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Abstract

We study random circle graphs which are generated by throwing
n points (vertices) on the circle of unit circumference at random and
joining them by an edge if the length of shorter arc between them is
less than or equal to a given parameter d. We derive here some exact
and asymptotic results on sizes (the numbers of vertices) of ”typical”
connected components for different ways of sampling them. By study-
ing the joint distribution of the sizes of two components, we “go into”
the structure of random circle graphs more deeply. As a corollary of
one of our results we get the exact, closed formula for the expected
value of the total length of all components of the random circle graph.
Although the asymptotic distribution for this random characteristic is
well known (see e.g. T. Huillet [4]), this surprisingly simple formula
seems to be a new one.
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1. Introduction

Consider a circle of unit circumference. Choose n points, as vertices, uni-
formly and independently on the circle. Put an edge between two vertices if
and only if the length of the shorter arc between them is less than or equal
to a given parameter d. We call the resulting graph a random circle graph,
and we denote it by CGn,d. This model has been studied by many authors
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(see for example [1, 3, 4, 5, 7, 8]) and it is closely related to random interval
graphs — the special case of random coincidence graphs (see Godehardt
and Jaworski [2] for results for random interval graphs and Penrose [6] for
random geometric graphs in the q-dimensional space, q ≥ 1).

In this paper we use methods which correspond to the techniques used
by Godehardt and Jaworski in [2]. Most of the proofs are based on the
main Lemma 1 from that paper and therefore we recall it in Section 2. In
Section 3, we introduce three methods of sampling a component of random
circle graph and we prove some new results about its size (the number of
vertices) and its length (the length of the covered arc). In particular, as a
consequence of one of these results we obtain the surprisingly simple formula
for the expected value of the total length of all components of a random circle
graph. Although the asymptotic distribution for this random characteristic
is known (see e.g. T. Huillet [4]), this exact formula seems to be a new one.

We also introduce two different methods for sampling two connected
components of a random circle graph. By studying the joint distribution of
the sizes of two such components we go into the structure of random circle
graphs more deeply. In particular, we show that just before the connected-
ness, asymptotically almost surely (a.a.s.) any random circle graph has just
two components, both with sizes of order Θ(n).

2. Preliminary Results

Let CGn,d be a random circle graph on n vertices and with the distance
level d. All theorems in this section, concerning properties of CGn,d, can
be proven in a similar way as corresponding theorems for random interval
graphs in [2] and therefore we omit their proofs here. However, let us men-
tion that since in random circle graphs there is no border effect, some parts
of the proofs may be simplified. On the other hand, since we may have a
“coverage problem” (corresponding to the event that there is an arc between
any two consecutive points, i.e., for any pair of vertices u, v we may have
two paths in the clockwise direction — from u to v and from v to u, which,
in fact, form a Hamiltonian cycle), we are facing some other difficulties as
compared to the interval graphs. This is one of the reasons which makes
studying circle graphs separately worthwhile, especially the exact results.

Let Cn be the number of gaps — arcs between consecutive vertices of
length greater than d. Obviously, the event Cn = r ≥ 2 means that the
random circle graph CGn,d has r such gaps and thus has r connected com-
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ponents. If r = 1, then CGn,d has only one component and this component
does not cover the whole circle; r = 0 means that there is no such gap, so
CGn,d also has only one component which now covers the whole circle. In
the following theorem we give the distribution of the number of components
in terms of the number of gaps. The result given in Theorem 1 is originally
due to Stevens [10]. A straightforward proof follows also from the spacing
approach in a similar way as for random interval graphs in [2]. In [4], Huillet
gave another proof by using Steutel’s calculus (see also [9]).

Theorem 1. Let Cn be the number of gaps between the components in a

random circle graph CGn,d. The discrete probability distribution of Cn is

given by

Pr {Cn = r} =

(

n

r

) min{n,b1/dc}
∑

j=r

(

n − r

j − r

)

(−1)j+r(1 − jd)n−1 ,

for r = 0, 1, . . . , n.

Note, once more, that in the circle model, the probability of connectedness
is equal to the sum of probabilities of two events: (A) there is no gap (the
whole circle is covered), (B) there is exactly one gap.

Let us recall now the main lemma from [2] which is crucial in proving
most of our results. It is obvious that it can be easily transformed to the
case of random circle graphs.

Lemma 1. Let α be an arc of length y of the circle of unit circumference.

Let two out of k given vertices be placed at the borders of this arc. Let

Ak,y,d be the event that k−2 points, corresponding to the remaining vertices

and randomly drawn from circle circumference, are inside α and “join” the

borders, that is, the k vertices form a connected subgraph of length y; and

let P (k, y, d) = Pr{Ak,y,d}. Then

P (k, y, d) =

min{k−1,by/dc}
∑

j=0

(

k − 1

j

)

(−1)j (y − jd)k−2.

The next lemma will be needed in Section 4, and we will use it in the proof
of Theorem 2. One can prove this lemma in a similar way as it has been
done in [2]; note only that, since we have here a “coverage problem” (we
may have paths between two given vertices on both ”sides” of the circle),
we have to subtract the coverage probability to get the result.
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Lemma 2. Let P2 denote the probability that two given vertices are joined

by a path, i.e., they are in the same connected component. Then

P2 = 2 −
2

n − 1

min{n,b1/dc+1}
∑

j=2

(

n

j

)

(−1)j(1 − (j − 1)d)n−1

−

min{n,b1/dc}
∑

j=0

(

n

j

)

(−1)j(1 − jd)n−1 .

Let CSk and CCk denote the events that k given vertices form a perfect
connected subgraph (”perfect” means here the additional property that,
between the realizations of the vertices — the respective points on the circle,
there are no other ”vertices” of the circle graph) and a connected component
in a random circle graph, respectively. In a similar way as for random
interval graphs, we can derive the probability of CSk, and consequently
we can derive the probability of CCk. Finally, using the formula for this
probability one can derive the probability distribution of the size of the
connected component containing a given vertex. For the proof of the second
part of the following theorem we can use Theorem 1, while the formulas
for moments follow from Lemma 2 and the corresponding result for three
vertices.

Theorem 2. Let Kn(v) be the size (i.e., the number of vertices) of the

connected component containing a given vertex v in a random circle graph

CGn,d. Then we have

Pr{Kn(v) = k} = k

min{k−1,b1/dc−2}
∑

j=0

(

k − 1

j

)

(−1)j(1 − (j + 2)d)n−1

for k = 1, 2, . . . , n − 1, and

Pr{Kn(v) = n} = Pr{CSn} =

min{n,b1/dc}
∑

j=0

(

n

j

)

(−1)j(1 − jd)n−1

+ n

min{n−1,b1/dc−1}
∑

j=0

(

n−1

j

)

(−1)j(1− (j + 1)d)n−1.
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The first two factorial moments of Kn(v) are

E(Kn(v)) = − 1 − 2

min{n,b1/dc+1}
∑

j=1

(

n

j

)

(−1)j(1 − (j − 1)d)n−1

− (n − 1)

min{n,b1/dc}
∑

j=0

(

n

j

)

(−1)j(1 − jd)n−1 ,

E2(Kn(v)) = 2 − 2(3n − 1)

min{n,b1/dc+1}
∑

j=1

(

n

j

)

(−1)j(1 − (j − 1)d)n−1

− 6

min{n+1,b1/dc+2}
∑

j=2

(

n + 1

j

)

(−1)j(1 − (j − 2)d)n−1

− 2(n − 1)2
min{n,b1/dc}

∑

j=0

(

n

j

)

(−1)j(1 − jd)n−1.

Note that the above theorem gives us the size of a typical connected compo-
nent which was sampled by choosing a vertex first (size-biased sampling). In
the next section we consider another method of sampling — length-biased
sampling.

3. Sampling One Component

3.1. Exact results

Each component in a random circle graph CGn,d covers an arc on the circle;
thus for each such component there is a corresponding interval (of the length
equal to the length of the arc). We call the union of these arcs over all
components the “covered part” of the circle. More precisely, let us choose
the first (in the clockwise direction) border vertex (say y1) of one of the
components as the origin on the circle circumference and assume that our
random circle graph has k components, and 0 = y1 ≤ z1 < y2 ≤ z2 <
· · · < yk ≤ zk ≤ 1 − d are their border vertices. Then the sum of arcs:
[y1, z1] ∪ [y2, z2] ∪ · · · ∪ [yk, zk], is the covered part of the circle.
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Consider a point on the circle (almost surely it will not be a vertex). Con-
sider the following method of sampling a typical connected component of
our circle graph: if the given point is in the covered part of the circle, we
choose the connected component for which the corresponding arc covers the
point; otherwise we choose the connected component which is the first after
the given point (in the clockwise direction).

Theorem 3. Let A be a given point on the circle and let Kn(A) denote the

size of the component which either covers A — or if there is no component

which covers A — the size of the component which is the first after A in the

clockwise direction. Then

Pr{Kn(A) = k} = k

min{k−1,b1/dc−2}
∑

j=0

(

k − 1

j

)

(−1)j(1 − (j + 2)d)n

− nd(k − 1)

min{k−2,b1/dc−3}
∑

j=0

(

k − 2

j

)

(−1)j(1− (j + 3)d)n−1

+ nd

min{k−1,b1/dc−2}
∑

j=0

(

k − 1

j

)

(−1)j(1 − (j + 2)d)n−1

for k = 2, . . . , n − 1, and

Pr{Kn(A) = 1} = (1−2d)n + nd(1−2d)n−1, Pr{Kn(A) = n} = Pr{CSn}.

Proof. Let H be the event that a given point A is in the covered part, and
let 2 ≤ k < n (clearly, the event H has the probability 0 for k = 1). Let us
choose a point A as the origin on the circle and assume that A is in the cov-
ered part; let x denote the distance between A and the starting point of the
component which covers A, and let y be the length of that component (note
that the border point of the component corresponding to x is before the
point A in the clockwise direction). In order to derive the probability of the
event “A is on the covered part and the size of the component which covers A
is k”, first we calculate it for a given x and y and then we integrate it over
all possible x and y. We can choose k out of n vertices in

(n
k

)

ways, and then
we can place two of them as border vertices of a component in k(k−1) ways.
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With probability P (k, y, d) the k chosen vertices form a perfect connected
subgraph, and with probability (1 − y − 2d)n−k the remaining vertices are
outside the respective component. Thus

Pr{Kn(A) = k∧H} =

∫ 1−2d

0

∫ 1

1−y
k(k−1)

(

n

k

)

P (k, y, d)(1−y−2d)n−kdx dy.

If A is not in the covered part and 2 ≤ k < n, then we consider two cases
for x: x is smaller than d, or x is larger than d (note that the border point of
the component corresponding to x is now after the point A in the clockwise
direction). In a similar way to the previous case we obtain:

Pr{Kn(A) = k ∧ Hc} = k(k−1)

(

n

k

)
∫ d

0

∫ 1−2d

0
P (k, y, d)(1− y− 2d)n−kdy dx

+ k(k − 1)

(

n

k

)
∫ 1−d

d

∫ 1−x−d

0
P (k, y, d)(1 − y − d − x)n−kdy dx.

By using Lemma 1 and tedious but standard calculations, the proof can be
completed.

Theorem 3 directly implies the following corollary.

Corollary 1. Let us assume that the event H, that a given point A is in

the covered part in a random circle graph CGn,d, holds, and let K ′
n(A) be the

size of the connected component which covers A. Then

Pr{K ′
n(A) = k} =

=
1

Pr{H}

[

(k − 1)

min{k−1,b1/dc−2}
∑

j=0

(

k − 1

j

)

(−1)j(1 − (j + 2)d)n

− n(k − 1)d

min{k−2,b1/dc−3}
∑

j=0

(

k − 2

j

)

(−1)j(1 − (j + 3)d)n−1

]

for 2 ≤ k < n, and
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Pr{K ′
n(A) = n} =

=
1

Pr{H}

[

(n − 1)

min{n−1,b1/dc−1}
∑

j=0

(

n − 1

j

)

(−1)j(1 − (j + 1)d)n

− n(n − 1)d

min{n−2,b1/dc−2}
∑

j=0

(

n − 2

j

)

(−1)j(1 − (j + 2)d)n−1

+

min{n,b1/dc}
∑

j=0

(

n

j

)

(−1)j(1 − jd)n−1

]

.

Let Ln(d) denote the length of the covered part of CGn,d (which we call the
total length of the random circle graph). By the definition of expected value,
E(Ln(d)) = Pr{H}. On the other hand using the probability distribution
given in Corollary 1, we can obtain the next result.

Corollary 2. Let Ln(d) be the total length of the random circle graph CGn,d,

then

E(Ln(d)) = 1 − (1 + (n − 1)d)(1 − d)n−1.

Proof. It is obvious that E(Ln(d)) = Pr {H}, and therefore after summing
up probabilities given in Corollary 1 we obtain

E(Ln(d)) =

n−1
∑

k=1

(k − 1)

min{k−1,b1/dc−2}
∑

j=0

(

k − 1

j

)

(−1)j(1 − (j + 2)d)n

− nd

n−1
∑

k=1

(k − 1)

min{k−2,b1/dc−3}
∑

j=0

(

k − 2

j

)

(−1)j(1 − (j + 3)d)n−1

+ (n − 1)

min{n−1,b1/dc−1}
∑

j=0

(

n − 1

j

)

(−1)j(1 − (j + 1)d)n
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− n(n − 1)d

min{n−2,b1/dc−2}
∑

j=0

(

n − 2

j

)

(−1)j(1 − (j + 2)d)n−1

+

min{n,b1/dc}
∑

j=0

(

n

j

)

(−1)j(1 − jd)n−1.

Note that

min{n−2,b1/dc−2}
∑

j=0

(−1)j(1 − (j + 2)d)n
n−1
∑

k=j+1

(k − 1)

(

k − 1

j

)

− nd

min{n−3,b1/dc−3}
∑

j=0

(−1)j(1 − (j + 3)d)n−1
n−1
∑

k=j+2

(k − 1)

(

k − 2

j

)

=

min{n−2,b1/dc−2}
∑

j=0

(−1)j(1− (j + 2)d)n

[

(j + 1)
n−1
∑

k=j+1

(

k

j + 1

)

−
n−1
∑

k=j+1

(

k − 1

j

)]

− nd

min{n−3,b1/dc−3}
∑

j=0

(−1)j(1 − (j + 3)d)n−1(j + 1)
n−1
∑

k=j+2

(

k − 1

j + 1

)

=

min{n−2,b1/dc−2}
∑

j=0

(−1)j(1 − (j + 2)d)n

[

(j + 1)

(

n

j + 2

)

−

(

n − 1

j + 1

)]

− nd

min{n−3,b1/dc−3}
∑

j=0

(−1)j(1 − (j + 3)d)n−1(j + 1)

(

n − 1

j + 2

)

=

min{n−2,b1/dc−2}
∑

j=0

(−1)j(1 − (j + 2)d)n

[

((j + 2) − 1)

(

n

j + 2

)

−

(

n − 1

j + 1

)]

− nd

min{n−3,b1/dc−3}
∑

j=0

(−1)j(1 − (j + 3)d)n−1((j + 2) − 1)

(

n − 1

j + 2

)
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= n

min{n−2,b1/dc−2}
∑

j=0

(

n − 1

j + 1

)

(−1)j(1 − (j + 2)d)n

−

min{n−2,b1/dc−2}
∑

j=0

(

n

j + 2

)

(−1)j(1 − (j + 2)d)n

−

min{n−2,b1/dc−2}
∑

j=0

(

n − 1

j + 1

)

(−1)j(1 − (j + 2)d)n

− n(n − 1)d

min{n−3,b1/dc−3}
∑

j=0

(

n − 2

j + 1

)

(−1)j(1 − (j + 3)d)n−1

+ nd

min{n−3,b1/dc−3}
∑

j=0

(

n − 1

j + 2

)

(−1)j(1 − (j + 3)d)n−1

= (n − 1)

min{n−2,b1/dc−2}
∑

j=0

(

n − 1

j + 1

)

(−1)j(1 − (j + 2)d)n

−

min{n−2,b1/dc−2}
∑

j=0

(

n

j + 2

)

(−1)j(1 − (j + 2)d)n

− n(n − 1)d

min{n−3,b1/dc−3}
∑

j=0

(

n − 2

j + 1

)

(−1)j(1 − (j + 3)d)n−1

+ nd

min{n−3,b1/dc−3}
∑

j=0

(

n − 1

j + 2

)

(−1)j(1 − (j + 3)d)n−1

= −(n − 1)

min{n−1,b1/dc−1}
∑

j=0

(

n − 1

j

)

(−1)j(1− (j + 1)d)n + (n − 1)(1− d)n

−

min{n,b1/dc}
∑

j=0

(

n

j

)

(−1)j(1 − jd)n + 1 − n(1 − d)n
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+ n(n−1)d

min{n−2,b1/dc−2}
∑

j=0

(

n−2

j

)

(−1)j(1− (j +2)d)n−1− n(n−1)d(1−2d)n−1

+ nd

min{n−1,b1/dc−1}
∑

j=1

(

n − 1

j

)

(−1)j(1− (j + 1)d)n−1 + n(n−1)d(1−2d)n−1.

Therefore

E(Ln(d)) = 1 − (1 − d)n −

min{n,b1/dc}
∑

j=0

(

n

j

)

(−1)j(1 − jd)n−1(1 − jd)

+ nd

min{n−1,b1/dc−1}
∑

j=1

(

n − 1

j

)

(−1)j(1 − (j + 1)d)n−1

+

min{n,b1/dc}
∑

j=0

(

n

j

)

(−1)j(1 − jd)n−1

= 1− (1−d)n− nd

min{n,b1/dc}
∑

j=1

(

n − 1

j − 1

)

(−1)j−1(1− (j−1 + 1)d)n−1

+ nd

min{n−1,b1/dc−1}
∑

j=1

(

n − 1

j

)

(−1)j(1 − (j + 1)d)n−1

= 1 − (1 − d)n − nd(1 − d)n−1 ,

and the result follows immediately.

At the end of this subsection, we consider another sampling method. It is
very similar to the previous method; the only difference is that now instead
of choosing the connected component which is the first after the given point
A in the clockwise direction (when the component does not cover A) we
choose the closest connected component to A. Let K cl

n (A) denote the size
of the closest component to the given point A. Note that for k ≥ 2
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Pr {Kcl
n (A) = k ∧ Hc} =

= 2k(k − 1)

(

n

k

)
∫ d/2

0

∫ 1−2d

0
P (k, y, d)(1 − y − 2d)n−kdydx

+ 2k(k − 1)

(

n

k

)
∫ 1−d

2

d/2

∫ 1−2x−d

0
P (k, y, d)(1 − y − d − 2x)n−kdydx

= k(k − 1)

(

n

k

)
∫ d

0

∫ 1−2d

0
P (k, y, d)(1 − y − 2d)n−kdydx

+ k(k − 1)

(

n

k

)
∫ 1−d

d

∫ 1−x−d

0
P (k, y, d)(1 − y − d − x)n−kdydx

and

Pr {Kcl
n (A) = 1 ∧ Hc} = 2n

∫ d

2

0
(1 − 2d)n−1dx + 2n

∫ 1−d

2

d

2

(1− 2x − d)n−1dx.

Hence (see the proof of Theorem 3) we obtain a somehow surprising equality
of probability distributions

Pr {Kcl
n (A) = k} = Pr {Kn(A) = k}, k = 1, 2, . . . , n.

3.2. Asymptotic results

It is not very surprising that the different sampling methods may give dif-
ferent distributions for the sizes of chosen components, but will they differ
asymptotically, too? In this subsection we will answer this question. Let
us first give asymptotic approximations for the total length of the random
circle graph which follow directly from Corollary 2.

Corollary 3. For sequences (CGn,d)n→∞ of random circle graphs

(a) with distance levels d(n) = ε(n)/(n− 1), where ε(n) → 0 as n → ∞ we

have

E(Ln(d)) =
ε(n)2

2
+ o(ε(n)2);
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(b) with distance levels d(n) = (c+ε(n))/(n−1), where ε(n) → 0 as n → ∞
and c is a non-negative constant we have

E(Ln(d)) = 1 − (1 + c + ε(n))e−c−ε(n)(1 + O(1/n)),

i.e., it tends to 1 − e−c(1 + c) as n → ∞;

(c) with distance levels d(n) = ln ω(n)
n−1 ,

1 − E(Ln(d)) ∼
lnω(n)

ω(n)
,

where ω(n) → ∞ as n → ∞.

For sparse circle graphs, that means for nd → c, the asymptotic distributions
for Kn(v) and K ′

n(A) are the same and both are negative binomial with
parameters 2 and e−c; however, for Kn(A) (and for Kcl

n (A)), the asymptotic
distribution is a mixture of two negative binomial distributions,

(1 + c)[k(e−c)2((1 − e−c)k−1)] − c[(k − 1)(e−c)2(1 − e−c)k−2],

for k = 1, 2, . . . as n → ∞.

For larger d, that is when nd → ∞ but n(1− d)n → ∞, or n(1− d)n →
constant, or n(1 − d)n → 0, all random variables Kn(v), Kn(A), K ′

n(A),
and Kcl

n (A) have the same asymptotic distributions.

With distance levels d(n) = (log ω(n))/n, where ω(n) → ∞, but ω(n) =
o(n) as n → ∞, the normalized size Kn(v)/ω(n) converges in distribution to
a random variable with density xe−x for x > 0, i.e., to a gamma distribution
with parameters 1 and 2.

With distance levels d(n) = (log n + c + o(1))/n, the normalized size
Kn(v)/n, under the condition that Kn(v) 6= n, converges in distribution to
a random variable with density

e−2c

1 − e−e−c(1 + e−c)
xe−xe−c

for x ∈ (0, 1) as n → ∞.

With distance levels d(n) such that n(1−d)n → 0, and under the condi-
tion that Kn(v) 6= n, the normalized sizes Kn(v)/n converge in distribution
to a random variable with the density 2x for x ∈ (0, 1) as n → ∞.
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4. Choosing Two Components

Sampling two components leads us to results which give more information
about the structure of circle graphs during their evolution when d increases.

4.1. Exact results

For two given vertices v1 and v2, let U(v1, v2) denote the event that these
two vertices are not in the same component in a random circle graph CGn,d.
Let Q be the probability of this event. Then Q = 1 − P2, where P2 is given
by Lemma 2. Let K∗

n(v1) and K∗
n(v2) be the sizes of the two components

containing v1 and v2, respectively, under assumption that U(v1, v2) holds,
i.e.,

Pr {K∗
n(v1) = k1,K

∗
n(v2) = k2} = Pr {Kn(v1) = k1,Kn(v2) = k2 | U(v1, v2)}.

In the next theorem we give the joint probability distribution of these ran-
dom variables.

Theorem 4. Assume that vertices v1 and v2 are not in the same component,

and let K∗
n(v1) and K∗

n(v2) denote the sizes of the components containing v1

and v2, respectively. Then

Pr {K∗
n(v1) = k1, K∗

n(v2) = k2} =

=
k1k2(n−k1−k2−1)

(n − 1)Q

min{k1+k2−2,b1/dc−4}
∑

j=0

(

k1+k2−2

j

)

(−1)j(1−(j + 4)d)n−1

+
2k1k2

(n − 1)Q

min{k1+k2−2,b1/dc−3}
∑

j=0

(

k1 + k2 − 2

j

)

(−1)j(1 − (j + 3)d)n−1

for k1 = 1, . . . , n − 2, k2 = 1, 2, . . . , n − 1 − k1, and

Pr {K∗
n(v1) = k, K∗

n(v2) = n − k} =

=
k(n − k)

(n − 1)Q

min{n−2,b1/dc−2}
∑

j=0

(

n − 2

j

)

(−1)j(1 − (j + 2)d)n−1
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for k = 1, . . . , n − 1, where

Q = −1 +
2

n − 1

min{n,b1/dc+1}
∑

j=2

(

n

j

)

(−1)j(1 − (j − 1)d)n−1

+

min{n,b1/dc}
∑

j=0

(

n

j

)

(−1)j(1 − jd)n−1 .

Proof. Let us choose a given set of k1+k2 vertices which contains v1 and v2

and which is supposed to form the two desired components. It can be done
in

( n−2
k1+k2−2

)

ways. Assume that the sum of lengths of the two components
is equal to y and choose the vertex w which will be one of the border points
of the component containing v2 — it can be done in k1 + k2 − 2 ways. Now,
let k1 + k2 − 3 vertices, i.e., all except v1, v2 and w, be placed at random on
the interval of length y. Assuming that two additional vertices are placed at
the border of the interval, we obtain by Lemma 1 that the probability that
these k1 + k2 − 1 vertices form a connected subgraph of length y is given by

P (k1 + k2 − 1, y, d) =

min{k1+k2−2,by/dc}
∑

j=0

(

k1 + k2 − 2

j

)

(−1)j (y − jd)k1+k2−3.

We will be assuming that the (k1 − 1)-th vertex from the left (not counting
the border point), say a vertex u, is a right border point of the component
containing v1. Next, we have to find the places for three vertices v1, v2 and w
using two empty places (at the borders) and adding one more vertex at the
place occupied already by u. We are going to decompose the above con-
nected subgraph into two components exactly at this point and the added
vertex is the left border point of the second component. We have one possi-
bility to put the vertex v1 at the left border point of the interval and there
are k1 − 1 ways to put it at one of the next occupied, first k1 − 1 places. In
the latter case the vertex from this place and all vertices to its left side will
be shifted one place to the left. The vertex v2 can be placed together with
the vertex u, i.e., v2 is the left border point of the second connected compo-
nent and the vertex w is placed at the right border of the second connected
component, or we put the vertex v2 at one of the next occupied places (k2−2
possibilities) shifting the vertex from this place and all vertices to its right
side, one place to the right, or, finally, v2 can be placed at the right border
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point of the interval (in two last cases w is placed at the left border point
of the second component). Next we add the interval of length u after the
first component (between the respective ”border” vertices of the two com-
ponents). Note that if u ≥ 2d, then we may have other components between
our two connected components, while for d ≤ u ≤ 2d it will be not possible.
Integrating over all possible values of y and u gives for k1 = 1, . . . , n − 2,
k2 = 1, 2, . . . , n − 1 − k1,

Pr {K∗
n(v1) = k1,K

∗
n(v2) = k2} =

=
1

Q

(

n − 2

k1 + k2 − 2

)

k1k2(k1 + k2 − 2)

×

[

2

∫ 1−3d

0

∫ min{2d,1−y−2d}

d
P (k1 + k2−1, y, d)(1−y − u − 2d)n−k1−k2du dy

+

∫ 1−4d

0

∫ 1−y−2d

2d
P (k1 + k2 − 1, y, d)(1 − y − 4d)n−k1−k2du dy

]

.

Standard calculations imply the result. In the same manner one can get the
distribution for remaining cases to complete the proof.

The symmetry of the above joint distribution implies immediately that the
marginal distributions are the same. To find them, we can either directly
use very similar reasonings to those used in the proof of Theorem 4, or we
can sum up the joint probability distribution over all k1 (or k2).

Corollary 4. The marginal distribution of K∗
n(v1) and of K∗

n(v2) is

Pr {K∗
n(v1) = k} = Pr {K∗

n(v2) = k}

=
k(n − k)

(n − 1)Q

min{k−1,b1/dc−2}
∑

j=0

(

k − 1

j

)

(−1)j(1 − (j + 2)d)n−1

for k = 1, 2, ..., n − 1, where
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Q = −1 +
2

n − 1

min{n,b1/dc+1}
∑

j=2

(

n

j

)

(−1)j(1 − (j − 1)d)n−1

+

min{n,b1/dc}
∑

j=0

(

n

j

)

(−1)j(1 − jd)n−1.

Next we will consider the joint distribution of the sizes of the component
containing a given vertex and of the component which is the next one in the
clockwise direction (assuming that the second variable takes the value 0 if
the component does not exist).

Theorem 5. Let v be a given vertex. The joint probability of the size Kn(v)
of the component containing this vertex and of the size RKn(v) of the com-

ponent which the next one in the clockwise direction is given by

Pr {Kn(v) = k1, RKn(v) = k2}

= k1

min{k1+k2−2,b1/dc−3}
∑

j=0

(

k1 + k2 − 2

j

)

(−1)j(1 − (j + 3)d)n−1

for k1, k2 = 1, 2, . . . , n − 1, k1 + k2 < n, and

Pr {Kn(v) = k, RKn(v) = n − k}

= k

min{n−2,b1/dc−2}
∑

j=0

(

n − 2

j

)

(−1)j(1 − (j + 2)d)n−1

for k = 1, 2, . . . , n − 1, and

Pr {Kn(v) = n, RKn(v) = 0} = Pr {CSn}.

Proof. We can prove the above formulas for the joint probability distri-
bution using the same approach as in the proof of Theorem 4. The only
differences are that the interval of length u (with the same meaning as in
the proof of Theorem 4) has to be a gap, so none of the vertices can be
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placed into it. Moreover we have exactly one given vertex and the second
component does not contain any special vertex. Hence

Pr {Kn(v) = k1, RKn(v) = k2}

=

(

n − 1

k1 + k2 − 1

)

(k1 + k2 − 1)(k1 + k2 − 2)k1

×

∫ 1−3d

0

∫ 1−y−2d

d
P (k1 + k2−1, y, d)(1−y−u−2d)n−k1−k2du dy

for k1 + k2 < n. The straightforward calculations lead us directly to the
first formula in the theorem. Similarly we can obtain the other statements
of the theorem.

For the first random variable of the random vector (Kn(v), RKn(v)), the
marginal distribution is obviously the same as the distribution given in
Theorem 2. We can obtain the marginal distribution of the second ran-
dom variable by summing up over k1 the joint probability distribution given
in Theorem 5.

Corollary 5. The marginal distribution of the random variable RKn(v) as

introduced in Theorem 5 is given by

Pr {RKn(v) = k} =

min{k−1,b1/dc−1}
∑

j=0

(

k − 1

j

)

(−1)j(1 − (j + 1)d)n−1

−

min{n−1,b1/dc−1}
∑

j=0

(

n − 1

j

)

(−1)j(1 − (j + 1)d)n−1

for k = 1, 2, . . . , n − 1, and

Pr {RKn(v) = 0} = Pr {CSn}.

4.2. Asymptotic results

The evolution of random interval graphs is discussed in details in [2]. In
a similar way one can describe the evolution for random circle graphs.
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In this paper, we restrict ourselves to the direct consequences of our exact
results - the asymptotic distributions of the sizes of connected components.

For small distances d, the coordinates of the random vector (K ∗(v1),
K∗(v2)) (and also of (Kn(v), RKn(v))) are asymptotically independent. It
is not surprising - we could expect that since all components are small, the
size of the first component has no effect on the size of the second component.
By increasing d we increase the dependence, too.

A. Sparse circle graphs: nd → c

In this case with distance levels d(n) = (c+o(1))/(n−1), by using Theorem 4
we can easily see that the probability distribution of (K ∗(v1),K

∗(v2)) tends
to

k1k2e
−4c(1 − e−c)k1+k2−2,

k1, k2 = 1, 2, . . ., as n → ∞, which implies that K∗
n(v1) and K∗

n(v2) are
asymptotically independent, both with the same negative binomial distri-
bution with parameters 2 and e−c.

It follows from Theorem 5 that the probability distribution of (Kn(v),
RKn(v)) tends to

k1e
−3c (1 − e−c)k1+k2−2

for k1, k2 = 1, 2, . . ., as n → ∞, which means that Kn(v) and RKn(v)
are also asymptotically independent but they have two different asymptotic
distributions, the negative binomial with parameters 2 and e−c and the
geometrical with parameter e−c, respectively.

B. The disappearance of finite components: nd → ∞ but
n(1 − d)n → ∞

In this case the random circle graph still has components with sizes of order
smaller than Θ(n) but, on the other hand, the components with finite sizes
begin to vanish. Theorem 4 implies the following result.

Theorem 6. For sequences (CGn,d)n→∞ of random circle graphs with dis-

tance levels d(n) = (log ω(n))/n, the normalized sizes (K ∗
n(v1)/ω(n),

K∗
n(v2)/ω(n)) converge in distribution to a random variable with density

x1 x2 e−(x1+x2) for x1 > 0, x2 > 0, that is, to the product of two indepen-

dent gamma distribution with parameters 1 and 2, where ω(n) → ∞, but

ω(n) = o(n) as n → ∞.
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Similarly Theorem 5 implies the next theorem.

Theorem 7. For sequences (CGn,d)n→∞ of random circle graphs with dis-

tance levels d(n) = (log ω(n))/n, the normalized sizes (Kn(v)/ω(n),
RKn(v)/ω(n)) converge in distribution to a random variable with density

x1 e−(x1+x2) for x1 > 0, x2 > 0, where ω(n) → ∞, but ω(n) = o(n) as

n → ∞.

C. The connectivity threshold: n(1 − d)n → constant

It is the most interesting case and more complicated than the previous
ones, since now the random circle graph CGn,d is connected with proba-
bility bounded away from both 0 and 1, so its properties are a mixture of
properties described in the previous case and the connectivity case.

Theorem 8. For sequences (CGn,d)n→∞ of random circle graphs with dis-

tance levels d(n) = (log n + c + o(1))/n, the normalized vectors (K ∗
n(v1)/n,

K∗
n(v2)/n) of component sizes converge in distribution to a random variable

with joint density function given by

e−3c

1−2ec+e−e−c(1+2ec)

[

e−cx1x2(1−x1−x2)e
−(x1+x2)e−c

+2x1x2e
−(x1+x2)e−c

]

for x1, x2 ∈ (0, 1), x1 + x2 < 1, and

e−2ce−e−c

1 − 2ec + e−e−c(1 + 2ec)
x(1 − x),

for x1 = 1 − x2 = x as n → ∞.

This shows that under the condition that v1 and v2 are not in the same com-
ponent, with positive probability the random circle graph CGn,d has just two
components with sizes of order Θ(n). In this case we do not have asymptotic
independence, and both normalized variables converge in distribution to a
random variable with density function given by

e−2c

1 − 2ec + e−e−c(1 + 2ec)
x(1 − x)e−xe−c

,

for x ∈ (0, 1) as n → ∞.
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Theorem 9. For sequences (CGn,d)n→∞ of random circle graphs with dis-

tance levels d(n) = (log n + c + o(1))/n, the normalized vectors (Kn(v)/n,
RKn(v)/n) of component sizes, under the assumption that Kn(v) 6= n, con-

verge in distribution to a random variable with joint density function given

by
e−3c

1 − e−e−c(1 + e−c)
x1e

−(x1+x2)e−c

for 0 ≤ x1 + x2 < 1, and with density

e−2ce−e−c

1 − e−e−c

(1 + e−c)
x

for x1 = 1 − x2 = x, as n → ∞.

Moreover, under the assumption that Kn(v) 6= n, with positive probability
the random circle graph CGn,d has just two components with sizes of or-
der Θ(n). The asymptotic distribution of RKn(v)/n, under the condition
that the random circle graph is not connected, is given by the following
density function

e−c

1 − e−e−c(1 + e−c)
(e−xe−c

− e−e−c

)

for 0 < x < 1 as n → ∞, which is different from the conditional distribution
of K∗(v2).

D. The connected random circle graph: n(1 − d)n → 0

In this case the random circle graph is almost surely connected. Let us,
however, study the structure of random circle graphs under the condition
that it is not connected.

Theorem 10. For sequences (CGn,d)n→∞ of random circle graphs with dis-

tance levels d(n) such that n(1 − d)n → 0, the normalized sizes (K∗
n(v1)/n,

K∗
n(v2)/n) converge in distribution to a random variable with density

6x(1−x) for x ∈ (0, 1), where x1 = 1−x2 = x, and to 0 where x1 +x2 6= 1,
as n → ∞.

This means that, under the condition that v1 and v2 belong to different
components, asymptotically almost surely the random circle graph CGn,d

has exactly two components with sizes of order Θ(n).
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Theorem 11. For sequences (CGn,d)n→∞ of random circle graphs with dis-

tance levels d(n) such that n(1 − d)n → 0, and under the assumption that

Kn(v) 6= n, the normalized sizes vectors (Kn(v)/n,RKn(v)/n) converge in

distribution to a random variable with density 2x for x1 = 1−x2 = x ∈ (0, 1),
as n → ∞.

Again for this sampling method under the condition that Kn(v) 6= n, the
random circle graph cannot have more than exactly two components with
sizes of order Θ(n). The marginal distribution of normalized random vari-
able RKn(v)/n, under the above conditions, tends to a distribution with
density

2(1 − x)

for 0 < x < 1 as n → ∞.
We know that when n(1 − d)n → 0 (see [2]), the probability of having

more than one components tends to zero, but the above results show that the
probability of having three or more components (or two components where
at least one of them has not the size of order Θ(n)) tends to zero faster than
the probability of having two components with sizes of order Θ(n).
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