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Abstract

Bipartite graphs G = (L, R; E) and H = (L′, R′; E′) are bi-placeabe
if there is a bijection f : L ∪ R → L′ ∪ R′ such that f(L) = L′ and
f(u)f(v) /∈ E′ for every edge uv ∈ E. We prove that if G and H are
two bipartite balanced graphs of order |G| = |H | = 2p ≥ 4 such that
the sizes of G and H satisfy ‖ G ‖≤ 2p− 3 and ‖ H ‖≤ 2p− 2, and the
maximum degree of H is at most 2, then G and H are bi-placeable,
unless G and H is one of easily recognizable couples of graphs.

This result implies easily that for integers p and k1, k2, . . . , kl such
that ki ≥ 2 for i = 1, . . . , l and k1 + · · · + kl ≤ p − 1 every bipartite
balanced graph G of order 2p and size at least p2 − 2p + 3 contains
mutually vertex disjoint cycles C2k1

, . . . , C2kl
, unless G = K3,3−3K1,1.
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1. Preliminaries

Let G = (L,R;E) and G′ = (L′, R′;E′) be two bipartite graphs. |G| denotes
the order of G and by ‖ G ‖ its size (|G| = |L ∪ R|, ‖ G ‖= |E|). ∆R(G) is
the maximum vertex degree dG(x), when x ∈ R and ∆L(G) the maximum
degree d(y,G) when y ∈ L. The maximum vertex degree in G is denoted
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by ∆(G) (∆(G) = max{∆L(G),∆R(G)}). The corresponding minimum
degrees are denoted by δR(G), δL(G) and δ(G), respectively. A vertex x
with d(x,G) = 1 is said to be pendent. The set L(G) = L is called the left

hand side set, and R(G) = R the right hand side set of bipartition of the
vertex set V (G) = L ∪ R.

For x ∈ V (G), N(x;G) denotes the set of the neighbors of the vertex x
in G. Ck denotes a cycle of the length k.

G is called (p, q)-bipartite if |L(G)| = p and |R(G)| = q. If p = q then
G is said to be balanced. Kp,q stands for the complete bipartite graph with
|L(Kp,q)| = p and |R(Kp,q)| = q.

Bi-placement of G and G′ is a bijection f : L ∪ R → L′ ∪ R′ such
that f(L) = L′ and f(u)f(v) /∈ E ′ for every edge uv ∈ E. If there is a
bi-placement of G and G′ then we say that G and G′ are bi-placeable.

Note that the bipartite graphs H = ({a, b}, {c, d, e}; {ac, ad, be}) and
H ′ = ({a′, b′}, {c′, d′, e′}; {a′c′, b′c′}) are not bi-placeable, while it is very easy
to find a bi-placement of H and H ′′ = ({a′′, b′′}, {c′′, d′′, e′′}; {a′′c′′, a′′d′′})
(see Figure 1).
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Figure 1. H bi-placeable with H ′′ and non bi-placeable with H ′.

The notion of bi-placeability of bipartite graphs appeared in [7]. To say that
G and G′ are bi-placeable is equivalent to saying that the bipartite graph
G = (L,R;E) is a subgraph of the bipartite graph G′ = (L,R;E′) in the sense
of [4] (E′ = {xy : x ∈ L′, y ∈ R′, xy /∈ E′}). The problem of existence of a
matching or a hamiltonian cycle in a bipartite graph is, in fact, a problem of
bi-placeability of some bipartite graphs. For a survey of results concerning
placing of graphs and bi-placing of bipartite graphs we refer the reader to
[3, 11] or [12].

The following theorem was proved in [9].
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Theorem 1. Let G = (L,R;E) and H = (L′, R′, ;E′) be two bipartite bal-

anced graphs of order 2p such that ‖ G ‖≤ p − 1 and ‖ H ‖≤ 2p. Then G
and H are bi-placeable unless ‖ G ‖= p − 1, ‖ H ‖= 2p and either

• ∆L(G) ≤ 1 and H = K2,p ∪ Kp−2,0 or

• ∆R(G) ≤ 1 and H = Kp,2 ∪ K0,p−2 or

• G = K1,p−1 ∪ Kp−1,1 and ∆L(H) = 2 or else

• G = Kp−1,1 ∪ K1,p−1 and ∆R(H) = 2.

G = (L,R;E) is said to be 2k freely cyclable whenever, for any sequence
k1, . . . , kl of integers such that ki ≥ 2 for i = 1, . . . , l and k1 + · · ·+kl ≤ k, G
contains mutually vertex disjoint cycles C2k1

, . . . , C2kl
. The problem of the

existence of a union of independent cycles of prescribed lengths in a graph
was considered by many authors (see [1, 5, 6, 8, 10]).

Theorem 1 implies easily the following generalisation of a result of
Amar, Fournier and Germa (Theorem 2 in [2]).

Theorem 2. Let G = (L,R;E) be a bipartite balanced graph of order 2p and

size at least p2−p+1. Then G is 2p freely cyclable unless ‖ G ‖= p2−p+1
and G contains a penedent vertex.

In the next section we give a sufficient condition for a (p, p)−bipartite graphs
to be 2(p−1) freely cyclable. Namely, we shall prove that the only balanced
bipartite graph of order 2p and size at least p2 −2p+3 which is not 2(p−1)
freely cyclable is K3,3 minus a perfect matching.

2. Results

Theorem 3. Let p ≥ 2 be an integer, and let G = (L,R;E) and H =
(L′, R′;E′) be two (p, p)−bipartite graphs such that ‖ G ‖≤ 2p − 3, ‖ H ‖≤
2p − 2 and ∆(H) ≤ 2. Then G and H are bi-placeable unless one of the

following occurs:

(1) ∆L(G) = p and δL(H) > 0,

(2) ∆R(G) = p and δR(H) > 0,

(3) p = 3, G is a perfect matching 3K1,1, and H = K2,2 ∪ K1,1 (see
Figure 2),

(4) p = 6, G = K3,3 ∪ K3,3, H = C8 ∪ 2K1,1 (see Figure 3).
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The couples of graphs G and H described in (1), (2), (3) and (4) will be
called exceptional or exceptions (1), (2), (3) and (4), respectively.
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3K1,1 K2,2 ∪ K1,1

Figure 2. Exceptional couple (3).
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C8 ∪ 2K1,1

Figure 3. Exceptional couple (4).

Theorem 3 implies easily the following corollary announced already at the
end of Section 1.

Corollary 4. Let G be a balanced bipartite graph of order |G| = 2p and size

‖ G ‖≥ p2 − 2p + 3. Then G is 2(p − 1) freely cyclable unless p = 3 and

G = K3,3 − 3K1,1 = C6.

For p ≥ 3 the graph Hp,p = K2,p−1 ∪ Kp−2,1 is (p, p)−bipartite of order 2p
and size 2p − 2 which is not bi-placeable with any union of vertex disjoint
cycles C2l1 ∪ · · · ∪ C2lq , where l1 + · · · + lq = p− 1 and l1, . . . , lq ≥ 2. Hence
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Theorem 3 may not be improved by a simple rising the size of the graph G.
The graph Hp,p (the complement of Hp,p in Kp,p) proves that also Corollary
4 is sharp.

3. Proof of Theorem 3

The proof is by induction on p. It is easy to verify that the theorem holds
for p = 2, 3. Suppose that p ≥ 4 and the theorem holds for p′ provided
that 2 ≤ p′ < p. Note that without loss of generality, we may assume that
‖ G ‖= 2p − 3, ‖ H ‖= 2p − 2 and ∆(H) = 2. Then the graph H is a
union of a number of (even) cycles and exactly two (possibly trivial) paths.
Moreover, since H is balanced, either both paths have odd lengths (even
order) or each path has an even length. In the later case, if the end vertices
of one path are in L′, then the end vertices of the second paths are in R′

and vice versa.

We shall consider two cases and several subcases.

Case 1. There is an isolated vertex z in the set V (H).

Without loss of generality we may assume that z ∈ R′. Let x be a vertex of
minimal degree in L. It follows immediately that d(x,G) ≤ 1.

Subcase 1.1. x is an isolated vertex.

Let y ∈ R, d(y,G) = ∆R(G), w ∈ L′ and d(w,H) = 2. If the graphs
G′ = G − {x, y} and H ′ = H − {w, z} are m.p. then a bi-placement of the
graphs G and H is obvious. Hence, we may suppose that the couple G′ and
H ′ is one of the exceptions (1)–(4). Note that H ′ 6= C4 ∪ K1,1, and that w
may be choosen in such a way that H ′ 6= C8 ∪ 2K1,1. Hence we have only
two subcases to consider.

Subcase 1.1a. ∆R(G′) = p − 1 and δR(H ′) ≥ 1.

There is a vertex y′ ∈ R(G′) such that d(y′, G′) = p−1. Hence d(y,G) = p−1
and we have e(G) ≥ 2p − 2, a contradiction.

Subcase 1.1b. ∆L(G′) = p − 1 and δL(H ′) ≥ 1.

Let x1 ∈ L(G′) and d(x1, G
′) = p−1. If d(x1, G) = p then the couple G and

H form the first exception (1). If d(x1, G) = p − 1 then we can choose the
following vertices: y1 – a pendent vertex in R, w1 – a pendent vertex in L′.
Let z1 ∈ N(w1,H). Then d(z1,H) = 2 and the graphs G′′ = G−{x, y, x1, y1}
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and H ′′ = H − {w1, w2, z, z1}, where w2 is the second neighbour of z1, are
bi-placeable by Theorem 1.

Let f be a bi-placement of G′′ and H ′′. Then we can extend f to a
packing f∗ of G and H by letting f∗(v) = f(v), for v ∈ V (H ′′), f∗(w1) = x1,
f∗(w2) = x, f∗(z) = y1 and f∗(z1) = y.

Subcase 1.2. d(x,G) = 1 and the neighbor y of x is not pendent
(d(y,G) ≥ 2).

So, we can apply the induction hypothessis to the graphs G′

1
= G−{x, y}

and H ′

1
, where H ′

1
is the graph H ′ defined in Subcase 1.1. If G′

1
and H ′

1
are

bi-placeable then it is easy to check that G and H are bi-placeable too.
So we may suppose that the couple G′

1
,H ′

1
is one of the exceptions.

Note that since δL(G) > 0, we have G′

1
6= K3,3 ∪ K3,3, and since ∆(H) = 2,

we have H ′

1
6= C4∪K1,1. Hence G′

1
and H ′

2
may be the only one of exceptions

(1)–(2).

Subcase 1.2a. ∆R(G′

1
) = p − 1 and δR(H ′

1
) ≥ 1.

Let y1 ∈ R(G′

1
), d(y1, G) = p − 1, x1 ∈ N(y1, G) and d(x1, G) = 1. Observe

that we may apply the induction hypothessis to the graphs G2 = G−{x1, y1}
and H2 = H ′. From this, we can now map the vertex w to the vertex x1

and the vertex z to y1 and we can extend a bi-placement of G2 and H2 to a
bi-placement of G and H.

Subcase 1.2b. ∆L(G′

1
) = p − 1 and δL(H ′

1
) ≥ 1.

Since ∆L(G) ≥ p−1 and δL(G) ≥ 1, we have ‖ G ‖≥ 2p−2, a contradiction.

Subcase 1.3. There is no isolated vertex in L and the neighbors of
pendent vertices of L are pendent.

Let xy be an isolated edge of G, x ∈ L, y ∈ R.

Subcase 1.3.1. There is an isolated vertex w in L′.
Note that H−{w, z} is a union of vertex disjoint even cycles. Let x′ ∈ L−{x}
and y′ ∈ R′−{y} be choosen in such a way that the sum of degrees d(x′, G)+
d(y′, G) is maximum. One may check easily that d(x′, G) + d(y′, G) ≥ 4.
Since p ≥ 4, there exist two nonadjacent vertices w ′ ∈ L′ − {w} and z′ ∈
R′ − {z}. Observe that d(w′,H) = d(z′,H) = 2. The graphs G′

3
= G −

{x, y, x′, y′} and H ′

3
= H − {w, z, w′, z′} verify the induction hypothesis.

Moreover, an easy computation shows that ∆(G′

3
) < p − 2. It is also clear

that H ′

3
6= K2,2 ∪K1,1 and H ′

3
6= C8 ∪ 2K1,1. Hence there is a bi-placement,
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say f , of H ′

3
and G′

3
. The function f∗ defined by f∗(v) = f(v), for v ∈ V (H ′

3
),

f∗(w) = x′, f∗(z) = y′, f∗(w
′) = x and f∗(z

′) = y is a bi-placement of H
and G.

Subcase 1.3.2. The minimal vertex degree in L′ is equal to one.

Let w be such a vertex of L′ that d(w,H) = 1 and let z ′ ∈ R′ be the
neighbour of w. Note that H − {w, z} is a union of a path of odd length
and a number of even cycles.

We have d(z′,H) = 2. Since p ≥ 4 we may choose w′ ∈ L′ such that
d(w′,H) = 2 and (w′, z′) /∈ E′. We set G′

4
= G′

3
, where G′

3
is defined in

Subcase 1.3.1, and H ′

4
= H − {w, z, w′, z′}. The graphs G′

4
and H ′

4
are

bi-placeable, by the induction hypothesis. Every bi-placement of H ′

4
and G′

4

may be extended to a bi-placement of H and G by mapping the vertex w
to x′, z to y′, w′ to x and z′ to y.

Case 2. There is no isolated vertex in V (H).

Then the graph H is a sum of two non trivial paths P1, P2 and independent
cycles.

Subcase 2.1. The paths P1 and P2 have length 1.

Let P1 = (w, z) and P2 = (w′, z′), where w,w′ ∈ L′ and z, z′ ∈ R′, and let
w1 ∈ L′ and z1 ∈ R′ be two vertices of degree 2 in H.

Subcase 2.1.1. δL(G) = δR(G) = 0.

Let x ∈ L and y ∈ R be two isolated vertices of G and let x1 ∈ L and y1 ∈ R
by two nonadjacent vertices of G chosen such that the degree sum

(1) d(x1, G) + d(y1, G)

is maximal.

Under the hypothesis of Subcase 2.1.1 we shall prove two claims.

Claim 1. If there is in G a vertex of degree p − 1 then G and H are bi-
placeable.

Proof of Claim 1. Suppose that x0 ∈ L is a vertex of degree p − 1 in G.
Then ‖ G − {x0, y} ‖= 2p − 3 − (p − 1) = (p − 1) − 1. Hence, by Theorem
1, there is a bi-placement f∗ of G − {x0, y} and H − {w, z} which may be
easily extended to a bi-placement of G and H.
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Claim 2. If d(x1, G) + d(y1, G) ≥ 4 then G and H are bi-placeable.

Proof of Claim 2. If G′ = G − {x, y, x1, y1} and H ′ = H − {w, z, w1, z1}
are bi-placeable, then we extend a bi-placement of G′ and H ′ to the bi-
placement of G and H mapping x1 7→ w, y1 7→ z, x 7→ w1, y 7→ z1.

So, by the induction hypothesis, G′ and H ′ is one of exceptions (1)–(4)
described in the theorem. Note that H ′ 6= K2,2 ∪K1,1 and H ′ 6= C8 ∪ 2K1,1.
So let us suppose that ∆(G′) = p − 2. Without loss of generality we may
assume that there is a vertex x′ ∈ L − {x, x1}, such that d(x′, G′) = p − 2.
If x′y1 ∈ E then d(x′, G) = p − 1 and we apply Claim 1. If x′y1 /∈ E then,
by the maximality of the sum (1), we have d(x1, G) = p− 2 and the graphs
G′′ = G−{x1, x

′, y1, y} and H ′′ = H −{w,w′, z, z′} are bi-placeable, unless
H ′′ = K2,2, but then G = K1,1 ∪ K1,1 ∪ K2,2 and H = 2K1,1 ∪ K2,2 are
bi-placeable. Any bi-placement of G′′ and H ′′ may be easily extended to a
bi-placement of G and H.

By Claim 2 we may suppose that d(x1, G) + d(y1, G) < 4. Consider the
following three subcases.

Subcase 2.1.1.1. d(x1, G) + d(y1, G) = 1.
Without loss of generality we may suppose that d(x1, G) = 1 and d(y1, G) =
0. By the maximality of the sum (1) we have d(u,G) ≤ 1 for every u ∈ L
and therefore 2p − 3 =‖ G ‖≤ p − 1, contrary to p ≥ 4.

Subcase 2.1.1.2. d(x1, G) + d(y1, G) = 2.

• d(x1, G) = d(y1, G) = 1.
Then the degree of each vertex in L which is not a neighbour of y1 is 1
at the most. Denote by x2 the neighbor of y1. We have 2p − 3 =‖ G ‖≤
p − 2 + d(x2, G). Hence d(x2, G) = p − 1 and the theorem follows from
Claim 1.

• d(x1, G) = 0, d(y1, G) = 2.
Then all the vertices of L which are not the neighbors of y1 are isolated.
Since ‖ G ‖= 2p− 3 one of the two neighbors of y1 has degree at least p− 1
and we may apply Claim 1.

Subcase 2.1.1.3. d(x1, G) + d(y1, G) = 3.

• d(x1, G) = 3, d(y1, G) = 0.
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Note that in this subcase we have necessarily p ≥ 5 (since in R, except of
the vertices y and y1 which are isolated, we have three neighbors of x1).
Let y2, y3 and y4 be the neighbors of x1. By the maximality of the sum
(1) each vertex of R which is not a neighbor of x1 is isolated. One of the
vertices y2, y3, y4 has the degree equal to 3 otherwise 2p−3 ≤ 6 and therefore
p ≤ 4, which is a contradiction. Without loss of generality we may suppose
d(y2, G) = 3. Note that now the vertices of L which are not the neighbors
of y2 are isolated in G. Hence 2p − 3 =‖ G ‖≤ 9 and, in consequence,
either p = 5 or p = 6. If p = 6 then G = K3,3 ∪ K3,3 and H = C8 ∪ 2K1,1

(exceptional couple (4)). If p = 5 then H = C6 ∪ 2K1,1 and G is one
of two graphs G1, G2 depicted in Figure 4 (note that in G2 there are two
nonadjacent vertices u ∈ L and v ∈ R with degree sum equal to 4).
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Figure 4. Two bi-placeable graphs with G = C6 ∪ 2K1,1.

• d(x1, G) = 2, d(y1, G) = 1 and there is no vertex of degree greater
than 2 in G.

In R there is one isolated vertex (the vertex y), one pendent vertex (the
vertex y1) and all remaining vertices have their degrees equal to 2. Hence
p = 4 (otherwise there is a vertex y′ ∈ R such that d(x1, G)+d(y′, G) = 4 and
x1 and y′ are nonadjacent, so Claim 2 is applicable), G = K1,1 ∪ K1,1 ∪ C4,
H = 2K1,1 ∪ K2,2 and G and H are bi-placeable.

Subcase 2.1.2. δR(G) = 0 and δL(G) = 1.

Let y ∈ R be an isolated vertex of G, x1 ∈ L a vertex of degree 1 and y1 ∈ R
its neighbor in G. Let x2 ∈ L be a vertex not adjacent to y1 such that the
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sum

(2) d(x2, G) + d(y1, G)

is maximum (note, that if d(y1, G) = p then G and H form an exceptional
couple (2)).

Subcase 2.1.2.1. d(x2, G) + d(y1, G) ≥ 4.

Then, by the induction hypothesis, either G′ = G−{x1, y, x2, y1} and H ′ =
H −{w, z, w1, z1} are bi-placeable or G′ and H ′ form an exceptional couple
(1)–(4).

• If there is a bi-placement of G′ and H ′, then it may be extended to a
bi-placement of G and H by mapping x2 7→ w, y1 7→ z, x1 7→ w1, y 7→ z1.

• Suppose that ∆L(G′) = p − 2. Let x3 ∈ L − {x1, x2} be a vertex
of degree p − 2 in G′. Since δL(G) = 1 and (p − 2) + (p − 1) =‖ G ‖, we
have d(x3, G) = p − 2. Moreover, since x3 and y1 are nonadjacent and, by
the maximality of the degree sum (2), we have also d(x2, G) = p − 2 and
2p − 3 =‖ G ‖≥ 2(p − 2) + p − 2. This gives p ≤ 3, a contradiction.

• Suppose that there is a vertex y2 ∈ R(G′) such that d(y2, G
′) = p− 2.

If d(y2, G) = p − 1 then G − {x1, y2} and H − {w, z} are bi-placeable by
Theorem 1, and bi-placeability of G and H follows easily. So we may
assume that x2 and y2 are nonadjacent. Since d(x2, G) ≥ 1, we have
‖ G−{x2, y2} ‖≤ p−2 and, again by Theorem 1, G−{x2, y2} and H−{w, z}
are bi-placeable. x2 7→ w, y2 7→ z extands any bi-placement of G − {x2, y2}
and H − {w, z} to a bi-placement of G and H.

Note that, since H contains two independent edges, H ′ 6= K2,2 ∪ K1,1. For
p−2 = 6 the vertices w1 and z1 may be chosen in such a way that H ′ 6= C8∪
2K1,1. Hence G′ and H ′ may be supposed to form neither the exceptional
couple (3) nor the exceptional couple (4).

Subcase 2.1.2.2. If u, v ∈ L and t ∈ R are such vertices of G that
d(u,G) = 1, t is the neighbor of u and the vertices v and t are nonadjacent,
then

(3) d(v,G) + d(t, G) < 4.
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• If d(y1, G) ≥ 3, then either d(y1, G) = p and G and H form an
excluded couple, or there is a vertex s ∈ L not adjacent to y1. Since
δL(G) ≥ 1, this contradicts (3).

• Suppose that d(y1, G) = 2 and let x3 denote the second neighbor of y1.

By (3) we have d(a,G) ≤ 1 for every a ∈ L−{x1, x3}. Hence d(a,G) = 1 for
every a ∈ L−{x1, x3} and 2p−3 =‖ G ‖= 1+d(x3, G)+p−2 = d(x3, G)+p−1
and therefore d(x3, G) = p − 2.

Let y2 ∈ R be a vertex of the maximum degree in R, such that y2 6= y1

(since p ≥ 4 we check at once that such a vertex exists). We have ‖ G −
{x1, x3, y, y2} ‖≤ (2p− 3)− p = p− 3, ‖ H −{w, z, w′, z′} ‖≤ 2p− 4 and, by
Theorem 1, there is a bi-placement of G−{x1, x3, y, y2} and H−{w, z, w′, z′}
which may be easily extended to a bi-placement of G and H.

• Hence we may suppose that the neighbor of every pendent vertex
u ∈ L is also pendent.

It is clear by (3), that for every u ∈ L we have d(u,G) ≤ 2. Since
δL(G) ≥ 1, we have exactly three vertices of degree 1 in L(G) while the
remaining p − 3 vertices have their degree equal to 2. Let x1 ∈ L, y1 ∈ R
be two pendent vertices adjacent in G; x2 ∈ L such that d(x2, G) = 1
and y3 ∈ R of maximum degree in R (note that d(y3, G) ≥ 2). In H we
choose the vertices w,w′ ∈ L′, z ∈ R′ (each of which has its degree equal
to 1) and z1 ∈ R′ with d(z1,H) = 2. We have ‖ G − {x1, y1, x2, y3} ‖≤
‖ G ‖ −4 = 2(p − 2) − 3 and ‖ H − {w, z, w′, z1} ‖≤ 2(p − 2). By the
induction hypothesis G′ = G − {x1, y1, x2, y3} and H ′ = H − {w, z, w′, z1}
are bi-placeable (note that G′ and H ′ are not an excluded couple). Every
bi-placement of G′ and H ′ may be extended to a bi-placement of G and H
by mapping x1 7→ w′, x2 7→ w, y1 7→ z1, y3 7→ z.

Subcase 2.1.3. There are no isolated vertices in V (G) (δ(G) ≥ 1).

Let x ∈ L, y ∈ R be nonadjacent pendent vertices in V (G), y1 ∈ N(x,G),
x1 ∈ N(y,G) and let w,w1 ∈ L′, z, z1 ∈ R′ be such that wz and w1z1 are
isolated edges in H.

Subcase 2.1.3.1. We can choose vertices x and y in such a way that
(x1, y1) /∈ E.

Put G′

3
= G − {x, y} and H ′

3
= H − {w, z1}. Note that ∆(G′

3
) < p − 1,

otherwise since δ(G) ≥ 1 we would have ‖ G ‖≥ 2(p− 1). For p = 4 we may
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choose x and y such that G′

3
6= 3K1,1. It is also clear that H ′

3
6= C8 ∪ 2K1,1.

Hence, by the induction hypothesis, there is a bi-placement of G′

3
and H ′

3
.

• If f(x1) 6= w1 and f(y1) 6= z then we extend f to a bi-placing of G
and H by mapping x 7→ w, y 7→ z1.

• If f(x1) = w1 and f(y1) = z then f∗ defined by: f∗(v) = f(v) for every
v ∈ V (G′

3
) − {x1, y1}, f∗(x) = w, f∗(y1) = z1, f∗(y) = z and f∗(x1) = w1 is

a desired bi-placement of G and H.

• If f(x1) = w1 and f(y1) = z′ 6= z then there is a vertex y′ ∈ R(G′

3
)

such that f(y′) = z. Define f∗ by the formula f∗(v) = f(v) for every
v ∈ V (G′

3
) − {y1}, f∗(x) = w, f∗(y1) = z1 and f∗(y) = z′.

Subcase 2.1.3.2. For each choice of vertices x and y we have (x1, y1) ∈ E.
If d(x1, G) = p or d(y1, G) = p then G and H are exceptional and the
theorem is proved. So assume that d(x1, G) ≤ p − 1 and d(y1, G) ≤ p − 1.
Note that G′

3
= G − {x, y} and H ′

3
= H − {w, z1} is not an exceptional

couple of graphs hence, by induction hypothesis, there is a bi-placement of
G′

3
and H ′

3
. If f(x1) 6= w1 and f(y1) 6= z we extend f to a bi-placement of

G and H easily.
So, we suppose that f(x1) = w1 or f(y1) = z. Without loss of generality

we may assume that f(x1) = w1. Then there is a vertex y2 ∈ R − N(x1, G)
and a vertex z2 ∈ R(H ′

3
) such that f(y2) = z2. We map y 7→ z2, y2 7→ z1 and

• if f(y1) 6= z then x 7→ w,

• if f(y1) = z then choose x2 ∈ L − N(y1, G). Let w2 = f(x2). Map
x 7→ w2, x2 7→ w.

Subcase 2.2. |P1| ≥ 3 or |P2| ≥ 3.

Subcase 2.2.1. There is an isolated vertex, say y, in V (G).
Without loss of generality we may assume that y ∈ R. Let x ∈ L and
d(x,G) = ∆L(G). There is a pendent vertex w ∈ L′ such that, if z ∈
N(w,H) then d(z,H) = 2. If the graphs G′ = {x, y} and H ′ = {w, z} are
bi-placeable, then there is also a bi-placement of G and H. Note also, that
the the couple G′ and H ′ is neither exception (3) nor (4) of the theorem.
Hence, by the induction hypothesis, ∆(G′) = p−1. Note that since ∆L(G) =
d(x,G) we have ∆(G′) = ∆R(G′), otherwise ‖ G ‖≥ 2(p−1), a contradiction.
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Let y1 ∈ R(G′) be a vertex of degree p − 1 in G′. If d(y1, G) = p then
G and H is an exceptional couple of graphs. For d(y1, G) = p − 1 define
G′′ = G−{x, x1, y, y1} where x1 ∈ L(G) is a pendent vertex of G and H ′′ =
H −{w1, w2, z1, z2}, where w1, w2 ∈ L(H), z1, z2 ∈ R(H), z1 is pendent, w1

is the neighbor of z1, z2 is a neighbor of w1 if d(w1, G) = 2, otherwise z2 is
any vertex of R(G) − {z1}, and w2 is any vertex of L(G) − {w1}. We have
‖ G′′ ‖≤ 2p−3−(p−1+2) < p−3 and ‖ H ′′ ‖< 2(p−2) hence, by Theorem 1,
G′′ and H ′′ are bi-placeable. The mappings x 7→ w1, x1 7→ w2, y1 7→ z1, y 7→
z2 extend any bi-placement of G′′ and H ′′ to a bi-placement of G and H.

Subcase 2.2.2. There is no isolated vertex in V (G).

There are pendent vertices x ∈ L and y ∈ R such that (x, y) /∈ E. Let y1 be
the neighbor of x and x1 the neighbor of y in G.

It is easily seen that in H there are pendent vertices w ∈ L′ and z ∈ R′,
such that their respective neighbors z ′ ∈ R′ and w′ ∈ L′ have their degrees
equal to 2. Note that the couple of graphs G′ = G − {x, y} and H ′ =
H − {w, z′} is not exceptional. Hence, by induction hypothesis, G′ and H ′

are bi-placeable.

Let w1 be the second neighbor of z ′ in H (w1 6= w). If there is a bi-
placement f of G′ and H ′ such that f(x1) 6= w1 then f may be extended by
the mapping x → w, y → z′ to a bi-placement of G and H. Therefore we
may assume that f(x1) = w1.

We shall prove that d(x1, G) = p−2 and for every v ∈ L−{x1} d(v,G) =
1 (unless G and H are bi-placeable). It is clear that d(x1, G) ≤ p − 2, since
there is no isolated vertex in L and

∑
v∈L d(v,G) = 2p − 3. Moreover, if

d(x1, G) = p − 2 then all remaining vertices of L are pendent.

Suppose that d(x1, G) ≤ p − 3. Then there is a vertex y2 ∈ R such
that y2 6= y1, x1y2 /∈ E(G) and f(x1)f(y2) /∈ E(H) (we remember that
w1 has in H at most two neighbors). Let z ′′ denote the vertex f(y2) and
define f∗ : V → V ′ by the following formulas: f∗(v) = f(v) for v 6= x, y, y2,
f∗(x) = w, f∗(y2) = z′ and f∗(y) = z′′. f∗ is a bi-placement of G and H.

In the exactly the same way we prove that either G and H are bi-
placeable, or d(y1, G) = p − 2.

Observe now that either

• x1 and y1 are adjacent and G is the union of two independent edges
and two stars K1,p−3 and Kp−3,1 with adjacent centers (see Figure 5a) or
else
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• x1 and y1 are nonadjacent and G is the union of two stars K1,p−2,
Kp−2,1 and an isolated edge (see Figure 5(b)).
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Figure 5

To finish the proof one may verify easily that then G and H (which is a
union of two non-trivial paths and some cycles) are bi-placeable.
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