
Discussiones Mathematicae 15
Graph Theory 29 (2009 ) 15–37

VARIABLE NEIGHBORHOOD SEARCH

FOR EXTREMAL GRAPHS. 17. FURTHER

CONJECTURES AND RESULTS ABOUT THE INDEX∗

Mustapha Aouchiche

HEC Montréal
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Montréal, Canada

e-mail: mustapha.aouchiche@gerad.ca

Pierre Hansen

GERAD and HEC Montréal
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Abstract

The AutoGraphiX 2 system is used to compare the index of a con-
nected graph G with a number of other graph theoretical invariants,
i.e., chromatic number, maximum, minimum and average degree, di-
ameter, radius, average distance, independence and domination num-
bers. In each case, best possible lower and upper bounds, in terms
of the order of G, are sought for sums, differences, ratios and prod-
ucts of the index and another invariant. There are 72 cases altogether:
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in 7 cases known results were reproduced, in 32 cases immediate results
were obtained and automatically proved by the system, conjectures
were obtained in 27 cases, of which 12 were proved (in 3 theorems and
9 propositions), 9 remain open and 6 were refuted. No results could
be derived in 7 cases.

Keywords: AutoGraphiX, automated conjecture making, index of
a graph, spectral radius, graph invariant.
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1. Introduction

The role of the computer in graph theory is rapidly increasing, see e.g.
[10, 14, 15, 16] for surveys and discussions. To the traditional tasks of
invariant computation, graph drawing and graph enumeration by computer,
several others have been added. The AutoGraphiX (AGX) system [7, 8]
addresses the following: (i) find a graph satisfying given constraints, (ii)
find a graph with a maximum (minimum) value for some invariant, possibly
subject to constraints, (iii) strengthen, corroborate or refute a conjecture,
(iv) find new conjectures, (v) find ideas of proofs. Recently a new version,
AGX 2, of this system has been developed [2]. Its interactive features, i.e.,
online graph representation and modification, computation of invariants and
language for easy formulation of problems have been much improved, as
well as the Variable Neighborhood Search [22] heuristic on which it relies.
Moreover, some simple results in fully automated theorem proving of graph
theory conjectures have been obtained. To evaluate these new features,
a systematic comparison among 20 graph invariants (i.e., quantities not
depending on the numbering of the edges or vertices) for the class of all
connected graphs G = (V,E) has been conducted [1, 3]. Precisely, one seeks
relations of the form:

b1(n) ≤ i1(G) ∗ i2(G) ≤ b2(n),

where ∗ is one of +, −, · and /, i1(G) and i2(G) are graph invariants, and
b1(n) and b2(n) are bounds expressed as functions of the order n = |V | of
G; in addition it is asked that these bounds be best possible in the strong
sense that for each value of n (≥ 3 to avoid border effects) there exist at
least one graph for which the bound is tight. Finally, a characterization of
extremal graphs is requested.
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It turns out that this class of problems exhibits the whole range of difficulties
of finding conjectures in graph theory, from elementary observations to some
apparently hard open conjectures. Results obtained are explicit conjectures
in algebraic form and/or structural conjectures about the class of extremal
graphs. Easy explicit conjectures can be solved by the automated theorem
proving component of AGX 2; the other ones may be proved by hand, or
remain open. Structural conjectures can be transformed into explicit ones by
manipulations of formulae from a database specifying values of invariants
as functions of n. In some cases, these formulae are parametric and it is
necessary to proceed to some optimization to get the derived form.

The following cases occur:

(i) Fully automated results: explicit formulae are obtained, together with
their proof and a characterization of the corresponding extremal graphs.
Such results are usually easy to prove, they are called observations;

(ii) Fully automated conjectures: as in (i) but without automated proof.
If a manual proof is obtained these results are referred to as propositions or
theorems according to the difficulty of the proof;

(iii) Derived conjectures: structural conjectures from which explicit re-
lations can be obtained manually. They are divided in optimized and non-

optimized conjectures according to the fact that some parameters are opti-
mized or not;

(iv) Structural conjectures: as in (iii) but without finding explicit rela-
tions because they are too hard to obtain or do not exist;

(v) No results: No best possible bounds or families of extremal graphs
could be found.

Results are reported on in [1] and summarized in [3]. In this paper, we ex-
amine in more detail the case of one invariant, the index λ1 of the adjacency
matrix of a graph, compared to several others, i.e., the chromatic number χ,
the maximum degree ∆, the minimum degree δ, the average degree d̄, the
diameter D, the radius r, the average distance l̄ between pairs of distinct
vertices, the independence number α and the domination number β (see e.g.
[5] for definitions). Altogether, 72 cases are examined, details of which are
given below. Several conjectures are presented as theorems and proved in
Section 2. A number of further conjectures lead to propositions given in
Section 3. In Section 4, we first give a list of open conjectures, and then dis-
cuss refuted ones. Section 5 contains conclusions. In an appendix, Table 1
summarizes all the results discussed in this paper.
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Throughout the paper it is assumed that, whenever mentioned, G is a sim-
ple, connected graph with n ≥ 3 vertices. We also assume a certain level of
familiarity with graph theory from the reader. Otherwise, for a good intro-
duction to graph theory, see [5]. However, we need to define (or recall the
definition of) a few special graph classes that appear as extremal graphs in
a number of conjectures:

A short lollipop SLn is a graph obtained from a cycle on n − 1 vertices
by attaching a pendant edge to one of its vertices.

A short kite SKn is a graph obtained from a clique on n− 1 vertices by
attaching a pendant edge to one of its vertices.

A pineapple graph PAn,k is a graph obtained from a clique on n − k
vertices by attaching k pendant edges to one of its vertices.

A complete split graph Sn,α is a graph obtained from an empty graph on
α vertices and a clique on n−α vertices by adding all edges between them.

A bag Bagp,q is a graph on p + q − 2 vertices obtained from a complete
graph Kp by replacing an edge uv with a path Pq. A bag is odd if q is odd,
otherwise it is even.

A bug Bugp,q1,q2 is a graph on p + q1 + q2 − 2 vertices obtained from a
complete graph Kp by deleting an edge uv and attaching paths Pq1 and Pq2

at u and v, respectively. A bug is called balanced if |q1 − q2| ≤ 1.
A caterpillar is a tree T which consists of a path P and a number of

pendant vertices attached to inner vertices of the path.

2. Theorems

In this section, we present the three main results of this paper together with
their proofs.

Theorem 2.1. Let G = (V,E) be a connected graph on n ≥ 2 vertices with

index λ1 and average distance l. Then

λ1 + l̄ ≤ n

with equality if and only if G is the complete graph Kn.

Proof. We always have that l̄(G) ≤ l̄(Pn) = n+1
3 < n

2 , and so, if λ1 ≤ n
2 ,

the proof is done. If G ∼= K3, the statement holds. Next, suppose that

n ≥ 4 and λ1 > n
2 . Stanley [26] proved that λ1 ≤ −1+

√
1+8m

2 , from where
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it follows that

(1)
λ2

1 + λ1

2
≤ m.

Šoltés [25] proved that
l̄(G) ≤ l̄(PKm,n),

where PKm,n is the unique path-complete graph with m edges and n vertices,
obtained from a clique and a path one end-vertex of which is adjacent to
some vertices of the clique. The number k of vertices in a clique of PKm,n

satisfies

(2)

(

k

2

)

+ (n − k) ≤ m <

(

k + 1

2

)

+ (n − k − 1).

From (1), (2) and λ1 > n
2 , we get that k > n

2 − 1 and thus n − k − 1 < n
2 .

Now, if k ≤ λ1 − 1, we have that
(

k + 1

2

)

+ n − k − 1 ≤ λ1(λ1 − 1)

2
+

n

2
<

λ1(λ1 + 1)

2

and we get a contradiction with (1) and (2). Thus, k > λ1−1. Let a = n−k
be the number of vertices in a path of PKm,n and

k′ = m −
(

k

2

)

− (n − k − 1)

be the number of vertices in a complete subgraph adjacent to an end vertex
of a path. From above, we have that

a < n − λ1 + 1.

The average distance of PKm,n satisfies

l̄(PKm,n) =
a + 1

3
·
(a
2

)

(n
2

) + 1 ·
(k
2

)

(n
2

) +
a + 3

2
· ak
(n
2

) − ak′
(n
2

) .

Now, if λ1 ≤ n−4 it follows that a+3
2 ≤ n−λ1, and thus l̄(G) ≤ a+3

2 ≤ n−λ1.
Next, suppose that λ1 > n − 4. Then k > n − 5 and a ≤ 4. If a ∈ {3, 4},
then

l̄(PKm,n) ≤ 1 ·
(k
2

)

(n
2

) +
a + 3

2
·
(n
2

)

−
(k
2

)

(n
2

) =
a + 3

2
− a + 1

2
·
(k
2

)

(n
2

) .
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Hence l̄(PKm,n) ≤ a− 1 < n−λ1 for n ≥ 8 if a = 4 and for n ≥ 11 if a = 3.
The remaining cases are easily checked by hand.

If a ∈ {1, 2}, then l̄(PKm,n) < 1 + 6
n . Thus, if λ1 ≤ n − 1 − 6

n , the
statement holds.

Next, suppose that λ1 > n − 1 − 6
n and a ∈ {1, 2}. From (1) it follows

that m >
(n
2

)

− 6, and thus, G misses at most five edges from a complete
graph. If n ≤ 10, the corresponding cases are easily checked by hand. If
n ≥ 11, then there exists a vertex adjacent to all other vertices of G, and
thus

l̄(G) = 1 · m
(

n
2

) + 2 ·
(n
2

)

− m
(

n
2

) ≤ 1 +
10

n(n − 1)
.

However, since G 6∼= Kn, we have that G is a subgraph of Kn − e and thus

λ1 ≤ λ1(Kn − e) =
n − 3 +

√
n2 + 2n − 7

2
< n − 1 − 2

n + 1
,

from where we see that the statement holds.

Finally, if a = 0, then G ∼= Kn, and the statement holds.

Contrary to the case of the upper bound, AGX 2 was not able to make any
conjecture for the lower bound on λ1 + l̄, since, at least at first sight, it
appears that there is no common structure for the extremal graphs found.
A few of these extremal graphs are given in Figure 1.

The following result was derived for a structural result of AGX 2.

Theorem 2.2. Let G = (V,E) be a connected graph on n ≥ 2 vertices with

index λ1 and independence number α. Then

(3) α + λ1 ≤ n + α′ − 1 +
√

(n − α′ − 1)2 + 4α′(n − α′)

2
,

with equality if and only if G is the complete split graph Sn,α′, where α′ is

given by

α′ =







⌊

n+1+
√

n2−n+1
3

⌋

for n = 3k or n = 3k + 2,
⌈

n+1+
√

n2−n+1
3

⌉

for n = 3k + 1.
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Figure 1. Graphs likely to minimize λ1 + l̄ for n = 9, . . . , 14.

Proof. For a fixed independence number α, every graph with n vertices
and independence number α is a subgraph of a complete split graph Sn,α.
Then, since the index of a graph increases by adding edges, we see that
the graph maximizing the index λ1 is Sn,α. Thus, in order to prove our
theorem, we have to find out for which α the complete split graph Sn,α has
the largest sum α + λ1. Let us consider the matrix M associated to the
divisor (cf. Chapter 4 of [9]) of a complete split graph Sn,α

M =

(

n − α − 1 α
n − α 0

)

.

The index of Sn,α is exactly the largest eigenvalue of M , which is

λ1 =
n − α − 1 +

√

(n − α − 1)2 + 4α(n − α)

2
.
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Thus, in Sn,α we have

α + λ1 = f(n, α) =
n + α − 1 +

√

(n − α − 1)2 + 4α(n − α)

2
.

Provided that

(4) n − 3α + 1 < 0,

the stationary point is at

α′ =
n + 1 +

√
n2 − n + 1

3
,

which is between 4n+1
6 and 4n+2

6 . However, since α′ in a complete split graph
must be an integer, the extremal graph is obtained for α′ equal to one of
⌊

n+1+
√

n2−n+1
3

⌋

and
⌈

n+1+
√

n2−n+1
3

⌉

. Straightforward but tedious analysis,

divided in cases according to the remainder of n modulo 3, shows which of
the two possible values for α′ gives the extremal graph.

What if (4) does not hold? In that case α ≤ n+1
3 . If α = 1, then

λ1 = n − 1 and α + λ1 = n. Otherwise, for α ≥ 2 we have λ1 < n − 1 and

α + λ1 <
4n − 2

3
,

which is less than f(n, α′), so no other extremal graph may exist in this
case.

Let PV (G) be a graph obtained by adding a pendant vertex to each vertex
of a graph G. Concerning λ1−β, we are able to prove the following relation,
derived from a structural result of AGX 2.

Theorem 2.3. Let G = (V,E) be a connected graph of even order n ≥ 2
with index λ1 and domination number β. Then

(5) λ1 − β ≥ cos
2π

n + 1
+

√

1 + cos2
2π

n + 1
− n

2
.

with equality if and only if G is a caterpillar PV (Pn/2).

Proof. Let n = 2k. We consider two cases. First, suppose that β = k.
Deletion of an edge from a connected graph decreases the index and does
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not decrease the domination number. Thus, if G is not a tree, the value of
λ1 − β is smaller for any spanning tree of G. So, we may suppose that G is
indeed a tree.

To prove this theorem, we need some intermediate results. First, note
that the following lemma can also be found in [12].

Lemma 2.4. Let T be a tree with 2k vertices and β = k, k ≥ 1. Then there

exists a tree T ′ with k vertices such that T = PV (T ′).

Proof of Lemma 2.4. The proof is by induction. If k = 1, then T ∼= K2

and T ′ ∼= K1.

Suppose that the statement holds for all trees with less than 2k ver-
tices, and let T be a tree with 2k vertices and β = k. We may assume
that a dominating set S of size β in T does not contain pendant vertices:
indeed, if any such vertex is replaced by its neighbor, the resulting set is still
dominating. Let u be a pendant vertex of T with v as its unique neighbor.
By our assumption, v ∈ S.

We show that u is the unique pendant vertex adjacent to v. Otherwise,
let U , |U | ≥ 2, be the set of all pendant vertices adjacent to v, and let S ′

be the minimum dominating set of T − ({v} ∪ U). According to Ore [23],
a complement of a minimal dominating set is a dominating set. It follows
that

|S′| ≤ k − 1 + |U |
2

.

Then S′ ∪ {v} is a dominating set of T of size less than k, which is a
contradiction.

Next, the set S \{v} is a minimum dominating set in T −{u, v}. By the
induction hypothesis, there exists a tree T ′′ such that T −{u, v} = PV (T ′′).
The tree T ′ is then obtained by adding v to T ′′ and joining it to its non-
pendant neighbors in T , which are already contained in T ′′.

Lemma 2.5. Let G be a graph with eigenvalues λi, i = 1, 2, . . . , k. The

eigenvalues of PV (G) have the form

1

2

(

λi ±
√

4 + λ2
i

)

, i = 1, 2, . . . , k.

Proof of Lemma 2.5. Denote by vi, i = 1, 2, . . . , k, the vertices of G,
and by v′i the pendant vertex attached to vi in PV (G). Let λ be a nonzero



24 M. Aouchiche, P. Hansen and D. Stevanović

eigenvalue of PV (G) with a corresponding eigenvector x, and to simplify
notation, let xi = xvi and x′

i = xv′i
. From the eigenvalue equation at v′

i, we
have

λx′
i = xi,

or x′
i = 1

λxi. Next, at vi we have

λxi = x′
i +

∑

vj∼vi

xj,

(where vj ∼ vi denotes the fact that vj is a neighbor of vi) from where it
follows that

(

λ − 1

λ

)

xi =
∑

vj∼vi

xj.

The last relation shows that the vector (xi)
k
i=1 is an eigenvector of G corre-

sponding to the eigenvalue λ − 1
λ .

Next, for every i, 1 ≤ i ≤ k, the equation

λ − 1

λ
= λi

has two real nonzero solutions equal to

λ =
1

2

(

λi ±
√

4 + λ2
i

)

.

Both of these solutions are eigenvalues of PV (G), as the eigenvector x of G
corresponding to λi may be extended to an eigenvector of PV (G) by setting
x′

j = 1
λxj for every pendant vertex v′j . As this process provides us with a

set of 2k independent eigenvectors of PV (G), we conclude that there are no
further eigenvalues of PV (G) (and, in fact, zero may not be an eigenvalue
of PV (G)).

Since λ1 ≥ |λi| for i = 2, . . . , k, we obtain from Lemma 2.5 that the
index of PV (G) is equal to

1

2

(

λ1(G) +
√

4 + λ2
1(G)

)

.

Now, the path Pk has the minimum index among trees with k vertices. Based
on the previous lemmas, we may conclude that PV (Pk) has the minimum
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index among trees with 2k vertices and domination number β = k. Since
the index of Pk is equal to 2 cos 2π

k+1 , from Lemma 2.5 we see that the index
of PV (Pk) is equal to

cos
2π

k + 1
+

√

1 + cos2
2π

k + 1
,

and the theorem follows.
For the remaining case, suppose that β < k. Then β ≤ k − 1. Graph G

is connected and has at least three vertices, and thus contains a star K1,2

or a triangle K3 as an induced subgraph. From the Interlacing Theorem
[9, p. 19] we have that λ1(G) ≥

√
2. Together, this implies that

λ1 − β ≥ 1 +
√

2 − n

2
> cos

2π

k + 1
+

√

1 + cos2
2π

k + 1
− n

2
,

showing that (5) is true and that there are no new extremal graphs in this
case.

3. A Few Propositions

A number of conjectures turn out to be true and novel, but with a proof that
is considerably easier to find than in the case of the previous three theorems.
Such results are next given, in subsections corresponding to each invariant.

3.1. The chromatic number

Proposition 3.1. Let G be a connected graph on n ≥ 3 vertices with index

λ1 and chromatic number χ. Then

λ1

χ
≥ 2

3

with equality if and only if G is an odd cycle Cn. Moreover, if n is even, the

inequality is strict and the minimum value of λ1/χ is attained for a short

lollipop SLn.

Proof. The proof is divided in cases based on the value of χ:

• χ = 2. It is known that for a connected graph, the path Pn has a
minimum index equal to 2 cos π

n+1 (see [21] or [9, p. 78]). Since n ≥ 3,
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we have that
λ1

χ
≥ cos

π

n + 1
≥

√
2

2
>

2

3
.

• χ ≥ 3. According to Wilf [27], λ1 ≥ χ − 1. So

λ1

χ
≥ χ − 1

χ
≥ 2

3

with equality if and only if λ1 = 2 and χ = 3 and then G is an odd cycle. If
n is even and since χ ≥ 3, G is not a cycle but contains an odd cycle Ck and
then a short lollipop SLk. Since λ1 decreases by deleting an edge from a
connected graph, we can delete edges until we are left with a short lollipop
SLk. Thus

λ1(G) ≥ λ1(SLk) ≥ λ1(SLn) > τ1/2 + τ−1/2,

where τ = 1+
√

5
2 (for the last two inequalities above, see [18, p. 169]). The

minimum value of λ1
χ is attained if and only if G ∼= SLn.

Very recently Feng, Li and Zhang [13] characterized graphs with given χ and
minimum or maximum λ1. These results could lead to an alternate proof of
Proposition 3.1.

Proposition 3.2. Let G = (V,E) be a connected graph on n ≥ 2 vertices

with index λ1 and chromatic number χ. Then

λ1

χ
≤ 1

2

√

⌊n

2

⌋

·
⌈n

2

⌉

with equality if and only if G is the balanced complete bipartite graph

Kbn
2 c,dn

2 e.

Proof. Since the addition of an edge to a connected graph increases λ1

(see, e.g., [9, p. 19]), for a constant value of χ the maximal value of λ1
χ is

attained for a complete χ-partite graph. Again, we divide the proof into
cases based on the value of χ:

• χ = 2. Hong [20] proved that, among bipartite graphs, the complete
balanced bipartite graph has maximum index, equal to

√

bn/2c · dn/2e.
Thus, the theorem follows in this case.
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• χ ≥ 3. According to [9, p. 92], for a χ-partite graph

λ1 ≤ χ − 1

χ
n.

Then
λ1

χ
≤ χ − 1

χ2
n ≤ 2n

9
<

1

2

√

⌊n

2

⌋

·
⌈n

2

⌉

.

This complete the proof.

3.2. The maximum degree

Proposition 3.3. Let G = (V,E) be a connected graph on n ≥ 2 vertices

with index λ1 and maximum degree ∆. Then

λ1 − ∆ ≥
√

n − 1 − n + 1.

The equality is attained for a star Sn.

Proof. A connected graph G contains a spanning tree T with the same
maximum degree ∆. Deleting from G edges that are not in T , the index
decreases. Further, since T contains a star K1,∆, its index is at least

√
∆,

with equality if and only if T ∼= K1,∆. Therefore, we have that

f(∆) =
√

∆ − ∆ ≤ λ1 − ∆.

The function f(∆) is decreasing in [1, n − 1], and its minimum is attained
for ∆ = n − 1, which proves the inequality.

The equality is attained if and only if G ∼= T , T ∼= K1,∆ and ∆ = n− 1,
i.e., if and only if G ∼= K1,n−1.

Using a similar argument, one can also prove the following

Proposition 3.4. Let G = (V,E) be a connected graph on n ≥ 2 vertices

with index λ1 and maximum degree ∆. Then

λ1

∆
≥ 1√

n − 1
.

The equality is attained for a star Sn.
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3.3. The minimum degree

Proposition 3.5. Let G = (V,E) be a connected graph on n ≥ 2 vertices

with index λ1 and minimum degree δ. Then

λ1 − δ ≤ n − 3 + ε,

where ε is the root of

ε3 + (2n − 3)ε2 + (n2 − 3n + 1)ε − 1 = 0,

satisfying 0 < ε < 1. The equality is attained for a short kite SKn.

Proof. Let Hδ be a graph obtained from a clique on n − 1 vertices by
adding a vertex adjacent to δ vertices in the clique. If u is a vertex of
degree δ in G, then by adding edges between any two vertices in G − u, we
get a graph isomorphic to Hδ, showing that

λ1(G) − δ ≤ λ1(Hδ) − δ.

Rowlinson [24] proved that

λ1(Hδ) = n − 2 + εδ,

where 0 < εδ < 1 and εδ is the solution of

ε3 + (2n − 3)ε2 + (n2 − 3n + 2 − δ)ε − δ2 = 0.

We show that λ1(Hδ) − δ strictly decreases when δ increases. This follows
from

(

λ1(Hδ) − δ
)

−
(

λ1(Hδ+1) − (δ + 1)
)

= (n − δ − 2 + εδ) − (n − δ − 3 + εδ+1) = 1 + (εδ − εδ+1) > 0.

Thus, the maximum of λ1(Hδ) − δ is attained for δ = 1, and the inequality
in the proposition follows.

The equality is attained if and only if G ∼= Hδ for δ = 1, i.e., for and
only for the short kite SKn.

Using a similar argument, one can also prove the following relation derived
from a structural result of AGX 2.



Variable Neighborhood Search for Extremal Graphs. 17 ... 29

Proposition 3.6. Let G = (V,E) be a connected graph on n ≥ 2 vertices

with index λ1 and minimum degree δ. Then

λ1

δ
≤ n − 2 + ε

where ε is the root of

ε3 + (2n − 3)ε2 + (n2 − 3n + 1)ε − 1 = 0,

satisfying 0 < ε < 1. The equality is attained for a short kite SKn.

3.4. The average degree

Proposition 3.7. Let G = (V,E) be a connected graph on n ≥ 2 vertices

with index λ1 and average degree d̄. Then

λ1

d̄
≤ n

2
√

n − 1
.

The equality is attained for a star Sn.

Proof. Using d̄ = 2m
n and the upper bound λ1 ≤

√
2m − n + 1 (see [19]),

we have
λ1

d̄
=

nλ1

2m
≤ n

√
2m − n + 1

2m
.

Denoting the right-hand side of the above inequality by a function f(m)
in m and derivating gives

f ′(m) =
n(n − 1 − m)

2m2
√

2m − n + 1
,

showing that the function f is decreasing for m ≥ n − 1, which is also
the minimum number of edges a connected graph may have. Thus, the
maximum of f(m) is reached for m = n − 1, and the inequality in the
proposition follows.

The equality is attained if and only if m = n − 1 and λ1 =
√

n − 1,
which happens only for a star Sn.
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3.5. The radius

Proposition 3.8. Let G = (V,E) be a connected graph on n ≥ 2 vertices

with index λ1 and radius r. Then

λ1 + r ≤ n.

The equality is attained for the complete graph Kn or the complement of a

matching n
2 K2.

Proof. It is known that [9] λ1 ≤ ∆ with equality if and only if G is
regular. Thus to prove the bound, it suffices to show that ∆ + r ≤ n and
then characterize the extremal graphs.

If r = 1, then ∆ = n − 1, and ∆ + r = n. The equality in λ1 + r ≤ n
now holds if and only if λ1 = n − 1, i.e., G is the complete graph.

If r = 2, from the ineqaulity (see [6])

(6) r ≤ n − ∆ + 2

2
,

it follows that ∆ + r + 2 = ∆ + 2r ≤ n + 2. Hence ∆ + r ≤ n, with equality
if and only if ∆ = n − 2. The equality in λ1 + r ≤ n now holds if and only
if G is regular of degree n − 2, i.e., G is a complement of a matching.

If r ≥ 3, using again inequality (6), we have ∆+r+3 ≤ ∆+2r ≤ n+2,
and so ∆ + r < n. Hence, the equality is never attained in this case.

3.6. The domination number

Proposition 3.9. Let G = (V,E) be a connected graph on n ≥ 2 vertices

with index λ1 and domination number β. Then

λ1 + β ≤ n.

The equality is attained for the complete graph Kn or a complement of the

matching n
2 K2.

Proof. Let u be a vertex of maximum degree ∆ in G = (V,E). The set
Su = V \N [u], where N [u] = {u}∪N(u) and N(u) is the set of all neighbors
of u, is a dominating set of size n − ∆. Thus, β ≤ n − ∆.

On the other hand, it is well known that λ1 ≤ ∆ (see, e.g., [9]).
Thus

λ1 + β ≤ ∆ + (n − ∆) = n.
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The equality is attained if both β = n−∆ and λ1 = ∆. The latter equality
holds if and only if G is a ∆-regular graph. Then the former equality holds
if and only if Su is a minimum dominating set for every vertex u of G.
In particular, this yields that there are no edges in a graph induced by
non-neighbors of u. If ∆ = n − 1, then there are no non-neighbors of u
and G ∼= Kn. If ∆ < n − 1, then for each non-neighbor v /∈ N [u] one
has N(v) = N(u), as v may be adjacent only to neighbors of u and, since
G is regular, v has to be adjacent to all neighbors of u. Now, a minimum
dominating set may be obtained by taking vertex u and one of its neighbors,
showing that β = 2 and, as a consequence from β = n−∆, that ∆ = n− 2.
Thus, in this case it follows that G ∼= n

2 K2.

4. Conjectures and Refutations

4.1. Open conjectures

When it comes to proving them, conjectures obtained with AGX 2 are very
varied. We next list a few conjectures for which we were unable to find a
proof (or a counterexample), and which we find interesting.

Conjecture 4.1. Among all connected graphs on n vertices, the maximum
value of λ1 − d̄ is attained for a pineapple graph PAn,k with 1 ≤ k ≤ n− 1.

This conjecture is discussed in more detail in [4].
The following three conjectures may be approached using the results of

[17]. It is proved there that among graphs with n vertices and diameter D ≥
2, the maximum index is attained by a balanced bug Bugn−D+2,dD/2e,bD/2c
when D ≥ 2. Similarly, among all graphs with n vertices and radius r ≥ 3,
the maximum index is attained by an odd bag Bagn−2r+3,2r−1. Thus, in
each of the following conjectures we know that the extremal graph must be
either a bag or a bug, but, at the moment we are not able to prove exactly
which bag or bug, as we cannot approximate their index well enough.

Conjecture 4.2. Let G = (V,E) be a connected graph on n ≥ 2 vertices
with index λ1 and diameter D. Then

λ1 + D ≤ n − 1 + 2 cos
π

n + 1
.

The inequality is sharp for and only for paths.
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Conjecture 4.3. The maximum value of λ1 · D is obtained for a balanced
bug Bugbn/2c+2,dn/4e,b(n+1)/4c .

Conjecture 4.4. The maximum value of λ1 · r is obtained for a
Bagbn/2c+2,dn/2e .

4.2. Counterexamples

We will now comment on the refuted conjectures. The role of counterexam-
ples, especially those that appear repeatedly, is to equip the mathematician
with an arsenal of graphs which he or she may use to test every new con-
jecture in order to gain initial insight into its behaviour. Here, we give a
sample of counterexamples for the refuted conjectures.

First, the conjectures on the lower bounds for the expressions

λ1 + D, λ1 · D, λ1 + r and λ1 · r

are all refuted by the same well-known family of graphs: the cubes. Namely,
the m-dimensional cube Qm has n = 2m vertices, it is m-regular implying
that λ1(Qm) = m, and both its diameter and radius are also equal to m.
Thus, the above expressions for Qm have the value either 2m or m2. On
the other hand, all conjectured lower bounds contain the factor or summand√

n − 1 =
√

2m − 1, which is exponential in m and becomes larger than both
2m and m2 for m large enough (actually, for m ≥ 17).

Next, the conjecture on the upper bound for λ1 · l̄ is false. AGX 2
conjectured that the extremal graph is Kn−e for every n. While Kn−e has
λ1 close to the maximum value of n− 1, its average distance is barely larger
than the minimum value of 1. Thus, a graph which has λ1 and l̄ closer to
each other may have larger value of the product λ1 · l̄. It is easy to get to
such a graph: if we want to have large λ1, it is sufficient to have a big clique
in it; if we want to have large l̄, it is sufficient to have a long induced path.
Thus, a natural candidate for a counterexample is a graph KPp,q consisting
of a complete graph Kp and a path Pq, in which one end-vertex of a path is
adjacent to a vertex of a complete graph (in other words Kp,q is a kite). A
small counterexample is indeed obtained already for p = q = 4.

The situation is similar with the lower bound for λ1 + β. The conjec-
tured extremal graphs are stars which have the smallest possible domination
number β, while the index is far from the minimum value: every tree on n
vertices has index at most

√
n − 1. Thus, it appears to be appropriate to
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look for a counterexample among trees with higher domination number.
Even β = 2 suffices: a tree consisting of two copies of a star S8 and another
vertex adjacent to a center of each star has n = 19 vertices and λ1 ≈ 3.16228,
giving a small counterexample. In general, forming a tree by taking a path
of length 2β and attaching k pendant vertices at every odd vertex of this
path creates a tree with n = 1 + β(k + 2) vertices, the domination number

β and the index λ1 approximately equal to
√

n
β , yielding the sum λ1 + β of

order
√

n
β + β, which is less than 1 +

√
n − 1 for β large enough.

5. Conclusion

Using AGX, the index of a connected graph G has been compared with the
chromatic number χ, the largest degree ∆, the smallest degree δ, the average
degree d̄, the diameter D, the radius r, the average distance l̄ between
pairs of distinct vertices, the independence number α and the domination
number β, looking for upper and lower bounds which are functions of the
order of G.

There are 72 cases altogether: in 7 cases known results were reproduced,
in 32 cases immediate results were obtained and automatically proved by
the system, conjectures were obtained in 27 cases, of which 12 were proved
(in 3 theorems and 9 propositions), 9 remain open and 6 were refuted. No
results could be derived in 7 cases.

Appendix

We give full details of all 72 cases examined with AGX 2 in Table 1. Each
expression of the form λ1 ∗ i(G) occupies one row of the table, and the
expression itself is given in the first column. Each expression yields two
cases, the first one concerning its lower bound and the second its upper
bound. Each of these cases occupies three columns which contain:

• a formula giving the value of the bound, if known;

• the status of the conjecture, which is one of the following: immediate,
refuted, known, proved (with reference to a theorem or proposition in
this article), open or no result.

• the family of extremal graphs.

If a cell of the table is empty, it means that we do not know its contents.
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Table 1. Details of conjectures obtained with AGX 2.

i1 ∗ i2 bound status extremal graphs
λ1 − χ ≥ -1 known Kn; Cn for odd n

λ1 − χ ≤ open Kp1,···pd√ne , (∀i, j) |pi − pj | ≤ 1

λ1 + χ ≥ 2 + 2cos π
n+1

immediate Pn

λ1 + χ ≤ 2n − 1 immediate Kn

λ1/χ ≥ 2√
b n

2
c·dn

2
e Prop. 3.2 Kbn/2c,dn/2e

λ1/χ ≤ 2
3

Prop. 3.1 Cn for odd n, SLn for even n
λ1 · χ ≥ 4cos π

n+1
immediate Pn

λ1 · χ ≤ n(n − 1) immediate Kn

λ1 − ∆ ≥
√

n − 1 − n + 1 Prop. 3.3 Sn

λ1 − ∆ ≤ 0 known regular graphs
λ1 + ∆ ≥ 2 + 2cos π

n+1
immediate Pn

λ1 + ∆ ≤ 2n − 2 immediate Kn

λ1/∆ ≥ 1√
n−1

Prop. 3.4 Sn

λ1/∆ ≤ 1 known regular graphs
λ1 · ∆ ≥ 4cos π

n+1
immediate Pn

λ1 · ∆ ≤ (n − 1)2 immediate Kn

λ1 − δ ≥ 0 known regular graphs
λ1 − δ ≤ n − 3 + ε Prop. 3.5 SKn

λ1 + δ ≥ 1 + 2 cos π
n+1

immediate Pn

λ1 + δ ≤ 2n − 2 immediate Kn

λ1/δ ≥ 1 known regular graphs
λ1/δ ≤ n − 2 + ε Prop. 3.6 SKn

λ1 · δ ≥ 2 cos π
n+1

immediate Pn

λ1 · δ ≤ (n − 1)2 immediate Kn

λ1 − d ≥ 0 known regular graphs

λ1 − d ≤ open PAn,k

λ1 + d ≥ 2 − 2
n

+ 2 cos π
n+1

immediate Pn

λ1 + d ≤ 2n − 2 immediate Kn

λ1/d ≥ 1 known regular graphs

λ1/d ≤ n
2
√

n−1
Prop. 3.7 Sn

λ1 · d ≥ (4 − 4
n

) cos π
n+1

immediate Pn

λ1 · d ≤ (n − 1)2 immediate Kn

λ1 − D ≥ 2 cos π
n+1

− n + 1 immediate Pn

λ1 − D ≤ n − 2 immediate Kn

λ1 + D ≥ 2 +
√

n − 1 refuted Sn

λ1 + D ≤ n − 1 + 2 cos π
n+1

open Pn

λ1/D ≥ 2
n−1

cos π
n+1

immediate Pn

λ1/D ≤ n − 1 immediate Kn

λ1 · D ≥ 2
√

n − 1 refuted Sn

λ1 · D ≤ open Bugbn/2c+2,dn/4e,b(n+1)/4c
λ1 − r ≥ 2 cos π

n+1
− bn

2
c immediate Pn

λ1 − r ≤ n − 2 immediate Kn

λ1 + r ≥ 1 +
√

n − 1 refuted Sn

λ1 + r ≤ n Prop. 3.8 Kn; n
2

K2 for even n

λ1/r ≥ 2
bn/2c cos π

n+1
immediate Pn

λ1/r ≤ n − 1 immediate Kn
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Table 1 – continued from previous page

λ1 · r ≥
√

n − 1 refuted Sn

λ1 · r ≤ open Bagbn/2c+2,dn/2e
λ1 − l ≥ 2 cos π

n+1
− n+1

3
immediate Pn

λ1 − l ≤ n − 2 immediate Kn

λ1 + l ≥ open

λ1 + l ≤ n Theorem 2.1 Kn

λ1/l ≥ 6
n+1

cos π
n+1

immediate Pn

λ1/l ≤ n − 1 immediate Kn

λ1 · l ≥ no result

λ1 · l ≤ n2−n+2
2n(n−1)

(

n − 3 +
√

n2 + 2n − 7
)

refuted Kn − e

λ1 − α ≥
√

n − 1 − n + 1 open Sn

λ1 − α ≤ n − 2 immediate Kn

λ1 + α ≥ no result

λ1 + α ≤ 2n−1+2
√

n2−n+1
3

Theorem 2.2 Sn,α

λ1/α ≥ no result
λ1/α ≤ n − 1 immediate Kn

λ1 · α ≥ open connected Turan graph
λ1 · α ≤ no result

λ1 − β ≥ Theorem 2.3 caterpillars, β = dn/2e
λ1 − β ≤ n − 2 immediate Kn

λ1 + β ≥ 1 +
√

n − 1 refuted Sn

λ1 + β ≤ n Prop. 3.9 Kn; n
2

K2 for even n

λ1/β ≥ 1
n−1

immediate Kn

λ1/β ≤ no result
λ1 · β ≥ open connected Turan graph
λ1 · β ≤ no result
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