ON THE TREE GRAPH OF A CONNECTED GRAPH

Ana Paulina Figueroa
Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria, México D.F. 04510, México
AND
Eduardo Rivera-Campo
Departmento de Matemáticas
Universidad Autónoma Metropolitana-Iztapalapa
Av. San Rafael Atlixco 186, México D.F. 09340, México

Abstract

Let G be a graph and C be a set of cycles of G. The tree graph of G defined by C, is the graph $T(G, C)$ that has one vertex for each spanning tree of G, in which two trees T and T^{\prime} are adjacent if their symmetric difference consists of two edges and the unique cycle contained in $T \cup T^{\prime}$ is an element of C. We give a necessary and sufficient condition for this graph to be connected for the case where every edge of G belongs to at most two cycles in C.

Keywords: tree graph, property Δ^{*}, property Δ^{+}.
2000 Mathematics Subject Classification: 05C05.

Introduction

The tree graph of a connected graph G is the graph $T(G)$ whose vertices are the spanning trees of G, in which two trees T and T^{\prime} are adjacent if $T \cup T^{\prime}$ contains a unique cycle. It is well-known that the $T(G)$ is always connected.

[^0]Several variations of the tree graph have been studied; see for instance the adjacency tree graph studied by Zhang and Chen in [5] and by Heinrich and Liu in [3], and the leaf exchange tree graph of Broersma and Li [1] and Harary et al. [2].

Let G be a connected graph and C be a set of cycles of G. The tree graph of G defined by C is the spanning subgraph $T(G, C)$ of $T(G)$ in which two trees T and T^{\prime} are adjacent if they are adjacent in $T(G)$ and the unique cycle contained in $T \cup T^{\prime}$ is an element of C.

A unicycle U of G is a connected spanning subgraph of G that contains exactly one cycle. In [4], Li et al. defined the following property: A cycle σ of G has property Δ^{*} with respect to C if for any unicycle U of G containing σ, there are two cycles $\delta, \gamma \in C$, contained in $U+e$ for some edge e of G, such that $\sigma=\delta \Delta \gamma$. The closure $c l_{G}(C)$ of the set C is the set of cycles obtained from C by successively adding new cycles of G that satisfy property Δ^{*} until no such cycle remains. A set C is Δ^{*}-dense if $c l_{G}(C)$ is the set of all cycles of G. Li et al. proved that if $T(G, C)$ is connected, then C must span the cycle space of G and that if C is Δ^{*}-dense, then $T(G, C)$ is connected.

In this article we define a weaker property which we call Δ^{+}and show that being Δ^{+}-dense is also a sufficient condition for $T(G, C)$ to be connected. We also prove that if $T(G, C)$ is connected and every edge of G lies in at most two cycles of C, then C is Δ^{+}-dense.

1. Δ^{+}-Dense: A New Sufficient Condition

We denote by $\Gamma(G)$ the cycle space of a graph G. Let σ be a cycle and U be a unicycle of G, we say that U is a σ-unicycle if the unique cycle contained in U is σ.

For an integer k, a cycle σ and a σ-unicycle U of $G,(\sigma, U)$ has property Δ_{k} with respect to C if there exists a set of cycles $X=\left\{\sigma_{0}, \ldots, \sigma_{k}\right\} \subseteq C$ and a set of edges $Y=\left\{e_{0}, \ldots, e_{k-1}\right\} \subseteq E(G) \backslash E(U)$ such that the following conditions are satisfied:
$\left(\mathcal{P}_{1}\right) X$ is a basis of $\Gamma(U+Y)$.
$\left(\mathcal{P}_{2}\right)$ Let $\rho \in X$. For every edge $x \in E(\rho) \backslash E(\sigma)$, there exists a unique $\rho^{\prime} \in X$ such that $\rho \neq \rho^{\prime}$ and $x \in E\left(\rho^{\prime}\right)$.
${ }_{\left(\mathcal{P}_{3}\right)}$ For every edge $x \in E(\sigma)$, there exists a unique $\rho \in X$ such that $x \in E(\rho)$.

We say a cycle σ of G has property Δ^{+}with respect to C if for every σ-unicycle U of G, there exists a positive integer k such that (σ, U) has property Δ_{k} with respect to C.

The closure $c l_{G}(C)^{+}$of the family C is the set of cycles obtained from C by successively adding new cycles of G that satisfy property Δ^{+}until no such cycle remains. It is not difficult to prove that this closure is well defined. We say C is Δ^{+}-dense if $c l_{G}^{+}(C)$ is the set of all cycles of G.

Remark 1. If C is Δ^{*}-dense, then C is Δ^{+}-dense.
Note that σ has property Δ^{*} with respect to C if and only if (σ, U) has property Δ_{1} with respect to C for every σ-unicycle U of G.

Lemma 1. Let C be a family of cycles of a connected graph G, U be a σ-unicycle of G for some cycle $\sigma \notin C$ and k be a positive integer. If (σ, U) has property Δ_{k} with respect to C, then every pair of spanning trees of U is connected by a path in $T(G, C)$.

Proof. By induction on k. The induction basis follows from the proof of Lemma 3.1 in [4]. Nevertheless, we will include a proof here.

Let U be a σ-unicycle of G such that (σ, U) has the property Δ_{1} and T and T^{\prime} be two spanning trees of U. There exists an edge $e \notin E(U)$ and two cycles $\delta, \gamma \in C$ of $U+e$ such that $\sigma=\delta \Delta \gamma$. Let a and b be edges of U such that $T^{\prime}=(T-a)+b$.

If $a \in E(\delta) \backslash E(\gamma)$ and $b \in E(\gamma) \backslash E(\delta)$, let $Q=(T-a)+e$. It follows that $Q=\left(T^{\prime}-b\right)+e$. Since the unique cycle of G contained in $Q \cup T$ is δ and the unique cycle of G contained in $Q \cup T^{\prime}$ is γ, we have that Q is adjacent to T and to T^{\prime} in $T(G, C)$. Thus, we have found the path $\left\{T, Q, T^{\prime}\right\}$ from T to T^{\prime} in $T(G, C)$.

If $a \in E(\gamma) \backslash E(\delta)$ and $b \in E(\delta) \backslash E(\gamma)$ we can interchange γ with δ in the previous argument.

If $a, b \in E(\delta) \backslash E(\gamma)$ let $c \in E(\gamma) \backslash E(\delta)$ and consider the spanning trees $Q=(T-c)+e$ and $Q^{\prime}=\left(T^{\prime}-c\right)+e$ of G. Notice that Q is adjacent to T in $T(G, C)$ because the unique cycle contained in $Q \cup T$ is γ and that Q^{\prime} is adjacent to T^{\prime} in $T(G, C)$ because the unique cycle contained in $T^{\prime} \cup Q$ is also γ. Even more, Q is adjacent to Q^{\prime} in $T(G, C)$ because $Q^{\prime}=(Q-a)+b$ and the unique cycle contained in $Q \cup Q^{\prime}$ is δ. Thus, $\left\{T, Q, Q^{\prime}, T^{\prime}\right\}$ is a path connecting T and T^{\prime} in $T(G, C)$.

Finally, if $a, b \in E(\gamma) \backslash E(\delta)$, we interchange γ with δ in the previous argument.

Suppose now that the result is true for every positive integer less than k. Let U be a σ-unicycle of G such that (σ, U) has the property Δ_{k} with respect to C. Then there exists a set of cycles $X=\left\{\sigma_{0}, \ldots, \sigma_{k}\right\} \subseteq C$ and a set of edges $Y=\left\{e_{0}, \ldots, e_{k-1}\right\}$ of G that satisfy $\left(\mathcal{P}_{1}\right),\left(\mathcal{P}_{2}\right)$ and $\left(\mathcal{P}_{3}\right)$.

Let T and T^{\prime} be spanning trees of U and $a, b \in E(U)$ be such that $T^{\prime}=(T-a)+b$. Notice that $\sigma_{0} \Delta \cdots \Delta \sigma_{k}=\sigma$ because every edge of σ is in exactly one cycle in X and every edge of a cycle in X that is not an edge of σ is an edge of exactly two cycles in X. Thus, there must exist at least one cycle $\rho \in X$ such that $E(\rho) \cap E(\sigma) \neq \emptyset$. It follows that at least one edge $e \in E(\rho) \cap Y$ is such that $U+e$ contains two cycles δ and γ such that $\delta \Delta \gamma=\sigma$. Without loss of generality we assume $e=e_{k-1}$.

Case 1. $a \in E(\delta) \backslash E(\gamma)$ and $b \in E(\gamma) \backslash E(\delta)$.
Subcase 1.1. $\delta \in X$.
We can rename the cycles in X in such a way that $\delta=\sigma_{k}$. Let $U^{\prime}=$ $(U-a)+e_{k-1}$, clearly U^{\prime} is a γ-unicycle of G. We shall prove that $\left(\gamma, U^{\prime}\right)$ has property Δ_{k-1}. Let $X^{\prime}=\left\{\sigma_{0}, \ldots, \sigma_{k-1}\right\}$ and $Y^{\prime}=\left\{e_{0}, \ldots, e_{k-2}\right\}$.

Let $x \in E(\rho)$, for $\rho \in X^{\prime}$, then $x \in E(U) \cup Y=\left(E\left(U^{\prime}\right) \cup Y^{\prime}\right) \cup\{a\}$. Notice that $a \in E\left(\sigma_{k}\right) \cap E(\sigma)$, so the unique cycle in X that contains a is σ_{k} because σ, U, X and Y satisfy $\left(\mathcal{P}_{3}\right)$. It follows that $x \neq a$, so $x \in E\left(U^{\prime}\right) \cup Y^{\prime}$. Then, every cycle in X^{\prime} is a cycle of $U^{\prime}+Y^{\prime}$. The dimension of $\Gamma\left(U^{\prime}+Y^{\prime}\right)$ is k, and X^{\prime} is a linear independent set consisting of k cycles of $U^{\prime}+Y^{\prime}$, then X^{\prime} is a basis of $\Gamma\left(U^{\prime}+Y^{\prime}\right)$. Therefore $\gamma, U^{\prime}, X^{\prime}$ and Y^{\prime} satisfy property $\left(\mathcal{P}_{1}\right)$.

Let $\rho \in X^{\prime}$ and $x \in E(\rho) \backslash E(\gamma)$. If $x \in E(\sigma)$, then $x \in E(\sigma) \backslash E(\gamma)$. Since $\sigma=\gamma \Delta \sigma_{k}$ and σ, U, X and Y satisfy (\mathcal{P}_{3}), the unique cycle in X that contains x is σ_{k} which is impossible because $\rho \neq \sigma_{k}$ and $\rho \in X$. It follows that $x \notin E(\sigma)$ and $x \notin E\left(\sigma_{k}\right)$ because $\sigma=\sigma_{k} \Delta \gamma$. Since σ, U, X and Y satisfy $\left(\mathcal{P}_{2}\right)$, there exists a unique $\rho^{\prime} \in X$ such that $x \in E\left(\rho^{\prime}\right)$. Clearly $\rho^{\prime} \neq \sigma_{k}$, so $\rho^{\prime} \in X^{\prime}$. Therefore $\gamma, U^{\prime}, X^{\prime}$ and Y^{\prime} satisfy $\left(\mathcal{P}_{2}\right)$.

Let $x \in \sigma$. If $x \in E(\gamma)$, there exists a unique cycle $\rho \in X$ such that $x \in E(\rho)$ because σ, U, X and Y satisfy $\left(\mathcal{P}_{3}\right)$. Since $\sigma=\delta \Delta \gamma, \rho \neq \sigma_{k}$. It follows that $\rho \in X^{\prime}$. If $x \in E(\gamma) \backslash E(\sigma), x \in E\left(\sigma_{k}\right)$. We know that σ, U, X and Y satisfy $\left(\mathcal{P}_{2}\right)$ implying there exists a unique cycle $\rho \in X \backslash\left\{\sigma_{k}\right\}=X^{\prime}$ containing x. Therefore $\gamma, U^{\prime}, X^{\prime}$ and Y^{\prime} satisfy $\left(\mathcal{P}_{3}\right)$.

Since $\left(\mathcal{P}_{1}\right),\left(\mathcal{P}_{2}\right)$ and $\left(\mathcal{P}_{3}\right)$ are satisfied, $\left(\gamma, U^{\prime}\right)$ has property Δ_{k-1} and the inductive hypothesis applies. Let $Q=(T-a)+e_{k-1}$, since Q and T^{\prime} are spanning trees of U^{\prime}, by induction Q and T^{\prime} are joined by a path in $T(G, C)$.

On the other hand, T is adjacent to Q in $T(G, C)$ because δ is the unique cycle of $T \cup Q$. So, T and T^{\prime} are also joined by a path in $T(G, C)$.

Subcase 1.2. $\gamma \in X$.
This case can be proved in the same way interchanging γ with δ and a with b.
Subcase 1.3. $\delta, \gamma \notin X$.
Since X is a basis of $\Gamma(U+Y)$, by reordering X we can also assume that there exists an integer $1 \leq r \leq k-2$ such that $\sigma_{0} \Delta \cdots \Delta \sigma_{r}=\delta$. Since $\delta \Delta \gamma=\sigma=\sigma_{0} \Delta \cdots \Delta \sigma_{k}$, it follows that $\gamma=\sigma_{r+1} \Delta \cdots \Delta \sigma_{k}$.

Let $A=\left\{\sigma_{0}, \ldots, \sigma_{r}\right\}$ and $B=\left\{\sigma_{r+1}, \ldots, \sigma_{k}\right\}$. If an edge $e_{i} \in Y \backslash\left\{e_{k-1}\right\}$ is such that $e_{i} \in E(\rho)$ for some cycle $\rho \in A$ and $e_{i} \in E\left(\rho^{\prime}\right)$ for some $\rho^{\prime} \in B$, then $e_{i} \in E(\delta) \cap E(\gamma)$. Since $E(\delta) \cap E(\gamma) \subseteq E\left(U+e_{k-1}\right)$, $e_{i}=e_{k-1}$, which is impossible. Thus, A and B induce a partition of the edges in $Y \backslash\left\{e_{k-1}\right\}$ and this partition is not trivial because every $\rho \in X$ contains at least one edge in $Y \backslash\left\{e_{k-1}\right\}$.

Then, we can reorder the edges of $Y \backslash\left\{e_{k-1}\right\}$ in such a way that there exists an integer $0 \leq t \leq k-2$, such that $A^{\prime}=\left\{e_{0}, \ldots, e_{t-1}\right\}$ is the set of edges in $Y \backslash\left\{e_{k-1}\right\}$ contained in elements of A and $B^{\prime}=\left\{e_{t}, \ldots, e_{k-2}\right\}$ is the set of edges in $Y \backslash\left\{e_{k-1}\right\}$ contained in elements of B.

Let $U_{1}=(U-b)+e_{k-1}$ and $U_{2}=(U-a)+e_{k-1}$. Notice that U_{1} is a δ-unicycle and U_{2} is a γ-unicycle. We will show that $\left(\delta, U_{1}\right)$ and $\left(\gamma, U_{2}\right)$ have properties Δ_{r} and Δ_{k-r+1}, respectively.

It is not difficult to see that no cycle of A contains b and that no cycle of B contains a. That means that every cycle in A is contained in $U_{1}+A^{\prime}$ and every cycle in B is contained in $U_{2}+B^{\prime}$. It follows that A is a linear independent set of $\Gamma\left(U_{1}+A^{\prime}\right)$ and B is a linear independent set of $\Gamma\left(U_{2}+B^{\prime}\right)$, so $|A| \leq\left|A^{\prime}\right|+1$ and $|B| \leq\left|B^{\prime}\right|+1$. That is, $r+1 \leq t+1$ and $(k+1)-(r+1) \leq$ $((k-1)-t)+1$. Thus, $t \leq r \leq t$; this implies $r=t$.

Since the dimension of $\Gamma\left(U_{1}+A^{\prime}\right)$ is $t+1$ and A is a linear independent set of $\Gamma\left(U_{1}+A^{\prime}\right)$ with $t+1$ cycles, A is a basis of $\Gamma\left(U_{1}+A^{\prime}\right)$. Therefore δ, U_{1}, A and A^{\prime} satisfy $\left(\mathcal{P}_{1}\right)$. Analogously γ, U_{2}, B and B^{\prime} satisfy $\left(\mathcal{P}_{1}\right)$.

Let $\rho \in A$ and $x \in E(\rho) \backslash E(\delta)$. If $x \in E(\sigma) \cap((E(\rho) \backslash E(\delta))$, there exists a unique cycle in X that contains x, because σ, U, X and Y satisfy $\left(\mathcal{P}_{3}\right)$. Then, ρ is the unique cycle of X that contains x and therefore also the unique cycle of A that contains x. Thus, x is an edge of $\Delta_{\rho \in A} \rho=\delta$ which is impossible. It follows that $x \notin E(\sigma)$. Since σ, U, X and Y satisfy $\left(\mathcal{P}_{2}\right)$, there exists a unique $\rho^{\prime} \in X$ such that $\rho^{\prime} \neq \rho$ and $x \in E\left(\rho^{\prime}\right)$. It is clear that if $\rho^{\prime} \in B$, then $x \in E(\gamma) \cap E(\delta)$ which is impossible. Thus, $\rho^{\prime} \in A$.

Therefore δ, U_{1}, A and A^{\prime} satisfy (\mathcal{P}_{2}). Analogously γ, U_{2}, B and B^{\prime} satisfy $\left(\mathcal{P}_{2}\right)$.

Let $x \in E(\delta)$. If $x \in E(\sigma)$, then there exists a unique cycle $\rho \in X$ such that $x \in E(\rho)$ because σ, U, X and Y satisfy $\left(\mathcal{P}_{3}\right)$. Since $x \in E(\delta)$, $\rho \in A$. If $x \notin E(\sigma)$, then $x \in E(\gamma) \cap E(\delta)$. Since $\delta=\Delta_{\rho \in A} \rho, x \in E(\rho)$ for some $\rho \in A$ and since $\gamma=\Delta_{\rho \in B} \rho, x \in E\left(\rho^{\prime}\right)$ for some $\rho^{\prime} \in B$. There are at most two cycles in X containing x because (σ, U) has property Δ_{k} with respect to C. Thus, if $x \in E(\delta)$, there exists a unique cycle $\rho \in A$ such that $x \in E(\rho)$. Therefore δ, U_{1}, A and A^{\prime} satisfy $\left(\mathcal{P}_{3}\right)$. Analogously γ, U_{2}, B and B^{\prime} satisfy $\left(\mathcal{P}_{3}\right)$.

We can now apply the inductive hypothesis to $\left(\delta, U_{1}\right)$ and to $\left(\gamma, U_{2}\right)$.
Let $R=(T-a)+e_{k-1}=\left(T^{\prime}-b\right)+e_{k-1}$. Since R is a spanning tree of both U_{1} and U_{2}, there exists a path in $T(G, C)$ from T to R and a path from R to T^{\prime}. Therefore T and T^{\prime} can also be joined by a path in $T(G, C)$.

Case 2. $a \in E(\gamma) \backslash E(\delta)$ and $b \in E(\delta) \backslash E(\gamma)$.
This case can be proved as Case 1 by interchanging a with b.
Case 3. $a, b \in E(\delta) \backslash E(\gamma)$.
Consider an edge $c \in E(\gamma) \backslash E(\delta)$ and let $Q=(T-a)+c=\left(T^{\prime}-b\right)+c$. Notice that Q is a spanning tree of U. Applying Case 1 to T and Q and to Q and T^{\prime}, we have that T and Q are joined by a path in $T(G, C)$ and also there exists a path between Q and T^{\prime} in $T(G, C)$. It follows that there exists a path from T to T^{\prime} in $T(G, C)$.

Case 4. $a, b \in E(\gamma) \backslash E(\delta)$.
The proof of this case is analogous to that of Case 3 by interchanging δ with γ.

Theorem 1. Let C be a set of cycles of a connected graph G. The graph $T(G, C)$ is connected if and only if $T\left(G, c_{G}^{+}(C)\right)$ is connected.

Proof. If $T(G, C)$ is connected then $T\left(G, c_{G}^{+}(C)\right)$ is connected because $C \subseteq c l_{G}^{+}(C)$.

Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ be the sequence of cycles added to C while obtaining $c l_{G}^{+}(C)$ and let $C_{0}=C$ and $C_{i}=C \cup\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{i}\right\}$ for $1 \leq i \leq n$. Let $1 \leq i \leq n$. Since σ_{i} has property Δ^{+}with respect to C_{i-1}, for every σ_{i}-unicycle U of G there exists a positive integer k such that $\left(\sigma_{i}, U\right)$ has property Δ_{k} with respect to C_{i-1}.

Suppose that $T\left(G, C_{i}\right)$ is connected and let T and T^{\prime} be two spanning trees of G adjacent in $T\left(G, C_{i}\right)$. If T and T^{\prime} are not adjacent in $T\left(G, C_{i-1}\right)$, then $T \cup T^{\prime}$ is a σ_{i}-unicycle. By Lemma 1 , there exists a $T T^{\prime}$-path in $T\left(G, C_{i-1}\right)$. Therefore if $T\left(G, C_{i}\right)$ is connected, then $T\left(G, C_{i-1}\right)$ is connected. Clearly this implies that if $T\left(G, c l_{G}^{+}(C)\right)$ is connected, then $T(G, C)$ is connected.

Corollary 1. If C is Δ^{+}-dense, then $T(G, C)$ is connected.
Proof. If C is Δ^{+}-dense, then $T\left(G, c l_{G}^{+}(C)\right)=T(G)$ which is always connected. By Theorem 1, $T(G, C)$ is connected.

2. Main Result

Let G be a connected graph and C be a family of cycles of G such that $T(G, C)$ is connected. For any spanning trees T and T^{\prime} of G, let $d_{C}\left(T, T^{\prime}\right)$ denote the distance between T and T^{\prime} in $T(G, C)$. For any edge x of G, we denote by A_{x} the set of spanning trees of G containing x. For a spanning tree T of G such that $x \notin E(T)$, the distance $d_{C}\left(T, A_{x}\right)$ from T to A_{x} is the minimum distance $d_{C}(T, R)$ with $R \in A_{x}$.

Lemma 2. Let C be a family of cycles of a connected graph G such that every edge of G is in at most two cycles of C. Let U be a σ-unicycle of G for some cycle $\sigma \notin C$. If $T(G, C)$ is connected, then (σ, U) has property Δ_{k} for some positive integer k.

Proof. Let T be a spanning tree of U, and let x be the unique edge of U not in T. Since $T(G, C)$ is connected, there exists a spanning tree T_{x} such that the path between T and T_{x} has length $d=d_{C}\left(T, A_{x}\right)$. Since $\sigma \notin C$, $d \geq 2$. We shall prove by induction on d that (σ, U) has property Δ_{k} for some integer k.

Suppose $d=2$ and let $S \notin A_{x}$ be such that $\left\{T, S, T_{x}\right\}$ is a path in $T(G, C)$. Since T is adjacent to S in $T(G, C)$, there exist $a \in E(T) \backslash E(S)$, $e \in E(S) \backslash E(T)$ and $\delta \in C$ such that $S=(T-a)+e$ and $S \cup T$ is a δ-unicycle of G. On the other hand, since S is adjacent to T_{x} in $T(G, C)$, there exist $b \in E(S) \backslash E\left(T_{x}\right)$ and $\gamma \in C$ such that $T_{x}=(S-b)+x$ and $T_{x} \cup S$ is a γ-unicycle of G.

Notice that $x \in E(\gamma) \backslash E(\delta)$ since $S \notin A_{x}$. Thus $\delta \neq \gamma$ and $U+e$ contains three different cycles: δ, γ and σ. Therefore $\sigma=\delta \Delta \gamma$. We conclude that (σ, U) has property Δ_{1}.

We proceed by induction assuming $d \geq 3$ and that (γ, V) has property Δ_{s} for some positive integer s for each cycle $\gamma \notin C$ and each γ-unicycle V of G whenever there exists a spanning tree R of V such that $R+z=V$ for some edge $z \in E(V) \backslash E(R)$ and $d_{C}\left(R, A_{z}\right)<d$.

Let $\left\{T=T_{0}, T_{1}, \ldots, T_{n}=T_{d}\right\}$ be a $T T_{x}$-path of length d in $T(G, C)$. Since T and T_{1} are adjacent in $T(G, C)$, there exists $a \in E(T) \backslash E\left(T_{1}\right)$, $b \in E\left(T_{1}\right) \backslash E(T)$ and a cycle $\delta \in C$ such that $T_{1}=(T-a)+b$ and $T \cup T_{1}$ is a δ-unicycle of G. Let γ be the unique cycle in $V=T_{1}+x$.

Since $x \notin E\left(T_{1}\right), d_{C}\left(T_{1}, A_{x}\right)=d-1$. By the inductive hypothesis, (γ, V) has property Δ_{s} for some integer s. Therefore there exists a set of cycles $X_{1}=\left\{\gamma_{0}, \ldots, \gamma_{s}\right\} \subseteq C$ and a set of edges $Y_{1}=\left\{e_{0}, \ldots, e_{s-1}\right\} \subseteq E(G) \backslash E(V)$ such that γ, V, X_{1} and Y_{1} satisfy $\left(\mathcal{P}_{1}\right),\left(\mathcal{P}_{2}\right)$ and $\left(\mathcal{P}_{3}\right)$.

Case 1. $\gamma=\sigma$.
If $b \notin E(\rho)$ for any $\rho \in X_{1}$ then $E(\rho) \subseteq(E(V) \backslash\{b\}) \cup E\left(Y_{1}\right)=E(U) \cup E\left(Y_{1}\right)$. So (σ, U) has the property Δ_{s} because σ, U, X_{1} and Y_{1} satisfy $\left(\mathcal{P}_{1}\right),\left(\mathcal{P}_{2}\right)$ and $\left(\mathcal{P}_{3}\right)$.

Then, we can assume $b \in E(\rho)$ for some $\rho \in X_{1}$. Clearly $b \notin E(\sigma)$ because $b \notin E(U)$ and U contains σ. Since γ, V, X_{1} and Y_{1} satisfy $\left(\mathcal{P}_{2}\right)$ there exists $\rho^{\prime} \in X_{1}$ such that $b \in E\left(\rho^{\prime}\right)$. Since b is also an edge of δ and b is in at most two cycles of C, without loss of generality we can assume $\rho=\delta$. Since $a \in E(\delta) \backslash E(V), a=e_{t}$ for some $0 \leq t \leq s-1$. Then, it is not difficult to prove that σ, U, X and Y satisfy $\left(\mathcal{P}_{1}\right),\left(\mathcal{P}_{2}\right)$ and $\left(\mathcal{P}_{3}\right)$, where $X=X_{1}$ and $Y=\left(Y_{1} \backslash\{a\}\right) \cup\{b\}$. This also implies that (σ, U) has property Δ_{s}.

Case 2. $\rho \neq \sigma$.
In this case $U+b$ contains exactly three cycles σ, δ, γ. Since $b \notin E(\sigma)$, $b \in E(\delta) \cap E(\gamma)$ and $\delta \Delta \gamma=\sigma$.

Subcase 2.1. $a \notin E(\rho)$ for any $\rho \in X$.
Let $X=X_{1} \cup\{\delta\}$ and $Y=Y_{1} \cup\{a\}$. Since δ is the unique cycle in X containing a, then X is a linear independent set of $\Gamma(G)$. Note that every cycle in X is a cycle of $U+Y$ and $\Gamma(U+Y)$ has dimension $s+1$, then X is a basis of $\Gamma(U+Y)$.

Let $x \in E(\rho) \backslash E(\sigma)$ for some $\rho \in X$. If $x \notin E(\gamma)$, then there exists $\rho^{\prime} \in X_{1}$ such that $x \in E\left(\rho^{\prime}\right)$ because γ, V, X_{1} and Y_{1} satisfy $\left(\mathcal{P}_{2}\right)$. If $x \in E(\gamma)$ then $x \in E(\delta)$ because $\sigma=\delta \Delta \gamma$. It follows that if $x \in E(\rho)$, then x lies in at least two cycles of X. Since every edge is in at most two cycles
of C, x belongs to exactly two cycles of X. In other words, if $x \in E(\rho)$ for some $\rho \in X^{\prime}$, then there exists a unique cycle $\rho^{\prime} \in X$ such that $x \in E\left(\rho^{\prime}\right)$.

Let $x \in E(\sigma)$. If $x \notin E(\delta)$, then $x \in E(\gamma)$ because $\sigma=\delta \Delta \gamma$. Since γ, V, X_{1}, and Y_{1} satisfy $\left(\mathcal{P}_{3}\right)$, there exists a unique cycle $\rho \in X_{1}$ such that $x \in E(\rho)$. Thus there exists a unique cycle $\rho \in X$ such that $x \in E(\rho)$ because $x \notin E(\delta)$.

Now suppose that $x \in E(\delta)$, then $x \notin E(\gamma)$ because $\sigma=\sigma \Delta \gamma$. If $x \in E(\rho)$ for some $\rho \in X_{1}$, then there exists $\rho^{\prime} \in X_{1}$ such that $x \in E\left(\rho^{\prime}\right)$ because γ, V, X_{1} and Y_{1} satisfy $\left(\mathcal{P}_{2}\right)$. Then x is an edge of δ, ρ and ρ^{\prime} which is impossible because x can not be an edge of three cycles of C. Thus, the unique cycle in X containing x is δ.

Therefore σ, U, X and Y satisfy $\left(\mathcal{P}_{1}\right),\left(\mathcal{P}_{2}\right)$ and $\left(\mathcal{P}_{3}\right)$. This implies that (σ, U) has property Δ_{s+1}.

Subcase 2.2. $a \in E(\rho)$ for some $\rho \in X$.
In this case we can suppose w.l.o.g that $a=e_{s-1}$. By property Δ_{s} of (γ, V), the edge a is in exactly two cycles of X_{1}. Since $a \in E(\delta)$ and a is in at most two cycles of C, then we can assume $\delta=\gamma_{s}$. Let $X=X_{1} \backslash\left\{\gamma_{s}\right\}$ and $Y=Y_{1} \backslash\left\{e_{s-1}\right\}$.

Since $b \in E(\delta) \backslash E(\sigma)$ and $\sigma=\delta \Delta \gamma$, then $b \in E(\delta) \cap E(\gamma)$. Thus, there exists a unique cycle $\rho \in X_{1}$ containing b because γ, V, X_{1} and Y_{1} satisfy (\mathcal{P}_{3}). Therefore, $\delta=\rho$. It follows that $E(\rho) \subseteq E\left(V+Y_{1}\right)=$ $(E(U) \cup E(Y)) \backslash\{b\}$ for every $\rho \in X$. Then, it is clear that X is a basis of $\Gamma(U+Y)$.

Let $x \in E(\rho) \backslash E(\sigma)$ for some $\rho \in X$. Since every edge in $E(\gamma) \backslash E(\sigma)$ is an edge of δ, it follows that $E(\gamma) \cap E(\rho)=\emptyset$ because γ, V, X_{1} and Y_{1} satisfy $\left(\mathcal{P}_{3}\right)$. Thus, $x \notin E(\gamma)$. It follows that there exists a unique $\rho^{\prime} \in X_{1}$ such that $x \in E\left(\rho^{\prime}\right)$ because V, X_{1} and Y_{1} satisfy $\left(\mathcal{P}_{2}\right)$. If $\rho^{\prime}=\delta$, then $x \in E(\delta) \backslash(E(\sigma) \cup E(\gamma))$ which is impossible because $\sigma=\delta \Delta \gamma$. Therefore $\rho^{\prime} \in X$.

Let $x \in E(\sigma)$. If $x \in E(\sigma) \cap E(\gamma)$, there exists a unique $\rho \in X_{1}$ such that $x \in E(\rho)$ because γ, V, X_{1} and Y_{1} satisfy $\left(\mathcal{P}_{3}\right)$. Clearly $\rho \neq \delta$ because $E(\sigma) \cap E(\gamma) \cap E(\delta)=\emptyset$. If $x \in E(\sigma) \backslash E(\gamma)=E(\sigma) \cap E(\delta)$. Since $\delta \in X_{1}$ and γ, V, X_{1} and Y_{1} satisfy $\left(\mathcal{P}_{2}\right)$, there exists a unique $\rho^{\prime} \in X_{1}, \rho^{\prime} \neq \delta$ such that $x \in E\left(\rho^{\prime}\right)$. Thus, we have proved that there exists a unique $\rho \in X$ such that $x \in E(\rho)$.

Therefore σ, U, X and Y satisfy $\left(\mathcal{P}_{1}\right),\left(\mathcal{P}_{2}\right)$ and $\left(\mathcal{P}_{3}\right)$, which, in this case, implies that (σ, U) has property Δ_{s-1}.

Theorem 2. Let C be a family of cycles of G such that every edge of G lies in at most two cycles of C. The graph $T(G, C)$ is connected if and only if every cycle $\sigma \notin C$ has property Δ^{+}with respect to C.

Proof. If every cycle $\sigma \notin C$ has property Δ^{+}with respect to C, then C is Δ^{+}-dense. By Corollary $1, T(G, C)$ is connected.

Conversely, let σ be a cycle of G not in C. By Lemma 2, if $T(G, C)$ is connected, then for each σ-unicycle of $G,(\sigma, U)$ has property Δ_{k} for some integer k. This implies that σ has property Δ^{+}with respect to C.

References

[1] H.J. Broersma and X. Li, The connectivity of the of the leaf-exchange spanning tree graph of a graph, Ars. Combin. 43 (1996) 225-231.
[2] F. Harary, R.J. Mokken and M. Plantholt, Interpolation theorem for diameters of spanning trees, IEEE Trans. Circuits and Systems 30 (1983) 429-432.
[3] K. Heinrich and G. Liu, A lower bound on the number of spanning trees with k endvertices, J. Graph Theory 12 (1988) 95-100.
[4] X. Li, V. Neumann-Lara and E. Rivera-Campo, On a tree graph defined by a set of cycles, Discrete Math. 271 (2003) 303-310.
[5] F.J. Zhang and Z. Chen, Connectivity of (adjacency) tree graphs, J. Xinjiang Univ. Natur. Sci. 3 (1986) 1-5.

Revised 18 June 2008
Accepted 18 June 2008

[^0]: Research supported by CONACYT (México).

