 0. And Na = {ai ∈ V (βa)|i ≡ 1(mod k)}
whenever δ+

D(v) > 0. We write B0 =
{

x ∈ V (D)|δ+
D(x) = δ−D(x) = 0

}

. We
will prove that N =

⋃

a∈A(D) Na ∪B0 is a k-kernel of Rk(D). First, observe

that V 0(D) ⊆ N.

Claim 3. N is a k-independent set of Rk(D).
Let x, y ∈ N with x 6= y. We will prove that dRk(D)(x, y) ≥ k and

dRk(D)(y, x) ≥ k. Observe that if x ∈ B0, then dRk(D)(x, y) = dRk(D)(y, x) =

∞ ∀ y ∈ V (Rk(D)).

Case 1. There exists c = (u, v) ∈ A(D) such that {x, y} ⊆ Nc.

Case 1.1. δ+
D(v) = 0. In this case, we have Nc = {ci ∈ V (βc)|i ≡ 0

(mod k), i > 0} ∪ {v}.
We assume without loss of generality that x = cmk with 1 ≤ m ≤ n(c)

and, y = ctk with m < t or y = v.
When y = ctk, we have dRk(D)(x, y) = (t − m)k ≥ k. When y = v, we

have dRk(D)(x, v) = dRk(D)(x, c) + dRk(D)(c, v). Since dRk(D)(x, c) ≥ k − 1
and dRk(D)(c, v) = 1, we conclude dRk(D)(x, v = y) ≥ k.

Now, from the definition of Rk(D) we have: dRk(D)(y, x) = dRk(D)(y, v)+

dRk(D)(v, x). Since δ+
D(v) = 0 we have dRk(D)(v, x) = ∞. Thus dRk(D)(y, x)

≥ k.

Case 1.2. δ+
D(v) > 0. In this case we have Nc = {ci ∈ V (βc)|i ≡ 1

(mod k)}. We assume without loss of generality that x = cmk+1, y = ctk+1

with 0 ≤ m < t. Clearly, dRk(D)(x, y) = (t − m)k ≥ k and dRk(D)(y, x) =

dRk(D)(y, c) + dRk(D)(c, v) + dRk(D)(v, x). From the definition of Rk(D) we
have dRk(D)(y, c) ≥ k − 2, dRk(D)(c, v) = 1 and dRk(D)(v, x) ≥ 1 (because
v 6= x, be as m < t). Thus dRk(D)(y, x) ≥ k.

Case 2. x ∈ Nb and y ∈ Nc with b = (u, v), c = (w, z), b 6= c.
From the definition of Rk(D) we have dRk(D)(x, y) = dRk(D)(x, b = (u, v)) +

dRk(D)(b, v) +dRk(D)(v, w) + dRk(D)(w, y). When δ+
D(v) = 0, we obtain

dRk(D)(v, w) = ∞ and then dRk(D)(x, y) ≥ k.
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When δ+
D(v) > 0, we obtain Nb = {bi ∈ V (βb)|i ≡ 1(mod k)} and dRk(D)(x, b)

≥ k − 2 also from the definition of Rk(D), dRk(D)(b, v) = 1. If v 6= w, then
dRk(D)(v, w) ≥ 1 and we conclude that dRk(D)(x, y) ≥ k. If v = w, then

δ+
D(w) > 0, w 6∈ Nc and w 6= y; therefore dRk(D)(w, y) ≥ 1, and we conclude

again that dRk(D)(x, y) ≥ k.

Analogously, it can be proved dRk(D)(y, x) ≥ k.

Claim 4. N is a (k − 1)-absorbent set of vertices of Rk(D).

We will prove that for any z ∈ V (Rk(D) −N) there exists w ∈ N such that
dRk(D)(z, w) ≤ k − 1.

Let z ∈ V (Rk(D) − N). We have observed that V 0(D) ⊆ N. Thus
z ∈

⋃

a∈A(D) V (βa). Take c = (u, v) ∈ A(D) such that z ∈ V (βc).

Case 1. δ+
D(v) = 0. In this case, Nc = {ci ∈ V (βc)|i ≡ 0(mod k), i ≥ 1}

∪ {v}. Since z 6∈ N, then z = c0 or z = cmk+j with 1 ≤ j ≤ k − 1 and
0 ≤ m ≤ n(c).

If z = c0 = u, then from the definition of Rk(D) we have (z = u, v) ∈
A(Rk(D)) and dRk(D)(z, v) = 1 ≤ k − 1 with v ∈ N. If z = cmk+j ,
then dRk(D)(cmk+j , c(m+1)k) = k − j ≤ k − 1 whenever m 6= n(c), and
dRk(D)(z, v) ≤ dRk(D)(z, c = (u, v))+dRk(D)(c = (u, v), v) ≤ k−2+1 = k−1
whenever m = n(c) (recall that z = cmk+j , c = cn(k)+(k−1) and dRk(D)(c =
(u, v), v) = 1).

Case 2. δ+
D(v) > 0. In this case, Nc = {ci ∈ V (βc)|i ≡ 1(mod k)}.

When z ∈ V (βc)−{ci|n(c)k+2 ≤ i ≤ n(c)k+(k−1)}, we have two possibil-
ities: If z = c0, then dRk(D)(z, c1) = 1 ≤ k − 1 with c1 ∈ Nc ⊆ N. If z 6= c0,
then z = cmk+j with 2 ≤ j ≤ k, 0 ≤ m < n(c) and dRk(D)(z, c(m+1)k+1) ≤
k − 1 with c(m+1)k+1 ∈ N.

When z ∈ {ci|n(c)k +2 ≤ i ≤ n(c)k +(k−1)}, we recall that δ+
D(v) > 0.

Thus there exists b = (v, w) ∈ A(D). We consider βb. Consider two pos-
sibilities: If δ+

Rk(D)
(w) > 0, then Nb = {bi ∈ V (βb)|i ≡ 1(mod k)}; and

it follows that dRk(D)(z, b1) = dRk(D)(z, c) + dRk(D)(c, v) + dRk(D)(v, b1) ≤

k − 3 + 1 + 1 = k − 1 with b1 ∈ N. If δ+
Rk(D)

(w) = 0, then w ∈ N, and

dRk(D)(z, w) = dRk(D)(z, c)+dRk (D)(c, v)+dRk (D)(v, w) ≤ k−3+1+1 = k−1.

Theorem 2.4. For any digraph D and for any integer k (k ≥ 3), the

digraph T k(D) has a k-kernel.
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Proof. Let k,D and T k(D) be as in the hypothesis. For each a = (u, v) ∈
A(D) we define Na as follows: If δ+

D(v) = 0, then Na is the k-kernel
of (βa − {u}) ∪ {v, a = (u, v)}, i.e., Na = {ai|1 ≤ i, i ≡ 0(mod k)} ∪
{v}. If δ+

D(v) > 0, then Na = {ai|i ≡ 1( mod k)}. We write B0 =
{

x ∈ V (D)|δ+
D(x) = δ−D(x) = 0

}

. We will prove that N =
⋃

a∈A(D) Na ∪ B0

is a kernel of T k(D). Observe that V 0(D) ⊆ N.

Observation 3. Notice that since k≥3, we have an(a)k+1 6= a=an(a)k+(k−1),
therefore a 6∈ N, for each a ∈ A(D).

Claim 5. N is a k-independent set of vertices of T k(D).
Let x, y ∈ N with x 6= y. We will prove that dT k(D)(x, y) ≥ k and

dT k(D)(y, x) ≥ k. Observe that if x ∈ B0, then dT k(D)(x, y) = dT k(D)(y, x)

= ∞ for each y ∈ V (T k(D)).

Case 1. There exists c = (u, v) ∈ A(D) such that {x, y} ⊆ Nc.

Case 1.1. δ+
D(v) = 0. In this case, Nc = {ci|1 ≤ i, i ≡ 0(mod k)} ∪ {v}.

Clearly, we may assume x = cmk with 1 ≤ m ≤ n(c) and y = ctk with
1 ≤ t ≤ n(c) and m < t or y = v.

If y = ctk, then dT k(D)(x, y) = (t−m)k ≥ k. If y = v, then dT k(D)(x, y) =
dβc

(x, c) + dT k(D)(c, v) ≥ k − 1 + 1 = k.

Now from the definition of T k(D), we have dT k(D)(y, x) = dT k(D)(y, c)+
dT k(D)(c, x).

If y 6= v, then dT k(D)(y, c) = dβc
(y, c) ≥ k − 1. From Observation 3

c 6= x, so dT k(D)(c, x) ≥ 1 and we conclude that dT k(D)(y, x) ≥ k.

If y = v, then dT k(D)(y, x) = ∞, as δ+
D(v) = 0.

Case 1.2. δ+
D(v) > 0. In this case, Nc = {ci ∈ βc | i ≡ 1(mod k)}

and clearly, we may assume x = cmk+1, y = ctk+1 with 0 ≤ m < t ≤ n(c).
Therefore dT k(D)(x, y) = (t−m)k ≥ k. Now from the definition of T k(D) we
have dT k(D)(y, x) = dT k(D)(y, c) +dT k(D)(c, x). Clearly, dT k(D)(y, c) ≥ k−2.

Since c ∈ A(D), c = (u, v) and x 6= v, we have (c, x) 6∈ A(T k(D)) (recall
the definition of T k(D)).

Hence dT k(D)(c, x) ≥ 2. We conclude that dT k(D)(y, x) ≥ k.

Case 2. x ∈ Nb and y ∈ Nc for b = (u, v), c = (w, z) with {b, c} ⊆ A(D),
b 6= c. From the definition of T k(D) we have dT k(D)(x, y) = dT k(D)(x, b) +
dT k(D)(b, y).
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Case 2.1. δ+
D(v) = 0. In this case, x = bmk with 1 ≤ m ≤ n(b) or x = v.

If x = bmk, then dT k(D)(x, b) ≥ k − 1; and from Observation 3 b 6= y which
implies dT k(D)(b, y) ≥ 1. We conclude that dT k(D)(x, y) ≥ k. If x = v, then

dT k(D)(x, y) = ∞ (as δ+
D(v) = δ+

T k(D)
(v) = 0).

Case 2.2. δ+
D(v) > 0. In this case, Nb = {bi ∈ V (βb)|i ≡ 1(mod k)}.

From the definition of T k(D) we have dT k(D)(x, y) = dT k(D)(x, b)+
dT k(D)(b, y). Clearly, dT k(D)(x, b) ≥ k−2. Since b /∈ N (from Observation 3)
and y ∈ N, then y 6= b. Moreover, k ≥ 3 implies n(b)k + 1 6= n(b)k + (k − 1)
and y 6= v. Finally, d(b, y) = 1 implies y ∈ A(D) and by Observation 3
also y /∈ N, a contradiction. Therefore dT k(D)(b, y) ≥ 2. We conclude that
dT k(D)(x, y) ≥ k. Analogously, it can be proved that dT k(D)(y, x) ≥ k.

Claim 6. N is a (k − 1)-absorbent set of vertices of T k(D).
Clearly, Rk(D) is an spanning subdigraph of T k(D) and we have proved
(Theorem 2.3) that N is a k-kernel of Rk(D), in particular N is a (k − 1)-
absorbent set of vertices of Rk(D). Thus N is a (k − 1)-absorbent set of
vertices of T k(D).

Observe that the set of black vertices in Figs. 1 and 2 is a 3-kernel.

Remark 2.1. It is easy to prove that for D = ~C4 (the directed cycle of
length 4) and k = 2, the k-total digraph of D, T k(D) has no k-kernel. Thus
the assertion given in Theorem 2.4 cannot be improved.
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