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Abstract

Say that a cycle C almost contains a cycle C− if every edge except
one of C− is an edge of C. Call a graph G strongly pancyclic if every
nontriangular cycle C almost contains another cycle C− and every
nonspanning cycle C is almost contained in another cycle C+. This is
equivalent to requiring, in addition, that the sizes of C− and C+ differ
by one from the size of C. Strongly pancyclic graphs are pancyclic and
chordal, and their cycles enjoy certain interpolation and extrapolation
properties with respect to almost containment. Much of this carries
over from graphic to cographic matroids; the resulting ‘dual-pancyclic’
graphs are shown to be exactly the 3-regular dual-chordal graphs.
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1. Introduction and Strongly Pancyclic Graphs

Viewing cycles as sets of edges, no cycle can be contained in another cycle.
But a cycle C can be said to be almost contained in a cycle C+ (and C+

to almost contain C) if every edge except one of C is an edge of C+—in
other words, if |C − C+| = 1, where, as with all cycles in this paper, C is
identified with the edge set E(C). (Almost containment of general sets has
been defined analogously.) For instance, if G is the ‘house graph’ (formed by
inserting one chord into a length-5 cycle), then both the resulting length-3
cycle and length-4 cycle are almost contained in the length-5 cycle, but the
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length-3 cycle is not almost contained in the length-4 cycle. (Throughout
this paper, ‘graphs’ will always be simple graphs, and ‘multigraphs’ will
allow multiple edges and loops.)

A graph G is a pancyclic graph if it has cycles of every length between
3 and |V (G)|, inclusive. Define G to be a strongly pancyclic graph if G is
2-connected and both the following hold:

(0.1) Every nontriangular cycle almost contains a cycle.

(0.2) Every nonhamiltonian cycle is almost contained in a cycle.

The graphs in Figure 1 are not strongly pancyclic (although G1 and G3 are
pancyclic). Graphs G1 and G2 satisfy condition (0.1), but not (0.2) because
of the cycle a, b, c, d, a. Graph G3 satisfies (0.2), but not (0.1) because of
the cycle a, b, c, d, a. Inserting an additional edge into either G1 or G3 will
produce a strongly pancyclic graph.
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Figure 1. Three graphs that are not strongly pancyclic.

Theorem 1 (and Corollaries 2 and 6) will justify the name ‘strongly pan-
cyclic’ by characterizing strongly pancyclic graphs by every cycle almost
containing and being almost contained in cycles of every possible length.
The symbol ⊕ denotes the symmetric difference of cycles, the familiar ‘ring
sum’ used with cycle spaces. Recall that a graph is 2-connected if and only
if every two edges are in a common cycle.

Theorem 1. A 2-connected graph is strongly pancyclic if and only if it

satisfies both of the following :

(1.1) Every nontriangular cycle almost contains a cycle of length one less.

(1.2) Every nonhamiltonian cycle is almost contained in a cycle of length

one more.

Proof. Suppose a graph G is strongly pancyclic with a nontriangular
cycle C. We will show condition (1.1) by showing a stronger property by
induction on |C| ≥ 4: For each e ∈ C, cycle C will almost contain a cycle
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Ce with |Ce| = |C| − 1 and e ∈ Ce. Suppose e ∈ C. In the |C| = 4 basis
case, condition (0.1) implies that C almost contains a triangle ∆ where
C⊕∆ = ∆′ is also a triangle; take Ce to be whichever of ∆ and ∆′ contains e.
When |C| ≥ 5, (0.1) implies that C almost almost contains a cycle C ′ with
|C ′| < |C|. Let f be the chord of C in C ′ − C, noting that C also almost
contains the cycle C ⊕C ′ = C ′′ and that f ∈ C ′′. Edge e is in one of C ′ and
C ′′; without loss of generality, say e ∈ C ′. If C ′′ is a triangle, take Ce = C ′.
If C ′′ is not a triangle, the inductive hypothesis implies that C ′′ almost
contains a cycle C ′′

f with |C ′′
f | = |C ′′| − 1 and f ∈ C ′′

f ; take Ce = C ′ ⊕ C ′
f .

Now suppose instead that C is any nonhamiltonian cycle of G. By
(0.2), C is almost contained in another cycle C+; say {f} = C − C+. Let
C ′ = C ⊕ C+, noting that f ∈ C ′. Then |C ′| − 3 ≥ 0 applications of the
result proved in the preceding paragraph shows that C ′ will almost contain
a triangle C ′

f with f ∈ C ′
f , and C ⊕ C ′

f will be the cycle required in (1.2).
The converse follows from each condition (1.i) immediately implying

condition (0.i).

Corollary 2. A 2-connected graph G is strongly pancyclic if and only if,

for every cycle C, there exist cycles C3, . . . , C|V (G)| such that each |Ci| = i,

C = C|C|, and if i < j, then Ci is almost contained in Cj.

The ‘domino graph’ (formed by inserting one chord into a length-6 cycle so
as to form two almost-contained length-4 cycles) shows that condition (0.2)
is not by itself equivalent to condition (1.2). Yet (0.1) is equivalent to (1.1),
since they are both easily seen to be equivalent to every cycle of length at
least four having a chord; this characterizes a graph being chordal [8]. (The
graphs G1 and G2 in Figure 1 are the only chordal graphs on five or fewer
vertices that are not strongly pancyclic.) Somewhat similarly, condition
(1.2) is a direct translation of a graph being 0-chord extendable [3] (called
cycle 0-extendable in [4]). These equivalences together with Theorem 1 imply
both Corollary 3 and Corollary 2.

Corollary 3. A 2-connected graph is strongly pancyclic if and only if it is

both chordal and 0-chord extendable.

Define 2-trees recursively, starting from K2 being a 2-tree, as follows: If G is
any 2-tree with e ∈ E(G) and if ∆ is a triangle that is vertex disjoint from G

with e′ ∈ E(∆), then the graph formed from G and ∆ by identifying edges e

and e′ (along with their endpoints) is another 2-tree. Corollary 4 is related



8 T.A. McKee

to [2, Theorem 5]: In a hamiltonian chordal graph G, every hamiltonian
cycle of G is contained in a 2-tree subgraph of G. It is important that
the spanning hamiltonian 2-tree (and the spanning maximal outerplanar
subgraph) mentioned in Corollary 4 does not need to be an induced subgraph
(just as a spanning tree or spanning cycle does not need to be an induced
subgraph).

Corollary 4. The following are equivalent for every 2-connected graph G:

(4.1) G is strongly pancyclic.

(4.2) Every cycle of G is contained in a subgraph of G that is a hamiltonian

2-tree.

(4.3) Every cycle of G is contained in a subgraph of G that is maximal

outerplanar.

Proof. First suppose G is 2-connected and every cycle C is contained in
a hamiltonian 2-tree subgraph TC of G. To show condition (0.1), suppose
cycle C is nontriangular. Then C will have a chord e ∈ E(TC) by [2,
Thm 1], and E(C) ∪ {e} will contain two cycles, each of which is almost
contained in C. To show condition (0.2), suppose cycle C is nonhamiltonian.
Repeatedly removing from G vertices of degree two in TC that are not in
C will eventually leave a smallest hamiltonian 2-tree T ′

C such that V (C) ⊂
V (T ′

C), E(T ′
C) ⊆ E(TC), and |V (T ′

C)| = |C|+1. The hamiltonian cycle that
spans T ′

C will almost contain C.
The converse follows immediately from Corollary 2, with the observa-

tions that each Ci ⊕ Ci+1 is a triangle that has a unique edge in common
with Ci and that each Ci is the sum of the first i − 2 of those triangles.

The equivalence of hamiltonian 2-trees and maximal outerplanar sub-
graphs is [5, Theorem 7].

Notice that the ‘hamiltonian 2-tree’ in Corollary 4 can be equivalently re-
placed with ‘outerplanar 2-tree,’ ‘G2-free 2-tree’ (with G2 as in Figure 1), or
‘2-connected outerplanar subgraph.’ Because recognizing whether a graph
has a maximal outerplanar subgraph is NP-hard [10], Corollary 4 shows that
recognizing whether a graph is strongly pancyclic is NP-hard.

2. Interpolation and Strongly Pancyclic Matroids

Corollaries 2 and 4 can be viewed as guaranteeing chains of cycles, each
almost containing or contained in the next, that extrapolate both upward
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and downward from any cycle. Corollaries 6 and 7 will be their interpolation
analogs.

Lemma 5. Suppose G is a chordal graph that contains a cycle C of length

n ≤ |V (G)| and a triangle ∆ that consists of chords e1, . . . , ek of C (0 ≤
k ≤ 3) together with 3−k edges of C. Then there exist triangles ∆C

3 , . . . ,∆C
n

such that each ∆C
i+1 has a unique edge in common with the length-i cycle

Ci = ∆C
3 ⊕ · · · ⊕ ∆C

i, 3 ≤ i ≤ n, where if i < j, then Ci is almost contained

in Cj, ∆ = ∆C
3 , and C = C|C|.

Proof. Suppose G is a chordal graph that contains a cycle C of length
n ≤ |V (G)| and a triangle ∆ that consists of chords e1, . . . , ek of C (0 ≤
k ≤ 3) together with 3 − k edges of C. Argue by induction on n, with the
n = 3 (k = 0) basis case immediate. Suppose n ≥ 4. For each 1 ≤ l ≤ k, let
C(l) be the cycle that has C(l) ⊂ C ∪ {el} where ej is not a chord of C(l)
whenever j 6= l. Let nl be the length of C(l), so that

∑
l nl = n + 2k − 3.

Since G is chordal, let each ∆l be any triangle that contains el and two
additional edges or chords of C(l).

The induction hypothesis on each C(l) implies the existence of triangles

∆
C(l)
3 , . . . ,∆

C(l)
nl

such that each ∆
C(l)
i+1 has a unique edge in common with the

length-i cycle C l
i = ∆

C(l)
3 ⊕· · ·⊕∆

C(l)
i , 3 ≤ i ≤ nl, where if i < j, then C l

i is al-

most contained in C l
j, ∆l = ∆

C(l)
3 , and C(l) = C l

nl
. Then ∆,∆

C(1)
1 , . . . ,∆

C(1)
n1

,

followed by ∆
C(2)
1 , . . . ,∆

C(2)
n2

if k ≥ 2, followed by ∆
C(3)
1 , . . . ,∆

C(3)
n3

if k = 3,
can be taken to be the n− 2 triangles ∆C

3 , . . . ,∆C
n required in the lemma.

Corollary 6. If G is a strongly pancyclic graph with triangle ∆ and hamil-

tonian cycle H, then G has cycles C3 = ∆, . . . , C|V (G)| = H such that each

|Ci| = i and if i < j, then Ci is almost contained in Cj.

Proof. Suppose G, H, and ∆ are as in the statement of the corollary, with
n = |H| = |V (G)|. Apply Lemma 5 with C = H to get H as the sum of
triangles ∆C

3 , . . . ,∆C
n. Whenever 3 ≤ i ≤ |V (G)|, set Ci equal to the sum of

the first i − 2 of those triangles.

Corollary 7. Every strongly pancyclic graph G with triangle ∆ and hamil-

tonian cycle H has a hamiltonian 2-tree—or, equivalently, a maximal out-

erplanar subgraph—that contains both ∆ and H.
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Proof. This follows from the proof of Corollary 6, taking the graph formed
by C3 ∪ · · · ∪ C|V (G)| to be the hamiltonian 2-tree (maximal outerplanar
subgraph).

The graph G1 in Figure 1 is a counterexample to the converses of Corollar-
ies 6 and 7. Also, there would be analogous interpolation results between
any triangle ∆ and any cycle C with V (∆) ⊂ V (C). But Figure 2 with cy-
cles C = a, b,f, e, d, a and H = a, b, c, d, e,f, a shows that there would not be
a analogous interpolation results between any cycle C and any hamiltonian
cycle H.
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Figure 2. A strongly pancyclic graph in which the interpolation result fails.

There are results for 2-connected simple binary matroids that are analogous
to Theorem 1 and the extrapolation in Corollary 2, replacing ‘cycle’ with
‘circuit,’ ‘length’ with ‘size,’ and ‘edge’ with ‘element.’ A matroid M is
simple if every circuit has size three or more and is 2-connected if every two
elements are in a common circuit. A triangular circuit of M is a circuit of
size three, and a hamiltonian circuit of M is a circuit of size rank(M)+1. A
pancyclic matroid—see [1]—is a simple matroid M that has circuits of every
size between 3 and rank(M)+1. Define a strongly pancyclic matroid to be a
simple, 2-connected matroid M that satisfies conditions (0.1) and (0.2) with
‘cycle’ replaced with ‘circuit.’ An element e is a chord of a circuit C if there
are circuits C1 and C2, each almost contained in C, such that C1∩C2 = {e}
and C1 ⊕ C2 = C. (See [9] for general matroidal definitions.)

In contrast, there is not an interpolation result for 2-connected simple
binary matroids that is analogous to Corollary 6 (the Fano matroid F7 is a
counterexample); indeed, not even for 2-connected simple regular matroids
(the non-pancyclic matroid R10 is a counterexample). Yet, in addition to all
graphic matroids, there are similar interpolation results for cographic ma-
troids, as Section 3 will show using the terminology of cocircuits—cutsets—
of graphs.
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3. Strongly Dual-Pancyclic Graphs

There are dual versions of many of the preceding results in terms of (edge)
cutsets instead of cocircuits, where a cutset D of a connected graph G

is a minimal subset of E(G) such that G − D is not connected; this is
equivalent to using circuits of the (dual) cographic matroid. A graph is
3-edge-connected if every cutset has size three or more. A cutset D is
a hamiltonian cutset if G − D consists of two trees, or, equivalently, if
|D| = |E(G)| − |V (G)| + 2. In accord with [1], a graph is dual-pancyclic

if it has cutsets of every size between 3 and |E(G)| − |V (G)| + 2. De-
fine G to be a strongly dual-pancyclic graph if G is 2-connected and 3-edge
connected—a natural condition for duals of simple graphs—and both the
following hold:

(0.1∗) Every cutset of size greater than 3 almost contains another cutset.

(0.2∗) Every cutset of size less than |E(G)|− |V (G)|+2 is almost contained
in another cutset.

If D is a cutset of a graph G, then (as introduced in [7]) an edge e ∈ E(G)−D

is a dual-chord of D if there is a partition D = D1∪D2 such that each Di∪{e}
is a cutset of G. A 2-connected, 3-edge-connected graph G is dual-chordal if
every every cutset of size four or more has a dual-chord. It is important to
realize that we are not assuming planarity; for instance, K3,3 is dual-chordal
(and strongly dual-pancyclic). Note that strongly dual-pancyclic graphs are
automatically dual-chordal.

The dual versions of Theorem 1, Corollary 3, Lemma 5, and Corollary 6
hold by simply translating cycle terminology in their proofs into the cor-
responding cutset terminology. Replacing Corollaries 4 and 7, Theorem 8
will actually characterize strongly dual-pancyclic graphs within the class of
dual-chordal graphs. Notice that 3-regular dual-chordal graphs, since they
must also be 3-edge-connected, also have to be 3-connected. Hence, the
class of dual-chordal 3-regular graphs mentioned in Theorem 8 is the class
of 3-connected, 3-regular dual-chordal graphs that is characterized five ways
in [7, §3], one of which is that it is the class of 2-connected, 3-regular graphs
that contain no subgraph homeomorphic to—in other words, no subgraph
that is a subdivision of—either of the graphs shown in Figure 3. Because the
present paper is primarily concerned with the presumably more interesting
case of strongly pancyclic graphs, not their duals, we will make free use of
results from [7, 6] in the proof of Theorem 8.
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Figure 3. The cube and twisted cube (or 4-rung Möbius ladder) graphs that
Theorem 8 forbids as homeomorphic subgraphs in strongly dual-
pancyclic graphs.

Theorem 8. A graph is strongly dual-pancyclic if and only if it is dual-

chordal and 3-regular.

Proof. First suppose G is dual-chordal and 3-regular, so G is 3-connected
and condition (0.1∗) holds. Toward proving (0.2∗), suppose D is any non-
hamiltonian cutset of G. If v is an endpoint of exactly one edge of D and
Dv is the set of the three edges of G that are incident with v, then D will
be almost contained in the cutset D ⊕ Dv , as called for in the theorem. So
suppose instead that every endpoint of an edge e of D is the endpoint of
at least two edges of D. Note that an endpoint of e cannot be on three
edges of D, since the minimality of cutsets would then imply |D| = 3 and
the other endpoint of e would be on only one edge of D. So every endpoint
of an edge of D is the endpoint of exactly two edges of D. Therefore there
is a cycle CD with CD ⊆ D and, since G is 3-connected, |CD| ≥ 6. Let v

and v′ be in, respectively, connected components H 6= H ′ of G−D, and let
π1, π2, π3 [and π′

1, π
′
2, π

′
3] be three v-to-V (CD) paths in H [or v′-to-V (CD)

paths in H ′] whose vertex sets pairwise intersect in precisely the vertex v [or
v′]. Then the cycle CD and the six paths πi and π′

i (i = 1, 2, 3) would form
a subgraph of G that is homeomorphic to a cube, contradicting Theorem 9
of [7].

Conversely, suppose G is dual-chordal but not 3-regular (arguing by
contraposition that G is not strongly dual-pancyclic, using that strongly
dual-pancyclic graphs are dual-chordal). Then Theorem 1 and Corollary 1
of [6] imply that G reduces by ‘subgraph contractions’ to a graph that con-
tains one of the two subgraphs shown in Figure 4, where the subscripted
vertices have exactly the neighbors shown, a and b have additional neigh-
bors (a might be adjacent to b), and G has a cycle that contains none of
the subscripted vertices. (In the terminology of [6], in order for G not to
be 3-regular in this context, the reduction in [6, Theorem 1] will not involve
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contracting an ‘scC2,’ and so will involve contracting either a ‘cC3’ like
the C3 induced by {x1, x2, x3} in the graph on the left or contracting a
‘cK2,3’ like the K2,3 induced by {x1, x2, x3, y1, y2} in the graph on the right.)
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Figure 4. Two subgraphs used in the proof of Theorem 8.

Let D = {ax1, ax2, x1x3, x2x3} in the graph on the left and D = {ax1, x2y1,

x2y2, x3y1, x3y2} in the graph on the right. In either case, D will be a cutset
of G that is not a hamiltonian cutset (since G−D will still contain the cycle
with no subscripted vertices) and that is not almost contained in another
cutset. Thus, G would not be strongly dual-pancyclic.
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