INDEPENDENT CYCLES AND PATHS IN BIPARTITE BALANCED GRAPHS

Beata Orchel and A. Pawee Wojda
Faculty of Applied Mathematics
AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: orchel@uci.agh.edu.pl
e-mail: wojda@uci.agh.edu.pl

Abstract

Bipartite graphs $G=(L, R ; E)$ and $H=\left(L^{\prime}, R^{\prime} ; E^{\prime}\right)$ are bi-placeabe if there is a bijection $f: L \cup R \rightarrow L^{\prime} \cup R^{\prime}$ such that $f(L)=L^{\prime}$ and $f(u) f(v) \notin E^{\prime}$ for every edge $u v \in E$. We prove that if G and H are two bipartite balanced graphs of order $|G|=|H|=2 p \geq 4$ such that the sizes of G and H satisfy $\|G\| \leq 2 p-3$ and $\|H\| \leq 2 p-2$, and the maximum degree of H is at most 2 , then G and H are bi-placeable, unless G and H is one of easily recognizable couples of graphs.

This result implies easily that for integers p and $k_{1}, k_{2}, \ldots, k_{l}$ such that $k_{i} \geq 2$ for $i=1, \ldots, l$ and $k_{1}+\cdots+k_{l} \leq p-1$ every bipartite balanced graph G of order $2 p$ and size at least $p^{2}-2 p+3$ contains mutually vertex disjoint cycles $C_{2 k_{1}}, \ldots, C_{2 k_{l}}$, unless $G=K_{3,3}-3 K_{1,1}$.

Keywords: bipartite graphs, bi-placing, path, cycle.
2000 Mathematics Subject Classification: 05C38, 05C35.

1. Preliminaries

Let $G=(L, R ; E)$ and $G^{\prime}=\left(L^{\prime}, R^{\prime} ; E^{\prime}\right)$ be two bipartite graphs. $|G|$ denotes the order of G and by $\|G\|$ its size $(|G|=|L \cup R|,\|G\|=|E|) . \Delta_{R}(G)$ is the maximum vertex degree $d_{G}(x)$, when $x \in R$ and $\Delta_{L}(G)$ the maximum degree $d(y, G)$ when $y \in L$. The maximum vertex degree in G is denoted

[^0]by $\Delta(G)\left(\Delta(G)=\max \left\{\Delta_{L}(G), \Delta_{R}(G)\right\}\right)$. The corresponding minimum degrees are denoted by $\delta_{R}(G), \delta_{L}(G)$ and $\delta(G)$, respectively. A vertex x with $d(x, G)=1$ is said to be pendent. The set $L(G)=L$ is called the left hand side set, and $R(G)=R$ the right hand side set of bipartition of the vertex set $V(G)=L \cup R$.

For $x \in V(G), N(x ; G)$ denotes the set of the neighbors of the vertex x in $G . C_{k}$ denotes a cycle of the length k.
G is called (p, q)-bipartite if $|L(G)|=p$ and $|R(G)|=q$. If $p=q$ then G is said to be balanced. $K_{p, q}$ stands for the complete bipartite graph with $\left|L\left(K_{p, q}\right)\right|=p$ and $\left|R\left(K_{p, q}\right)\right|=q$.

Bi-placement of G and G^{\prime} is a bijection $f: L \cup R \rightarrow L^{\prime} \cup R^{\prime}$ such that $f(L)=L^{\prime}$ and $f(u) f(v) \notin E^{\prime}$ for every edge $u v \in E$. If there is a bi-placement of G and G^{\prime} then we say that G and G^{\prime} are bi-placeable.

Note that the bipartite graphs $H=(\{a, b\},\{c, d, e\} ;\{a c, a d, b e\})$ and $H^{\prime}=\left(\left\{a^{\prime}, b^{\prime}\right\},\left\{c^{\prime}, d^{\prime}, e^{\prime}\right\} ;\left\{a^{\prime} c^{\prime}, b^{\prime} c^{\prime}\right\}\right)$ are not bi-placeable, while it is very easy to find a bi-placement of H and $H^{\prime \prime}=\left(\left\{a^{\prime \prime}, b^{\prime \prime}\right\},\left\{c^{\prime \prime}, d^{\prime \prime}, e^{\prime \prime}\right\} ;\left\{a^{\prime \prime} c^{\prime \prime}, a^{\prime \prime} d^{\prime \prime}\right\}\right)$ (see Figure 1).

Figure 1. H bi-placeable with $H^{\prime \prime}$ and non bi-placeable with H^{\prime}.

The notion of bi-placeability of bipartite graphs appeared in [7]. To say that G and G^{\prime} are bi-placeable is equivalent to saying that the bipartite graph $G=(L, R ; E)$ is a subgraph of the bipartite graph $\overline{G^{\prime}}=\left(L, R ; \overline{E^{\prime}}\right)$ in the sense of [4] $\left(\overline{E^{\prime}}=\left\{x y: x \in L^{\prime}, y \in R^{\prime}, x y \notin E^{\prime}\right\}\right)$. The problem of existence of a matching or a hamiltonian cycle in a bipartite graph is, in fact, a problem of bi-placeability of some bipartite graphs. For a survey of results concerning placing of graphs and bi-placing of bipartite graphs we refer the reader to $[3,11]$ or $[12]$.

The following theorem was proved in [9].

Theorem 1. Let $G=(L, R ; E)$ and $H=\left(L^{\prime}, R^{\prime}, ; E^{\prime}\right)$ be two bipartite balanced graphs of order $2 p$ such that $\|G\| \leq p-1$ and $\|H\| \leq 2 p$. Then G and H are bi-placeable unless $\|G\|=p-1,\|H\|=2 p$ and either

- $\Delta_{L}(G) \leq 1$ and $H=K_{2, p} \cup K_{p-2,0}$ or
- $\Delta_{R}(G) \leq 1$ and $H=K_{p, 2} \cup K_{0, p-2}$ or
- $G=K_{1, p-1} \cup \overline{K_{p-1,1}}$ and $\Delta_{L}(H)=2$ or else
- $G=K_{p-1,1} \cup \overline{K_{1, p-1}}$ and $\Delta_{R}(H)=2$.
$G=(L, R ; E)$ is said to be $2 k$ freely cyclable whenever, for any sequence k_{1}, \ldots, k_{l} of integers such that $k_{i} \geq 2$ for $i=1, \ldots, l$ and $k_{1}+\cdots+k_{l} \leq k, G$ contains mutually vertex disjoint cycles $C_{2 k_{1}}, \ldots, C_{2 k_{l}}$. The problem of the existence of a union of independent cycles of prescribed lengths in a graph was considered by many authors (see $[1,5,6,8,10]$).

Theorem 1 implies easily the following generalisation of a result of Amar, Fournier and Germa (Theorem 2 in [2]).

Theorem 2. Let $G=(L, R ; E)$ be a bipartite balanced graph of order $2 p$ and size at least $p^{2}-p+1$. Then G is $2 p$ freely cyclable unless $\|G\|=p^{2}-p+1$ and G contains a penedent vertex.

In the next section we give a sufficient condition for a (p, p) -bipartite graphs to be $2(p-1)$ freely cyclable. Namely, we shall prove that the only balanced bipartite graph of order $2 p$ and size at least $p^{2}-2 p+3$ which is not $2(p-1)$ freely cyclable is $K_{3,3}$ minus a perfect matching.

2. Results

Theorem 3. Let $p \geq 2$ be an integer, and let $G=(L, R ; E)$ and $H=$ ($L^{\prime}, R^{\prime} ; E^{\prime}$) be two (p, p)-bipartite graphs such that $\|G\| \leq 2 p-3,\|H\| \leq$ $2 p-2$ and $\Delta(H) \leq 2$. Then G and H are bi-placeable unless one of the following occurs:
(1) $\Delta_{L}(G)=p$ and $\delta_{L}(H)>0$,
(2) $\Delta_{R}(G)=p$ and $\delta_{R}(H)>0$,
(3) $p=3, G$ is a perfect matching $3 K_{1,1}$, and $H=K_{2,2} \cup \overline{K_{1,1}}$ (see Figure 2),
(4) $p=6, G=K_{3,3} \cup \overline{K_{3,3}}, H=C_{8} \cup 2 K_{1,1}$ (see Figure 3).

The couples of graphs G and H described in (1), (2), (3) and (4) will be called exceptional or exceptions (1), (2), (3) and (4), respectively.

Figure 2. Exceptional couple (3).

Figure 3. Exceptional couple (4).
Theorem 3 implies easily the following corollary announced already at the end of Section 1.

Corollary 4. Let G be a balanced bipartite graph of order $|G|=2 p$ and size $\|G\| \geq p^{2}-2 p+3$. Then G is $2(p-1)$ freely cyclable unless $p=3$ and $G=K_{3,3}-3 K_{1,1}=C_{6}$.

For $p \geq 3$ the graph $H_{p, p}=K_{2, p-1} \cup \overline{K_{p-2,1}}$ is (p, p)-bipartite of order $2 p$ and size $2 p-2$ which is not bi-placeable with any union of vertex disjoint cycles $C_{2 l_{1}} \cup \cdots \cup C_{2 l_{q}}$, where $l_{1}+\cdots+l_{q}=p-1$ and $l_{1}, \ldots, l_{q} \geq 2$. Hence

Theorem 3 may not be improved by a simple rising the size of the graph G. The graph $\overline{H_{p, p}}$ (the complement of $H_{p, p}$ in $K_{p, p}$) proves that also Corollary 4 is sharp.

3. Proof of Theorem 3

The proof is by induction on p. It is easy to verify that the theorem holds for $p=2,3$. Suppose that $p \geq 4$ and the theorem holds for p^{\prime} provided that $2 \leq p^{\prime}<p$. Note that without loss of generality, we may assume that $\|G\|=2 p-3,\|H\|=2 p-2$ and $\Delta(H)=2$. Then the graph H is a union of a number of (even) cycles and exactly two (possibly trivial) paths. Moreover, since H is balanced, either both paths have odd lengths (even order) or each path has an even length. In the later case, if the end vertices of one path are in L^{\prime}, then the end vertices of the second paths are in R^{\prime} and vice versa.

We shall consider two cases and several subcases.
Case 1. There is an isolated vertex z in the set $V(H)$. Without loss of generality we may assume that $z \in R^{\prime}$. Let x be a vertex of minimal degree in L. It follows immediately that $d(x, G) \leq 1$.

Subcase 1.1. x is an isolated vertex.
Let $y \in R, d(y, G)=\Delta_{R}(G), w \in L^{\prime}$ and $d(w, H)=2$. If the graphs $G^{\prime}=G-\{x, y\}$ and $H^{\prime}=H-\{w, z\}$ are m.p. then a bi-placement of the graphs G and H is obvious. Hence, we may suppose that the couple G^{\prime} and H^{\prime} is one of the exceptions (1)-(4). Note that $H^{\prime} \neq C_{4} \cup \overline{K_{1,1}}$, and that w may be choosen in such a way that $H^{\prime} \neq C_{8} \cup 2 K_{1,1}$. Hence we have only two subcases to consider.

Subcase 1.1a. $\Delta_{R}\left(G^{\prime}\right)=p-1$ and $\delta_{R}\left(H^{\prime}\right) \geq 1$.
There is a vertex $y^{\prime} \in R\left(G^{\prime}\right)$ such that $d\left(y^{\prime}, G^{\prime}\right)=p-1$. Hence $d(y, G)=p-1$ and we have $e(G) \geq 2 p-2$, a contradiction.

Subcase 1.1b. $\Delta_{L}\left(G^{\prime}\right)=p-1$ and $\delta_{L}\left(H^{\prime}\right) \geq 1$.
Let $x_{1} \in L\left(G^{\prime}\right)$ and $d\left(x_{1}, G^{\prime}\right)=p-1$. If $d\left(x_{1}, G\right)=p$ then the couple G and H form the first exception (1). If $d\left(x_{1}, G\right)=p-1$ then we can choose the following vertices: y_{1} - a pendent vertex in R, w_{1} - a pendent vertex in L^{\prime}. Let $z_{1} \in N\left(w_{1}, H\right)$. Then $d\left(z_{1}, H\right)=2$ and the graphs $G^{\prime \prime}=G-\left\{x, y, x_{1}, y_{1}\right\}$
and $H^{\prime \prime}=H-\left\{w_{1}, w_{2}, z, z_{1}\right\}$, where w_{2} is the second neighbour of z_{1}, are bi-placeable by Theorem 1.

Let f be a bi-placement of $G^{\prime \prime}$ and $H^{\prime \prime}$. Then we can extend f to a packing f_{*} of G and H by letting $f_{*}(v)=f(v)$, for $v \in V\left(H^{\prime \prime}\right), f_{*}\left(w_{1}\right)=x_{1}$, $f_{*}\left(w_{2}\right)=x, f_{*}(z)=y_{1}$ and $f_{*}\left(z_{1}\right)=y$.

Subcase 1.2. $\quad d(x, G)=1$ and the neighbor y of x is not pendent $(d(y, G) \geq 2)$.

So, we can apply the induction hypothessis to the graphs $G_{1}^{\prime}=G-\{x, y\}$ and H_{1}^{\prime}, where H_{1}^{\prime} is the graph H^{\prime} defined in Subcase 1.1. If G_{1}^{\prime} and H_{1}^{\prime} are bi-placeable then it is easy to check that G and H are bi-placeable too.

So we may suppose that the couple $G_{1}^{\prime}, H_{1}^{\prime}$ is one of the exceptions. Note that since $\delta_{L}(G)>0$, we have $G_{1}^{\prime} \neq K_{3,3} \cup \overline{K_{3,3}}$, and since $\Delta(H)=2$, we have $H_{1}^{\prime} \neq C_{4} \cup \overline{K_{1,1}}$. Hence G_{1}^{\prime} and H_{2}^{\prime} may be the only one of exceptions (1)-(2).

Subcase 1.2a. $\Delta_{R}\left(G_{1}^{\prime}\right)=p-1$ and $\delta_{R}\left(H_{1}^{\prime}\right) \geq 1$.
Let $y_{1} \in R\left(G_{1}^{\prime}\right), d\left(y_{1}, G\right)=p-1, x_{1} \in N\left(y_{1}, G\right)$ and $d\left(x_{1}, G\right)=1$. Observe that we may apply the induction hypothessis to the graphs $G_{2}=G-\left\{x_{1}, y_{1}\right\}$ and $H_{2}=H^{\prime}$. From this, we can now map the vertex w to the vertex x_{1} and the vertex z to y_{1} and we can extend a bi-placement of G_{2} and H_{2} to a bi-placement of G and H.

Subcase 1.2b. $\Delta_{L}\left(G_{1}^{\prime}\right)=p-1$ and $\delta_{L}\left(H_{1}^{\prime}\right) \geq 1$.
Since $\Delta_{L}(G) \geq p-1$ and $\delta_{L}(G) \geq 1$, we have $\|G\| \geq 2 p-2$, a contradiction.
Subcase 1.3. There is no isolated vertex in L and the neighbors of pendent vertices of L are pendent.

Let $x y$ be an isolated edge of $G, x \in L, y \in R$.
Subcase 1.3.1. There is an isolated vertex w in L^{\prime}.
Note that $H-\{w, z\}$ is a union of vertex disjoint even cycles. Let $x^{\prime} \in L-\{x\}$ and $y^{\prime} \in R^{\prime}-\{y\}$ be choosen in such a way that the sum of degrees $d\left(x^{\prime}, G\right)+$ $d\left(y^{\prime}, G\right)$ is maximum. One may check easily that $d\left(x^{\prime}, G\right)+d\left(y^{\prime}, G\right) \geq 4$. Since $p \geq 4$, there exist two nonadjacent vertices $w^{\prime} \in L^{\prime}-\{w\}$ and $z^{\prime} \in$ $R^{\prime}-\{z\}$. Observe that $d\left(w^{\prime}, H\right)=d\left(z^{\prime}, H\right)=2$. The graphs $G_{3}^{\prime}=G-$ $\left\{x, y, x^{\prime}, y^{\prime}\right\}$ and $H_{3}^{\prime}=H-\left\{w, z, w^{\prime}, z^{\prime}\right\}$ verify the induction hypothesis. Moreover, an easy computation shows that $\Delta\left(G_{3}^{\prime}\right)<p-2$. It is also clear that $H_{3}^{\prime} \neq K_{2,2} \cup \overline{K_{1,1}}$ and $H_{3}^{\prime} \neq C_{8} \cup 2 \overline{K_{1,1}}$. Hence there is a bi-placement,
say f, of H_{3}^{\prime} and G_{3}^{\prime}. The function f_{*} defined by $f_{*}(v)=f(v)$, for $v \in V\left(H_{3}^{\prime}\right)$, $f_{*}(w)=x^{\prime}, f_{*}(z)=y^{\prime}, f_{*}\left(w^{\prime}\right)=x$ and $f_{*}\left(z^{\prime}\right)=y$ is a bi-placement of H and G.

Subcase 1.3.2. The minimal vertex degree in L^{\prime} is equal to one. Let w be such a vertex of L^{\prime} that $d(w, H)=1$ and let $z^{\prime} \in R^{\prime}$ be the neighbour of w. Note that $H-\{w, z\}$ is a union of a path of odd length and a number of even cycles.

We have $d\left(z^{\prime}, H\right)=2$. Since $p \geq 4$ we may choose $w^{\prime} \in L^{\prime}$ such that $d\left(w^{\prime}, H\right)=2$ and $\left(w^{\prime}, z^{\prime}\right) \notin E^{\prime}$. We set $G_{4}^{\prime}=G_{3}^{\prime}$, where G_{3}^{\prime} is defined in Subcase 1.3.1, and $H_{4}^{\prime}=H-\left\{w, z, w^{\prime}, z^{\prime}\right\}$. The graphs G_{4}^{\prime} and H_{4}^{\prime} are bi-placeable, by the induction hypothesis. Every bi-placement of H_{4}^{\prime} and G_{4}^{\prime} may be extended to a bi-placement of H and G by mapping the vertex w to x^{\prime}, z to y^{\prime}, w^{\prime} to x and z^{\prime} to y.

Case 2. There is no isolated vertex in $V(H)$.
Then the graph H is a sum of two non trivial paths P_{1}, P_{2} and independent cycles.

Subcase 2.1. The paths P_{1} and P_{2} have length 1.
Let $P_{1}=(w, z)$ and $P_{2}=\left(w^{\prime}, z^{\prime}\right)$, where $w, w^{\prime} \in L^{\prime}$ and $z, z^{\prime} \in R^{\prime}$, and let $w_{1} \in L^{\prime}$ and $z_{1} \in R^{\prime}$ be two vertices of degree 2 in H.

Subcase 2.1.1. $\delta_{L}(G)=\delta_{R}(G)=0$.
Let $x \in L$ and $y \in R$ be two isolated vertices of G and let $x_{1} \in L$ and $y_{1} \in R$ by two nonadjacent vertices of G chosen such that the degree sum

$$
\begin{equation*}
d\left(x_{1}, G\right)+d\left(y_{1}, G\right) \tag{1}
\end{equation*}
$$

is maximal.
Under the hypothesis of Subcase 2.1.1 we shall prove two claims.
Claim 1. If there is in G a vertex of degree $p-1$ then G and H are biplaceable.

Proof of Claim 1. Suppose that $x_{0} \in L$ is a vertex of degree $p-1$ in G. Then $\left\|G-\left\{x_{0}, y\right\}\right\|=2 p-3-(p-1)=(p-1)-1$. Hence, by Theorem 1 , there is a bi-placement f_{*} of $G-\left\{x_{0}, y\right\}$ and $H-\{w, z\}$ which may be easily extended to a bi-placement of G and H.

Claim 2. If $d\left(x_{1}, G\right)+d\left(y_{1}, G\right) \geq 4$ then G and H are bi-placeable.
Proof of Claim 2. If $G^{\prime}=G-\left\{x, y, x_{1}, y_{1}\right\}$ and $H^{\prime}=H-\left\{w, z, w_{1}, z_{1}\right\}$ are bi-placeable, then we extend a bi-placement of G^{\prime} and H^{\prime} to the biplacement of G and H mapping $x_{1} \mapsto w, y_{1} \mapsto z, x \mapsto w_{1}, y \mapsto z_{1}$.

So, by the induction hypothesis, G^{\prime} and H^{\prime} is one of exceptions (1)-(4) described in the theorem. Note that $H^{\prime} \neq K_{2,2} \cup \overline{K_{1,1}}$ and $H^{\prime} \neq C_{8} \cup 2 K_{1,1}$. So let us suppose that $\Delta\left(G^{\prime}\right)=p-2$. Without loss of generality we may assume that there is a vertex $x^{\prime} \in L-\left\{x, x_{1}\right\}$, such that $d\left(x^{\prime}, G^{\prime}\right)=p-2$. If $x^{\prime} y_{1} \in E$ then $d\left(x^{\prime}, G\right)=p-1$ and we apply Claim 1 . If $x^{\prime} y_{1} \notin E$ then, by the maximality of the sum (1), we have $d\left(x_{1}, G\right)=p-2$ and the graphs $G^{\prime \prime}=G-\left\{x_{1}, x^{\prime}, y_{1}, y\right\}$ and $H^{\prime \prime}=H-\left\{w, w^{\prime}, z, z^{\prime}\right\}$ are bi-placeable, unless $H^{\prime \prime}=K_{2,2}$, but then $G=\overline{K_{1,1}} \cup K_{1,1} \cup K_{2,2}$ and $H=2 K_{1,1} \cup K_{2,2}$ are bi-placeable. Any bi-placement of $G^{\prime \prime}$ and $H^{\prime \prime}$ may be easily extended to a bi-placement of G and H.
By Claim 2 we may suppose that $d\left(x_{1}, G\right)+d\left(y_{1}, G\right)<4$. Consider the following three subcases.

Subcase 2.1.1.1. $d\left(x_{1}, G\right)+d\left(y_{1}, G\right)=1$.
Without loss of generality we may suppose that $d\left(x_{1}, G\right)=1$ and $d\left(y_{1}, G\right)=$ 0 . By the maximality of the sum (1) we have $d(u, G) \leq 1$ for every $u \in L$ and therefore $2 p-3=\|G\| \leq p-1$, contrary to $p \geq 4$.

Subcase 2.1.1.2. $d\left(x_{1}, G\right)+d\left(y_{1}, G\right)=2$.

- $d\left(x_{1}, G\right)=d\left(y_{1}, G\right)=1$.

Then the degree of each vertex in L which is not a neighbour of y_{1} is 1 at the most. Denote by x_{2} the neighbor of y_{1}. We have $2 p-3=\|G\| \leq$ $p-2+d\left(x_{2}, G\right)$. Hence $d\left(x_{2}, G\right)=p-1$ and the theorem follows from Claim 1.

- $d\left(x_{1}, G\right)=0, d\left(y_{1}, G\right)=2$.

Then all the vertices of L which are not the neighbors of y_{1} are isolated. Since $\|G\|=2 p-3$ one of the two neighbors of y_{1} has degree at least $p-1$ and we may apply Claim 1.

Subcase 2.1.1.3. $d\left(x_{1}, G\right)+d\left(y_{1}, G\right)=3$.

- $d\left(x_{1}, G\right)=3, d\left(y_{1}, G\right)=0$.

Note that in this subcase we have necessarily $p \geq 5$ (since in R, except of the vertices y and y_{1} which are isolated, we have three neighbors of x_{1}). Let y_{2}, y_{3} and y_{4} be the neighbors of x_{1}. By the maximality of the sum (1) each vertex of R which is not a neighbor of x_{1} is isolated. One of the vertices y_{2}, y_{3}, y_{4} has the degree equal to 3 otherwise $2 p-3 \leq 6$ and therefore $p \leq 4$, which is a contradiction. Without loss of generality we may suppose $d\left(y_{2}, G\right)=3$. Note that now the vertices of L which are not the neighbors of y_{2} are isolated in G. Hence $2 p-3=\|G\| \leq 9$ and, in consequence, either $p=5$ or $p=6$. If $p=6$ then $G=K_{3,3} \cup \overline{K_{3,3}}$ and $H=C_{8} \cup 2 K_{1,1}$ (exceptional couple (4)). If $p=5$ then $H=C_{6} \cup 2 K_{1,1}$ and G is one of two graphs G_{1}, G_{2} depicted in Figure 4 (note that in G_{2} there are two nonadjacent vertices $u \in L$ and $v \in R$ with degree sum equal to 4).

Figure 4. Two bi-placeable graphs with $G=C_{6} \cup 2 K_{1,1}$.

- $d\left(x_{1}, G\right)=2, d\left(y_{1}, G\right)=1$ and there is no vertex of degree greater than 2 in G.

In R there is one isolated vertex (the vertex y), one pendent vertex (the vertex y_{1}) and all remaining vertices have their degrees equal to 2 . Hence $p=4$ (otherwise there is a vertex $y^{\prime} \in R$ such that $d\left(x_{1}, G\right)+d\left(y^{\prime}, G\right)=4$ and x_{1} and y^{\prime} are nonadjacent, so Claim 2 is applicable), $G=\overline{K_{1,1}} \cup K_{1,1} \cup C_{4}$, $H=2 K_{1,1} \cup K_{2,2}$ and G and H are bi-placeable.

Subcase 2.1.2. $\delta_{R}(G)=0$ and $\delta_{L}(G)=1$. Let $y \in R$ be an isolated vertex of $G, x_{1} \in L$ a vertex of degree 1 and $y_{1} \in R$ its neighbor in G. Let $x_{2} \in L$ be a vertex not adjacent to y_{1} such that the
sum

$$
\begin{equation*}
d\left(x_{2}, G\right)+d\left(y_{1}, G\right) \tag{2}
\end{equation*}
$$

is maximum (note, that if $d\left(y_{1}, G\right)=p$ then G and H form an exceptional couple (2)).

Subcase 2.1.2.1. $d\left(x_{2}, G\right)+d\left(y_{1}, G\right) \geq 4$.
Then, by the induction hypothesis, either $G^{\prime}=G-\left\{x_{1}, y, x_{2}, y_{1}\right\}$ and $H^{\prime}=$ $H-\left\{w, z, w_{1}, z_{1}\right\}$ are bi-placeable or G^{\prime} and H^{\prime} form an exceptional couple (1)-(4).

- If there is a bi-placement of G^{\prime} and H^{\prime}, then it may be extended to a bi-placement of G and H by mapping $x_{2} \mapsto w, y_{1} \mapsto z, x_{1} \mapsto w_{1}, y \mapsto z_{1}$.
- Suppose that $\Delta_{L}\left(G^{\prime}\right)=p-2$. Let $x_{3} \in L-\left\{x_{1}, x_{2}\right\}$ be a vertex of degree $p-2$ in G^{\prime}. Since $\delta_{L}(G)=1$ and $(p-2)+(p-1)=\|G\|$, we have $d\left(x_{3}, G\right)=p-2$. Moreover, since x_{3} and y_{1} are nonadjacent and, by the maximality of the degree sum (2), we have also $d\left(x_{2}, G\right)=p-2$ and $2 p-3=\|G\| \geq 2(p-2)+p-2$. This gives $p \leq 3$, a contradiction.
- Suppose that there is a vertex $y_{2} \in R\left(G^{\prime}\right)$ such that $d\left(y_{2}, G^{\prime}\right)=p-2$. If $d\left(y_{2}, G\right)=p-1$ then $G-\left\{x_{1}, y_{2}\right\}$ and $H-\{w, z\}$ are bi-placeable by Theorem 1, and bi-placeability of G and H follows easily. So we may assume that x_{2} and y_{2} are nonadjacent. Since $d\left(x_{2}, G\right) \geq 1$, we have $\left\|G-\left\{x_{2}, y_{2}\right\}\right\| \leq p-2$ and, again by Theorem $1, G-\left\{x_{2}, y_{2}\right\}$ and $H-\{w, z\}$ are bi-placeable. $x_{2} \mapsto w, y_{2} \mapsto z$ extands any bi-placement of $G-\left\{x_{2}, y_{2}\right\}$ and $H-\{w, z\}$ to a bi-placement of G and H.

Note that, since H contains two independent edges, $H^{\prime} \neq K_{2,2} \cup \overline{K_{1,1}}$. For $p-2=6$ the vertices w_{1} and z_{1} may be chosen in such a way that $H^{\prime} \neq C_{8} \cup$ $2 K_{1,1}$. Hence G^{\prime} and H^{\prime} may be supposed to form neither the exceptional couple (3) nor the exceptional couple (4).

Subcase 2.1.2.2. If $u, v \in L$ and $t \in R$ are such vertices of G that $d(u, G)=1, t$ is the neighbor of u and the vertices v and t are nonadjacent, then

$$
\begin{equation*}
d(v, G)+d(t, G)<4 \tag{3}
\end{equation*}
$$

- If $d\left(y_{1}, G\right) \geq 3$, then either $d\left(y_{1}, G\right)=p$ and G and H form an excluded couple, or there is a vertex $s \in L$ not adjacent to y_{1}. Since $\delta_{L}(G) \geq 1$, this contradicts (3).
- Suppose that $d\left(y_{1}, G\right)=2$ and let x_{3} denote the second neighbor of y_{1}. By (3) we have $d(a, G) \leq 1$ for every $a \in L-\left\{x_{1}, x_{3}\right\}$. Hence $d(a, G)=1$ for every $a \in L-\left\{x_{1}, x_{3}\right\}$ and $2 p-3=\|G\|=1+d\left(x_{3}, G\right)+p-2=d\left(x_{3}, G\right)+p-1$ and therefore $d\left(x_{3}, G\right)=p-2$.

Let $y_{2} \in R$ be a vertex of the maximum degree in R, such that $y_{2} \neq y_{1}$ (since $p \geq 4$ we check at once that such a vertex exists). We have $\| G$ $\left\{x_{1}, x_{3}, y, y_{2}\right\}\|\leq(2 p-3)-p=p-3\| H-,\left\{w, z, w^{\prime}, z^{\prime}\right\} \| \leq 2 p-4$ and, by Theorem 1, there is a bi-placement of $G-\left\{x_{1}, x_{3}, y, y_{2}\right\}$ and $H-\left\{w, z, w^{\prime}, z^{\prime}\right\}$ which may be easily extended to a bi-placement of G and H.

- Hence we may suppose that the neighbor of every pendent vertex $u \in L$ is also pendent.

It is clear by (3), that for every $u \in L$ we have $d(u, G) \leq 2$. Since $\delta_{L}(G) \geq 1$, we have exactly three vertices of degree 1 in $L(G)$ while the remaining $p-3$ vertices have their degree equal to 2 . Let $x_{1} \in L, y_{1} \in R$ be two pendent vertices adjacent in $G ; x_{2} \in L$ such that $d\left(x_{2}, G\right)=1$ and $y_{3} \in R$ of maximum degree in R (note that $d\left(y_{3}, G\right) \geq 2$). In H we choose the vertices $w, w^{\prime} \in L^{\prime}, z \in R^{\prime}$ (each of which has its degree equal to 1) and $z_{1} \in R^{\prime}$ with $d\left(z_{1}, H\right)=2$. We have $\left\|G-\left\{x_{1}, y_{1}, x_{2}, y_{3}\right\}\right\| \leq$ $\|G\|-4=2(p-2)-3$ and $\left\|H-\left\{w, z, w^{\prime}, z_{1}\right\}\right\| \leq 2(p-2)$. By the induction hypothesis $G^{\prime}=G-\left\{x_{1}, y_{1}, x_{2}, y_{3}\right\}$ and $H^{\prime}=H-\left\{w, z, w^{\prime}, z_{1}\right\}$ are bi-placeable (note that G^{\prime} and H^{\prime} are not an excluded couple). Every bi-placement of G^{\prime} and H^{\prime} may be extended to a bi-placement of G and H by mapping $x_{1} \mapsto w^{\prime}, x_{2} \mapsto w, y_{1} \mapsto z_{1}, y_{3} \mapsto z$.

Subcase 2.1.3. There are no isolated vertices in $V(G)(\delta(G) \geq 1)$. Let $x \in L, y \in R$ be nonadjacent pendent vertices in $V(G), y_{1} \in N(x, G)$, $x_{1} \in N(y, G)$ and let $w, w_{1} \in L^{\prime}, z, z_{1} \in R^{\prime}$ be such that $w z$ and $w_{1} z_{1}$ are isolated edges in H.

Subcase 2.1.3.1. We can choose vertices x and y in such a way that $\left(x_{1}, y_{1}\right) \notin E$.

Put $G_{3}^{\prime}=G-\{x, y\}$ and $H_{3}^{\prime}=H-\left\{w, z_{1}\right\}$. Note that $\Delta\left(G_{3}^{\prime}\right)<p-1$, otherwise since $\delta(G) \geq 1$ we would have $\|G\| \geq 2(p-1)$. For $p=4$ we may
choose x and y such that $G_{3}^{\prime} \neq 3 \overline{K_{1,1}}$. It is also clear that $H_{3}^{\prime} \neq C_{8} \cup 2 \overline{K_{1,1}}$. Hence, by the induction hypothesis, there is a bi-placement of G_{3}^{\prime} and H_{3}^{\prime}.

- If $f\left(x_{1}\right) \neq w_{1}$ and $f\left(y_{1}\right) \neq z$ then we extend f to a bi-placing of G and H by mapping $x \mapsto w, y \mapsto z_{1}$.
- If $f\left(x_{1}\right)=w_{1}$ and $f\left(y_{1}\right)=z$ then f_{*} defined by: $f_{*}(v)=f(v)$ for every $v \in V\left(G_{3}^{\prime}\right)-\left\{x_{1}, y_{1}\right\}, f_{*}(x)=w, f_{*}\left(y_{1}\right)=z_{1}, f_{*}(y)=z$ and $f_{*}\left(x_{1}\right)=w_{1}$ is a desired bi-placement of G and H.
- If $f\left(x_{1}\right)=w_{1}$ and $f\left(y_{1}\right)=z^{\prime} \neq z$ then there is a vertex $y^{\prime} \in R\left(G_{3}^{\prime}\right)$ such that $f\left(y^{\prime}\right)=z$. Define f_{*} by the formula $f_{*}(v)=f(v)$ for every $v \in V\left(G_{3}^{\prime}\right)-\left\{y_{1}\right\}, f_{*}(x)=w, f_{*}\left(y_{1}\right)=z_{1}$ and $f_{*}(y)=z^{\prime}$.

Subcase 2.1.3.2. For each choice of vertices x and y we have $\left(x_{1}, y_{1}\right) \in E$. If $d\left(x_{1}, G\right)=p$ or $d\left(y_{1}, G\right)=p$ then G and H are exceptional and the theorem is proved. So assume that $d\left(x_{1}, G\right) \leq p-1$ and $d\left(y_{1}, G\right) \leq p-1$. Note that $G_{3}^{\prime}=G-\{x, y\}$ and $H_{3}^{\prime}=H-\left\{w, z_{1}\right\}$ is not an exceptional couple of graphs hence, by induction hypothesis, there is a bi-placement of G_{3}^{\prime} and H_{3}^{\prime}. If $f\left(x_{1}\right) \neq w_{1}$ and $f\left(y_{1}\right) \neq z$ we extend f to a bi-placement of G and H easily.

So, we suppose that $f\left(x_{1}\right)=w_{1}$ or $f\left(y_{1}\right)=z$. Without loss of generality we may assume that $f\left(x_{1}\right)=w_{1}$. Then there is a vertex $y_{2} \in R-N\left(x_{1}, G\right)$ and a vertex $z_{2} \in R\left(H_{3}^{\prime}\right)$ such that $f\left(y_{2}\right)=z_{2}$. We map $y \mapsto z_{2}, y_{2} \mapsto z_{1}$ and

- if $f\left(y_{1}\right) \neq z$ then $x \mapsto w$,
- if $f\left(y_{1}\right)=z$ then choose $x_{2} \in L-N\left(y_{1}, G\right)$. Let $w_{2}=f\left(x_{2}\right)$. Map $x \mapsto w_{2}, x_{2} \mapsto w$.

Subcase 2.2. $\left|P_{1}\right| \geq 3$ or $\left|P_{2}\right| \geq 3$.
Subcase 2.2.1. There is an isolated vertex, say y, in $V(G)$.
Without loss of generality we may assume that $y \in R$. Let $x \in L$ and $d(x, G)=\Delta_{L}(G)$. There is a pendent vertex $w \in L^{\prime}$ such that, if $z \in$ $N(w, H)$ then $d(z, H)=2$. If the graphs $G^{\prime}=\{x, y\}$ and $H^{\prime}=\{w, z\}$ are bi-placeable, then there is also a bi-placement of G and H. Note also, that the the couple G^{\prime} and H^{\prime} is neither exception (3) nor (4) of the theorem. Hence, by the induction hypothesis, $\Delta\left(G^{\prime}\right)=p-1$. Note that since $\Delta_{L}(G)=$ $d(x, G)$ we have $\Delta\left(G^{\prime}\right)=\Delta_{R}\left(G^{\prime}\right)$, otherwise $\|G\| \geq 2(p-1)$, a contradiction.

Let $y_{1} \in R\left(G^{\prime}\right)$ be a vertex of degree $p-1$ in G^{\prime}. If $d\left(y_{1}, G\right)=p$ then G and H is an exceptional couple of graphs. For $d\left(y_{1}, G\right)=p-1$ define $G^{\prime \prime}=G-\left\{x, x_{1}, y, y_{1}\right\}$ where $x_{1} \in L(G)$ is a pendent vertex of G and $H^{\prime \prime}=$ $H-\left\{w_{1}, w_{2}, z_{1}, z_{2}\right\}$, where $w_{1}, w_{2} \in L(H), z_{1}, z_{2} \in R(H), z_{1}$ is pendent, w_{1} is the neighbor of z_{1}, z_{2} is a neighbor of w_{1} if $d\left(w_{1}, G\right)=2$, otherwise z_{2} is any vertex of $R(G)-\left\{z_{1}\right\}$, and w_{2} is any vertex of $L(G)-\left\{w_{1}\right\}$. We have $\left\|G^{\prime \prime}\right\| \leq 2 p-3-(p-1+2)<p-3$ and $\left\|H^{\prime \prime}\right\|<2(p-2)$ hence, by Theorem 1, $G^{\prime \prime}$ and $H^{\prime \prime}$ are bi-placeable. The mappings $x \mapsto w_{1}, x_{1} \mapsto w_{2}, y_{1} \mapsto z_{1}, y \mapsto$ z_{2} extend any bi-placement of $G^{\prime \prime}$ and $H^{\prime \prime}$ to a bi-placement of G and H.

Subcase 2.2.2. There is no isolated vertex in $V(G)$.
There are pendent vertices $x \in L$ and $y \in R$ such that $(x, y) \notin E$. Let y_{1} be the neighbor of x and x_{1} the neighbor of y in G.

It is easily seen that in H there are pendent vertices $w \in L^{\prime}$ and $z \in R^{\prime}$, such that their respective neighbors $z^{\prime} \in R^{\prime}$ and $w^{\prime} \in L^{\prime}$ have their degrees equal to 2. Note that the couple of graphs $G^{\prime}=G-\{x, y\}$ and $H^{\prime}=$ $H-\left\{w, z^{\prime}\right\}$ is not exceptional. Hence, by induction hypothesis, G^{\prime} and H^{\prime} are bi-placeable.

Let w_{1} be the second neighbor of z^{\prime} in $H\left(w_{1} \neq w\right)$. If there is a biplacement f of G^{\prime} and H^{\prime} such that $f\left(x_{1}\right) \neq w_{1}$ then f may be extended by the mapping $x \rightarrow w, y \rightarrow z^{\prime}$ to a bi-placement of G and H. Therefore we may assume that $f\left(x_{1}\right)=w_{1}$.

We shall prove that $d\left(x_{1}, G\right)=p-2$ and for every $v \in L-\left\{x_{1}\right\} d(v, G)=$ 1 (unless G and H are bi-placeable). It is clear that $d\left(x_{1}, G\right) \leq p-2$, since there is no isolated vertex in L and $\sum_{v \in L} d(v, G)=2 p-3$. Moreover, if $d\left(x_{1}, G\right)=p-2$ then all remaining vertices of L are pendent.

Suppose that $d\left(x_{1}, G\right) \leq p-3$. Then there is a vertex $y_{2} \in R$ such that $y_{2} \neq y_{1}, x_{1} y_{2} \notin E(G)$ and $f\left(x_{1}\right) f\left(y_{2}\right) \notin E(H)$ (we remember that w_{1} has in H at most two neighbors). Let $z^{\prime \prime}$ denote the vertex $f\left(y_{2}\right)$ and define $f_{*}: V \rightarrow V^{\prime}$ by the following formulas: $f_{*}(v)=f(v)$ for $v \neq x, y, y_{2}$, $f_{*}(x)=w, f_{*}\left(y_{2}\right)=z^{\prime}$ and $f_{*}(y)=z^{\prime \prime} . f_{*}$ is a bi-placement of G and H.

In the exactly the same way we prove that either G and H are biplaceable, or $d\left(y_{1}, G\right)=p-2$.

Observe now that either

- x_{1} and y_{1} are adjacent and G is the union of two independent edges and two stars $K_{1, p-3}$ and $K_{p-3,1}$ with adjacent centers (see Figure 5a) or else
- x_{1} and y_{1} are nonadjacent and G is the union of two stars $K_{1, p-2}$, $K_{p-2,1}$ and an isolated edge (see Figure 5(b)).

Figure 5
To finish the proof one may verify easily that then G and H (which is a union of two non-trivial paths and some cycles) are bi-placeable.

References

[1] M. Aigner and S. Brandt, Embedding arbitrary graphs of maximum degree two, J. London Math. Soc. (2) 48 (1993) 39-51.
[2] D. Amar, I. Fournier and A. Germa, Covering the vertices of a graph by cycles of prescribed length, J. Graph Theory 13 (1989) 323-330.
[3] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
[4] P.A. Catlin, Subgraphs of graphs, I, Discrete Math. 10 (1974) 225-233.
[5] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta. Math. Acad. Sci. Hungar. 14 (1963) 423-439.
[6] M. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227-230.
[7] J.-L. Fouquet and A.P. Wojda, Mutual placement of bipartite grahps, Discrete Math. 121 (1993) 85-92.
[8] L. Lesniak, Independent cycles in graphs, J. Comb. Math. Comb. Comput. 17 (1995) 55-63.
[9] B. Orchel, Placing bipartite graphs of small size I, Folia Scientarum Universitatis Technicae Resoviensis 118 (1993) 51-58.
[10] H. Wang, On the maximum number of independent cycles in a bipartite graph, J. Combin. Theory (B) 67 (1996) 152-164.
[11] M. Woźniak, Packing of graphs (Dissertationes Mathematicae CCCLXII, Warszawa, 1997).
[12] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404.
Received 23 May 2008
Accepted 14 July 2008

[^0]: Partially supported by AGH local grant No. 1142004.

