Note

PATH AND CYCLE FACTORS OF CUBIC BIPARTITE GRAPHS

M. Kano ${ }^{1}$, Changwoo Lee ${ }^{2}$ and Kazuhiro Suzuki ${ }^{1}$
${ }^{1}$ Department of Computer and Information Sciences Ibaraki University, Hitachi 316-8511, Japan
and
${ }^{2}$ Department of Mathematics, University of Seoul Dongdaemoonku, Seoul 130-743, Korea
e-mail: kano@mx.ibaraki.ac.jp
e-mail: tutetuti@dream.com
Dedicated to Professor Hikoe Enomoto on his 60th Birthday

Abstract

For a set \mathcal{S} of connected graphs, a spanning subgraph F of a graph is called an \mathcal{S}-factor if every component of F is isomorphic to a member of S. It was recently shown that every 2 -connected cubic graph has a $\left\{C_{n} \mid n \geq 4\right\}$-factor and a $\left\{P_{n} \mid n \geq 6\right\}$-factor, where C_{n} and P_{n} denote the cycle and the path of order n, respectively (Kawarabayashi et al., J. Graph Theory, Vol. 39 (2002) 188-193). In this paper, we show that every connected cubic bipartite graph has a $\left\{C_{n} \mid n \geq 6\right\}$-factor, and has a $\left\{P_{n} \mid n \geq 8\right\}$-factor if its order is at least 8 .

Keywords: cycle factor, path factor, bipartite graph.
2000 Mathematics Subject Classification: 05C38, 05C70.

1. Introduction

We consider finite graphs without loops or multiple edges. A 3-regular graph is called a cubic graph. We denote by P_{n} and C_{n} the path and the cycle of order n, respectively. For a set \mathcal{S} of connected graphs, a spanning subgraph F of a graph G is called an \mathcal{S}-factor of G if every component of F
is isomorphic to one of members in S. Then a $\left\{C_{n} \mid n \geq 3\right\}$-factor is nothing but a 2 -factor, which is a spanning 2-regular subgraph.

In this paper we consider cycle-factors and path-factors of cubic graphs, whose components are cycles and paths, respectively. Notice that in a cubic graph, the edge-connectivity is equal to the connectivity. We begin with some known results on these factors.

Theorem 1 (Petersen [5]). Every 2-connected cubic graph has a $\left\{C_{n} \mid n \geq\right.$ $3\}$-factor.

Kaneko found a criterion for a graph to have a $\left\{P_{n} \mid n \geq 3\right\}$-factor, and obtained the following theorem as its corollary. Note that a short proof of Kaneko's theorem can be found in [3].

Theorem 2 (Kaneko [2]). Every connected cubic graph has a $\left\{P_{n} \mid n \geq 3\right\}$ factor.

Recently Kawarabayashi et al. [4] showed the next theorem.
Theorem 3 [4].
(i) Every 2-connected cubic graph has a $\left\{C_{n} \mid n \geq 4\right\}$-factor.
(ii) Every 2-connected cubic graph of order at least six has a $\left\{P_{n} \mid n \geq 6\right\}$ factor.

In this paper we shall prove the following theorem.

Theorem 4.

(i) Every connected cubic bipartite graph has a $\left\{C_{n} \mid n \geq 6\right\}$-factor.
(ii) Every connected cubic bipartite graph of order at least eight has $a\left\{P_{n} \mid n \geq 8\right\}$-factor.

We now give some remarks on the above Theorem 4. It follows immediately from Theorem 4 that every connected cubic bipartite graph G of order at most 16 has a Hamiltonian path since G has a $\left\{C_{n} \mid n \geq 6\right\}$-factor, which consists of at most two components, and a graph consisting of two disjoint cycles and one edge joining them has a Hamiltonian path. It is not mentioned in [4] that the conclusion of Theorem 3 is best possible. However, we can easily find 2 -connected cubic graphs having no $\left\{C_{n} \mid n \geq 5\right\}$-factors.

An example of such a cubic graph is given in Figure 1 (a), and it has many triangles. So we might expect that a 2 -connected triangle-free cubic graph has a $\left\{C_{n} \mid n \geq 5\right\}$-factor. But this is not true as shown in Figure 1 (b), which shows a 2 -connected triangle-free cubic graph having no $\left\{C_{n} \mid n \geq 5\right\}$-factor. Moreover, Theorem 4 is sharp in the sense that there exists a connected cubic bipartite graph having no $\left\{C_{n} \mid n \geq 8\right\}$-factor as shown in Figure 1 (c).

Figure 1. (a) A 2-connected cubic graph having no $\left\{C_{n} \mid n \geq 5\right\}$-factor;
(b) A 2-connected triangle-free cubic graph having no $\left\{C_{n} \mid n \geq 5\right\}$-factor;
(c) A 2-connected cubic bipartite graph having no $\left\{C_{n} \mid n \geq 8\right\}$-factor.

However we have been unable to find a 3 -connected cubic graph having no $\left\{C_{n} \mid n \geq 5\right\}$-factor or no $\left\{P_{n} \mid n \geq 7\right\}$-factor. So we propose the following conjecture and problem.

Conjecture 5. Every 3 -connected cubic graph of order at least six has a $\left\{C_{n} \mid n \geq 5\right\}$-factor.

Problem 6. Determine the maximum integer $k \geq 6$ for which every 3connected (or 2-connected) cubic graph of order at least $f(k)$ has a $\left\{P_{n} \mid n \geq k\right\}$-factor, where $f(k)$ is a suitable function of k.

We conclude this section with a conjecture on path-factors of 3 -connected cubic graphs.

Conjecture 7 (Akiyama and Kano [1]). Every 3-connected cubic graph of order $3 n$ has a $\left\{P_{3}\right\}$-factor.

2. Proof of Theorem 4

For a vertex v of a graph G, we denote by $\operatorname{deg}_{G}(v)$ the degree of v in G. For two disjoint vertex subsets X and Y of $V(G)$, we denote by $e_{G}(X, Y)$ the number of edges of G joining X to Y. We denote the order of G by $|G|$, which is equal to $|V(G)|$.

Lemma 8. Let $r \geq 2$ be an integer. Then every connected r-regular bipartite graph is 2 -edge connected. In particular, every connected cubic bipartite graph is 2 -connected.

Proof. Let G be a connected r-regular bipartite graph with bipartition $A \cup B$. Suppose that G has an bridge $e=u w \in E(G), u \in A, w \in B$. Then for a component D of $G-e$ containing u but not w, we have
$r|V(D) \cap A|-1=\sum_{x \in V(D) \cap A} \operatorname{deg}_{D}(x)=\sum_{x \in V(D) \cap B} \operatorname{deg}_{D}(x)=r|V(D) \cap B|$.
This is a contradiction. Hence G has no bridge, which implies that G is 2-edge connected.
We first prove (i) of Theorem 4.
Proof of (i). Let G be a connected cubic bipartite graph. We prove (i) by induction on the order $|G|$. There exists only one connected cubic bipartite graph of order six, which is $K_{3,3}$, and it has a $\left\{C_{6}\right\}$-factor. So we may assume $|G| \geq 8$.

By Lemma $8, G$ is 2 -connected, and so G has a 2 -factor F by Theorem 1, which is a $\left\{C_{n} \mid n \geq 4\right\}$-factor. We may assume that F contains a component D isomorphic to C_{4} since otherwise F is the desired $\left\{C_{n} \mid n \geq 6\right\}$-factor. Let $V(D)=\{a, b, c, d\}$, and $a s, b t, c u, d w$ be the edges of $G-E(D)$ incident with $V(D)$ (see Figure 2).

Since $G-E(F)$ is a 1-factor of $G,\{a s, b t, c u, d w\}$ is a set of independent edges, and so s, t, u, w are all distinct vertices of G. Let H be the graph obtained from G by removing the four vertices a, b, c, d and their incident edges, and by adding two new vertices x and y together with five new edges $s x, u x, t y, w y, x y$ (see Figure 2).

Then H is a connected cubic bipartite graph, and $|H|=|G|-2$. Hence H has a $\left\{C_{n} \mid n \geq 6\right\}$-factor F_{H} by induction. We shall obtain the desired $\left\{C_{n} \mid n \geq 6\right\}$-factor of G from F_{H} by considering the following two cases.

Figure 2. Cubic graphs G and H; Bold lines are edges of D.
Case 1. A component of F_{H} contains the edge $x y$.
In this case, without loss generality, we may assume that a component D of F_{H} contains $x y, s x$ and $y w$ by symmetry. Then $F_{H}-\{s x, x y, y w\}+$ $\{s a, a b, b c, c d, d w\}$ is the desired $\left\{C_{n} \mid n \geq 6\right\}$-factor of G.

H

G

H

Figure 3. Cubic graphs G and H and their $\left\{C_{n} \mid n \geq 6\right\}$-factors.
Case 2. No component of F_{H} contains the edge $x y$.
In this case F_{H} contains the four edges $s x, x u, t y, y w$. We first assume that these four edges are contained in the same component D of F_{H}. By symmetry, we may assume that a cycle D passes through s, x, u and then t, y, w (see Figure 3). Then we can obtain the desired $\left\{C_{n} \mid n \geq 6\right\}$-factor from F_{H} by removing the edges $s x, x u, t y, y w$ and by adding the edges $s a, a b, b t, u c, c d, d w$ as shown in Figure 3.

Next assume that the four edges $s x, x u, t y, y w$ are contained in two distinct components D_{1} and D_{2} of F_{H}. In this case we can obtain the desired $\left\{C_{n} \mid n \geq 6\right\}$-factor of G from F_{H} by removing $s x, x u, t y, y w$ and by adding $s a, a b, b t, w d, d c, c u$. Consequently Statement (i) of Theorem 4 is proved.
Statement (ii) of Theorem 4 follows immediately from the next Lemma 9 and the statement (i) of Theorem 4. It is shown in [4] that if a 2 -connected
cubic graph of order at least six has a $\left\{C_{n} \mid n \geq 4\right\}$-factor, then it has a $\left\{P_{n} \mid n \geq 6\right\}$-factor. This statement can be generalized as the following Lemma 9 without changing the proof.

Lemma 9 [4]. Let $k \geq 3$ be an integer. If a 2 -connected cubic graph G of order at least $k+2$ has a $\left\{C_{n} \mid n \geq k\right\}$-factor, then G has a $\left\{P_{n} \mid n \geq k+2\right\}$ factor.

References

[1] J. Akiyama and M. Kano, Path factors of a graph, Graphs and applications (Boulder, Colo., 1982), 1-21, Wiley-Intersci. Publ., Wiley, New York, 1985.
[2] A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two, J. Combin. Theory (B) 88 (2003) 195-218.
[3] M. Kano, G.Y. Katona and Z. Király, Packing paths of length at least two, Discrete Math. 283 (2004) 129-135.
[4] K. Kawarabayashi, H. Matsuda, Y. Oda and K. Ota, Path factors in cubic graphs, J. Graph Theory 39 (2002) 188-193.
[5] J. Petersen, Die Theorie der regulären Graphen, Acta Math. 15 (1891) 193-220.

