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Abstract

We prove that every triangle-free planar graph with minimum de-
gree 3 has radius at least 3; equivalently, no vertex neighborhood is a
dominating set.

Keywords: planar graph, radius, minimum degree, triangle-free, dom-
inating set.

2000 Mathematics Subject Classification: 05C10, 05C12, 05C69.

In 1975, Plesńık [3] determined all triangle-free planar graphs with diameter
2. They are the stars, the complete bipartite graphs K2,n, and a third family
that can be described in several ways. One can start with the disjoint union
K2 + K1 and add vertices of degree 2 joined to either nonadjacent pair of
the original triple, or start with C5 and expand two nonadjacent vertices
into larger independent sets, or start with K2,n and apply a “vertex split”
to one of the high-degree vertices.
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Each graph in Plesńık’s characterization has a vertex of degree at most 2.
Thus his result implies that every triangle-free planar graph with minimum
degree 3 has diameter at least 3 (note that no triangle-free planar graph has
minimum degree greater than 3). In this note, we strengthen this statement
by proving that every triangle-free graph with minimum degree 3 has radius
at least 3. That is, it has no vertex whose neighborhood is a dominating
set. There are many triangle-free planar graphs with minimun degree 3 and
radius equal to 3.

Our result can also be related to other past work about distances in
triangle-free or planar graphs. Erdős, Pach, Pollack, and Tuza [1] studied the
maximum radius and diameter among graphs with fixed minimum degree.
They also solved these problems in the family of triangle-free graphs. In
contrast, we are seeking the minimum radius when the family is further
restricted to planar graphs.

For planar graphs, Harant [2] proved an upper bound on the radius
when the graph is 3-connected and has no long faces (it is n/6+ q + 3

2
when

the graph has n vertices and no face of length more than q). We prove a
lower bound on the radius when the graph has no short faces (no triangles),
without restriction on connectivity.

We use δ(G) to denote the minimum degree of G, and we write [v1, . . . ,
vk] to denote a cycle with vertices v1, . . . , vk in order. Our graphs have no
loops or multiple edges. A vertex dominates (is adjacent to) any subset of
its neighbors.

Theorem 1. Every triangle-free planar graph with minimum degree 3 has

radius at least 3.

Proof. If the radius is 1, then one vertex dominates all others; additional
edges would create triangles, so the other vertices cannot reach degree 3.
Hence it suffices to forbid radius 2. We assume that our graph G has a
vertex v whose neighborhood U dominates the remaining vertices. Let W =
V (G) − U − {v}.

If v lies on no cycle, then each component of G− v is dominated by one
vertex of U , which cannot happen since G is triangle-free and δ(G) = 3. If v
lies on no cycle of length at most 5, then the shortest path in G−v between
any two vertices of U has length at least 4, and the center of such a path is
undominated by U .

Fix a planar embedding of G. Define a trap to be a cycle of length at
most 5 through v. Say that a cycle in G is empty if no vertex lies inside
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the region enclosed by it. Let a flap in an embedding of G be the subgraph
induced by a nonempty trap and the vertices inside it. If a trap C is empty,
then we redraw G so that C is the external face, and now G itself is a flap.
Hence a flap exists in some embedding of G.

We obtain a contradiction by proving that every flap P in an embedding
of G contains another flap; this contradicts the finiteness of G. The cases
appear in Figure 1.
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Figure 1. Cases for the proof.

Let C be the external cycle in P . Let u1 and u2 be the neighbors of v on C (in
U). Let w1 and w2 be their neighbors on C other than v, respectively, where
w1 = w2 if C has length 4. Note that w1, w2 ∈ W , since U is independent.
Let S be the set of vertices of P not on C; call them the internal vertices. If
|S| ≤ 2, then δ(G) ≥ 3 forces a triangle, since neighbors of adjacent vertices
in S cannot alternate on C. Hence we have |S| ≥ 3.

Case 1. u1 or u2 has an internal neighbor.

Let u1 have an internal neighbor. Let w3 be the internal neighbor of u1 on
the bounded face F of P that contains w1 and u1, and let x be the next
vertex reached in following F . If x ∈ U , then [v, u1, w3, x] is a trap that
encloses a smaller flap than P , since w3 has a third neighbor inside that
trap. If x /∈ U , then x has a neighbor u′ ∈ U , and now [v, u1, w3, x, u′]
encloses a smaller flap.
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Case 2. u1 and u2 have no internal neighbors, but w1 or w2 does.

By symmetry, we may assume that w1 has an internal neighbor. Let y be
the internal neighbor of w1 following w1 on the bounded face F of P that
contains w2 and w1.

If y ∈ U , then there are two cycles formed by v, y, and part of C.
Whichever encloses a neighbor of y encloses a smaller flap.

If y ∈ W , then let z be the next vertex after y in following F . If z ∈ U ,
then the cycle [v, u1, w1, y, z] encloses a neighbor of y and yields a smaller
flap. If z ∈ W , then let u3 be a neighbor of z in U . Now [v, u1, w1, y, z, u3]
encloses the remaining neighbors of y, which must include a vertex u4 in U .
Since u4 must have another neighbor in the region enclosed by the 6-cycle,
[v, u1, w1, y, u4] or [v, u4, y, z, u3] is a trap enclosing a smaller flap.

Case 3. None of {u1, w1, w2, u2} has an internal neighbor.

Since the interior is nonempty and G is connected, v has an internal neigh-
bor. Let u3 be the one reached after u1 and v when following the face F
of P whose boundary contains all of C. Let w3 be the vertex after u3 on
F (since U is independent, w3 ∈ W ), and let z be the vertex after w3. If
z ∈ W , then we can choose u4 ∈ N(z) ∩ U − {u3}. Otherwise, z ∈ U . In
the two cases, [v, u3, w3, z, u4] or [v, u3, w3, z] encloses another neighbor of
u3 and yields a smaller flap.
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[3] J. Plesńık, Critical graphs of given diameter, Acta Fac. Rerum Natur. Univ.
Comenian. Math. 30 (1975) 71–93.

Received 29 January 2008
Accepted 9 May 2008

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

