Note

TRIANGLE-FREE PLANAR GRAPHS WITH MINIMUM DEGREE 3 HAVE RADIUS AT LEAST 3

Seog-Jin Kim
Mathematics Education Department
Konkuk University, Seoul, Korea
e-mail: skim12@konkuk.ac.kr
AND
Douglas B. West*
Department of Mathematics
University of Illinois
Urbana, IL 61801, USA
e-mail: west@math.uiuc.edu

Abstract

We prove that every triangle-free planar graph with minimum degree 3 has radius at least 3 ; equivalently, no vertex neighborhood is a dominating set.

Keywords: planar graph, radius, minimum degree, triangle-free, dominating set.
2000 Mathematics Subject Classification: 05C10, 05C12, 05C69.

In 1975, Plesník [3] determined all triangle-free planar graphs with diameter 2. They are the stars, the complete bipartite graphs $K_{2, n}$, and a third family that can be described in several ways. One can start with the disjoint union $K_{2}+K_{1}$ and add vertices of degree 2 joined to either nonadjacent pair of the original triple, or start with C_{5} and expand two nonadjacent vertices into larger independent sets, or start with $K_{2, n}$ and apply a "vertex split" to one of the high-degree vertices.

[^0]Each graph in Plesník's characterization has a vertex of degree at most 2. Thus his result implies that every triangle-free planar graph with minimum degree 3 has diameter at least 3 (note that no triangle-free planar graph has minimum degree greater than 3). In this note, we strengthen this statement by proving that every triangle-free graph with minimum degree 3 has radius at least 3. That is, it has no vertex whose neighborhood is a dominating set. There are many triangle-free planar graphs with minimun degree 3 and radius equal to 3 .

Our result can also be related to other past work about distances in triangle-free or planar graphs. Erdős, Pach, Pollack, and Tuza [1] studied the maximum radius and diameter among graphs with fixed minimum degree. They also solved these problems in the family of triangle-free graphs. In contrast, we are seeking the minimum radius when the family is further restricted to planar graphs.

For planar graphs, Harant [2] proved an upper bound on the radius when the graph is 3 -connected and has no long faces (it is $n / 6+q+\frac{3}{2}$ when the graph has n vertices and no face of length more than q). We prove a lower bound on the radius when the graph has no short faces (no triangles), without restriction on connectivity.

We use $\delta(G)$ to denote the minimum degree of G, and we write $\left[v_{1}, \ldots\right.$, $\left.v_{k}\right]$ to denote a cycle with vertices v_{1}, \ldots, v_{k} in order. Our graphs have no loops or multiple edges. A vertex dominates (is adjacent to) any subset of its neighbors.

Theorem 1. Every triangle-free planar graph with minimum degree 3 has radius at least 3 .

Proof. If the radius is 1, then one vertex dominates all others; additional edges would create triangles, so the other vertices cannot reach degree 3 . Hence it suffices to forbid radius 2 . We assume that our graph G has a vertex v whose neighborhood U dominates the remaining vertices. Let $W=$ $V(G)-U-\{v\}$.

If v lies on no cycle, then each component of $G-v$ is dominated by one vertex of U, which cannot happen since G is triangle-free and $\delta(G)=3$. If v lies on no cycle of length at most 5 , then the shortest path in $G-v$ between any two vertices of U has length at least 4 , and the center of such a path is undominated by U.

Fix a planar embedding of G. Define a trap to be a cycle of length at most 5 through v. Say that a cycle in G is empty if no vertex lies inside
the region enclosed by it. Let a flap in an embedding of G be the subgraph induced by a nonempty trap and the vertices inside it. If a trap C is empty, then we redraw G so that C is the external face, and now G itself is a flap. Hence a flap exists in some embedding of G.

We obtain a contradiction by proving that every flap P in an embedding of G contains another flap; this contradicts the finiteness of G. The cases appear in Figure 1.

Figure 1. Cases for the proof.

Let C be the external cycle in P. Let u_{1} and u_{2} be the neighbors of v on C (in $U)$. Let w_{1} and w_{2} be their neighbors on C other than v, respectively, where $w_{1}=w_{2}$ if C has length 4 . Note that $w_{1}, w_{2} \in W$, since U is independent. Let S be the set of vertices of P not on C; call them the internal vertices. If $|S| \leq 2$, then $\delta(G) \geq 3$ forces a triangle, since neighbors of adjacent vertices in S cannot alternate on C. Hence we have $|S| \geq 3$.

Case 1. u_{1} or u_{2} has an internal neighbor.
Let u_{1} have an internal neighbor. Let w_{3} be the internal neighbor of u_{1} on the bounded face F of P that contains w_{1} and u_{1}, and let x be the next vertex reached in following F. If $x \in U$, then $\left[v, u_{1}, w_{3}, x\right]$ is a trap that encloses a smaller flap than P, since w_{3} has a third neighbor inside that trap. If $x \notin U$, then x has a neighbor $u^{\prime} \in U$, and now $\left[v, u_{1}, w_{3}, x, u^{\prime}\right]$ encloses a smaller flap.

Case 2. u_{1} and u_{2} have no internal neighbors, but w_{1} or w_{2} does. By symmetry, we may assume that w_{1} has an internal neighbor. Let y be the internal neighbor of w_{1} following w_{1} on the bounded face F of P that contains w_{2} and w_{1}.

If $y \in U$, then there are two cycles formed by v, y, and part of C. Whichever encloses a neighbor of y encloses a smaller flap.

If $y \in W$, then let z be the next vertex after y in following F. If $z \in U$, then the cycle $\left[v, u_{1}, w_{1}, y, z\right]$ encloses a neighbor of y and yields a smaller flap. If $z \in W$, then let u_{3} be a neighbor of z in U. Now $\left[v, u_{1}, w_{1}, y, z, u_{3}\right.$] encloses the remaining neighbors of y, which must include a vertex u_{4} in U. Since u_{4} must have another neighbor in the region enclosed by the 6 -cycle, [$\left.v, u_{1}, w_{1}, y, u_{4}\right]$ or $\left[v, u_{4}, y, z, u_{3}\right]$ is a trap enclosing a smaller flap.

Case 3. None of $\left\{u_{1}, w_{1}, w_{2}, u_{2}\right\}$ has an internal neighbor.
Since the interior is nonempty and G is connected, v has an internal neighbor. Let u_{3} be the one reached after u_{1} and v when following the face F of P whose boundary contains all of C. Let w_{3} be the vertex after u_{3} on F (since U is independent, $w_{3} \in W$), and let z be the vertex after w_{3}. If $z \in W$, then we can choose $u_{4} \in N(z) \cap U-\left\{u_{3}\right\}$. Otherwise, $z \in U$. In the two cases, $\left[v, u_{3}, w_{3}, z, u_{4}\right]$ or $\left[v, u_{3}, w_{3}, z\right]$ encloses another neighbor of u_{3} and yields a smaller flap.

References

[1] P. Erdős, J. Pach, R. Pollack and Zs. Tuza, Radius, diameter, and minimum degree, J. Combin. Theory (B) 47 (1989) 73-79.
[2] J. Harant, An upper bound for the radius of a 3-connected planar graph with bounded faces, Contemporary methods in graph theory (Bibliographisches Inst., Mannheim, 1990), 353-358.
[3] J. Plesník, Critical graphs of given diameter, Acta Fac. Rerum Natur. Univ. Comenian. Math. 30 (1975) 71-93.

[^0]: *This research is partially supported by the National Security Agency under Award No. H98230-06-1-0065.

