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Universidad Nacional Autónoma de México
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Abstract

Let G be a graph and C be a set of cycles of G. The tree graph
of G defined by C, is the graph T (G, C) that has one vertex for each
spanning tree of G, in which two trees T and T ′ are adjacent if their
symmetric difference consists of two edges and the unique cycle con-
tained in T ∪T ′ is an element of C. We give a necessary and sufficient
condition for this graph to be connected for the case where every edge
of G belongs to at most two cycles in C.
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Introduction

The tree graph of a connected graph G is the graph T (G) whose vertices are
the spanning trees of G, in which two trees T and T ′ are adjacent if T ∪ T ′

contains a unique cycle. It is well-known that the T (G) is always connected.
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Several variations of the tree graph have been studied; see for instance the
adjacency tree graph studied by Zhang and Chen in [5] and by Heinrich
and Liu in [3], and the leaf exchange tree graph of Broersma and Li [1] and
Harary et al. [2].

Let G be a connected graph and C be a set of cycles of G. The tree

graph of G defined by C is the spanning subgraph T (G,C) of T (G) in which
two trees T and T ′ are adjacent if they are adjacent in T (G) and the unique
cycle contained in T ∪ T ′ is an element of C.

A unicycle U of G is a connected spanning subgraph of G that contains
exactly one cycle. In [4], Li et al. defined the following property: A cycle σ
of G has property ∆∗ with respect to C if for any unicycle U of G containing
σ, there are two cycles δ, γ ∈ C, contained in U +e for some edge e of G, such
that σ = δ∆γ. The closure clG(C) of the set C is the set of cycles obtained
from C by successively adding new cycles of G that satisfy property ∆∗ until
no such cycle remains. A set C is ∆∗-dense if clG(C) is the set of all cycles
of G. Li et al. proved that if T (G,C) is connected, then C must span the
cycle space of G and that if C is ∆∗-dense, then T (G,C) is connected.

In this article we define a weaker property which we call ∆+ and show
that being ∆+-dense is also a sufficient condition for T (G,C) to be con-
nected. We also prove that if T (G,C) is connected and every edge of G lies
in at most two cycles of C, then C is ∆+-dense.

1. ∆+-Dense: A New Sufficient Condition

We denote by Γ(G) the cycle space of a graph G. Let σ be a cycle and U be
a unicycle of G, we say that U is a σ-unicycle if the unique cycle contained
in U is σ.

For an integer k, a cycle σ and a σ-unicycle U of G, (σ,U) has property

∆k with respect to C if there exists a set of cycles X = {σ0, . . . , σk} ⊆ C
and a set of edges Y = {e0, . . . , ek−1} ⊆ E(G)\E(U) such that the following
conditions are satisfied:

(P1) X is a basis of Γ(U + Y ).

(P2) Let ρ ∈ X. For every edge x ∈ E(ρ)\E(σ), there exists a unique
ρ′ ∈ X such that ρ 6= ρ′ and x ∈ E(ρ′).

(P3) For every edge x ∈ E(σ), there exists a unique ρ ∈ X such that
x ∈ E(ρ).
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We say a cycle σ of G has property ∆+ with respect to C if for every
σ-unicycle U of G, there exists a positive integer k such that (σ,U) has
property ∆k with respect to C.

The closure clG(C)+ of the family C is the set of cycles obtained from
C by successively adding new cycles of G that satisfy property ∆+ until
no such cycle remains. It is not difficult to prove that this closure is well
defined. We say C is ∆+-dense if cl+

G
(C) is the set of all cycles of G.

Remark 1. If C is ∆∗-dense, then C is ∆+-dense.

Note that σ has property ∆∗ with respect to C if and only if (σ,U) has
property ∆1 with respect to C for every σ-unicycle U of G.

Lemma 1. Let C be a family of cycles of a connected graph G, U be a

σ-unicycle of G for some cycle σ 6∈ C and k be a positive integer. If (σ,U)
has property ∆k with respect to C, then every pair of spanning trees of U is

connected by a path in T (G,C).

Proof. By induction on k. The induction basis follows from the proof of
Lemma 3.1 in [4]. Nevertheless, we will include a proof here.

Let U be a σ-unicycle of G such that (σ,U) has the property ∆1 and T
and T ′ be two spanning trees of U . There exists an edge e 6∈ E(U) and two
cycles δ, γ ∈ C of U + e such that σ = δ∆γ. Let a and b be edges of U such
that T ′ = (T − a) + b.

If a ∈ E(δ)\E(γ) and b ∈ E(γ)\E(δ), let Q = (T − a) + e. It follows
that Q = (T ′−b)+e. Since the unique cycle of G contained in Q∪T is δ and
the unique cycle of G contained in Q ∪ T ′ is γ, we have that Q is adjacent
to T and to T ′ in T (G,C). Thus, we have found the path {T,Q, T ′} from
T to T ′ in T (G,C).

If a ∈ E(γ)\E(δ) and b ∈ E(δ)\E(γ) we can interchange γ with δ in
the previous argument.

If a, b ∈ E(δ)\E(γ) let c ∈ E(γ)\E(δ) and consider the spanning trees
Q = (T − c) + e and Q′ = (T ′ − c) + e of G. Notice that Q is adjacent to
T in T (G,C) because the unique cycle contained in Q ∪ T is γ and that Q′

is adjacent to T ′ in T (G,C) because the unique cycle contained in T ′ ∪Q is
also γ. Even more, Q is adjacent to Q′ in T (G,C) because Q′ = (Q− a)+ b
and the unique cycle contained in Q∪Q′ is δ. Thus, {T,Q,Q′, T ′} is a path
connecting T and T ′ in T (G,C).

Finally, if a, b ∈ E(γ)\E(δ), we interchange γ with δ in the previous
argument.
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Suppose now that the result is true for every positive integer less than k. Let
U be a σ-unicycle of G such that (σ,U) has the property ∆k with respect
to C. Then there exists a set of cycles X = {σ0, . . . , σk} ⊆ C and a set of
edges Y = {e0, . . . , ek−1} of G that satisfy (P1), (P2) and (P3).

Let T and T ′ be spanning trees of U and a, b ∈ E(U) be such that
T ′ = (T − a) + b. Notice that σ0∆ · · ·∆σk = σ because every edge of σ is
in exactly one cycle in X and every edge of a cycle in X that is not an edge
of σ is an edge of exactly two cycles in X. Thus, there must exist at least
one cycle ρ ∈ X such that E(ρ) ∩ E(σ) 6= ∅. It follows that at least one
edge e ∈ E(ρ) ∩ Y is such that U + e contains two cycles δ and γ such that
δ∆γ = σ. Without loss of generality we assume e = ek−1.

Case 1. a ∈ E(δ)\E(γ) and b ∈ E(γ)\E(δ).

Subcase 1.1. δ ∈ X.

We can rename the cycles in X in such a way that δ = σk. Let U ′ =
(U − a) + ek−1, clearly U ′ is a γ-unicycle of G. We shall prove that (γ, U ′)
has property ∆k−1. Let X ′ = {σ0, . . . , σk−1} and Y ′ = {e0, . . . , ek−2}.

Let x ∈ E(ρ), for ρ ∈ X ′, then x ∈ E(U) ∪ Y = (E(U ′) ∪ Y ′) ∪ {a}.
Notice that a ∈ E(σk)∩E(σ), so the unique cycle in X that contains a is σk

because σ, U , X and Y satisfy (P3). It follows that x 6= a, so x ∈ E(U ′)∪Y ′.
Then, every cycle in X ′ is a cycle of U ′ +Y ′. The dimension of Γ(U ′ +Y ′) is
k, and X ′ is a linear independent set consisting of k cycles of U ′ + Y ′, then
X ′ is a basis of Γ(U ′+Y ′). Therefore γ, U ′, X ′ and Y ′ satisfy property (P1).

Let ρ ∈ X ′ and x ∈ E(ρ)\E(γ). If x ∈ E(σ), then x ∈ E(σ)\E(γ).
Since σ = γ∆σk and σ, U , X and Y satisfy (P3), the unique cycle in X
that contains x is σk which is impossible because ρ 6= σk and ρ ∈ X. It
follows that x 6∈ E(σ) and x 6∈ E(σk) because σ = σk∆γ. Since σ, U , X and
Y satisfy (P2), there exists a unique ρ′ ∈ X such that x ∈ E(ρ′). Clearly
ρ′ 6= σk, so ρ′ ∈ X ′. Therefore γ, U ′, X ′ and Y ′ satisfy (P2).

Let x ∈ σ. If x ∈ E(γ), there exists a unique cycle ρ ∈ X such that
x ∈ E(ρ) because σ, U , X and Y satisfy (P3). Since σ = δ∆γ, ρ 6= σk. It
follows that ρ ∈ X ′. If x ∈ E(γ)\E(σ), x ∈ E(σk). We know that σ, U , X
and Y satisfy (P2) implying there exists a unique cycle ρ ∈ X\{σk} = X ′

containing x. Therefore γ, U ′, X ′ and Y ′ satisfy (P3).

Since (P1), (P2) and (P3) are satisfied, (γ, U ′) has property ∆k−1 and
the inductive hypothesis applies. Let Q = (T −a)+ek−1, since Q and T ′ are
spanning trees of U ′, by induction Q and T ′ are joined by a path in T (G,C).
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On the other hand, T is adjacent to Q in T (G,C) because δ is the unique
cycle of T ∪ Q. So, T and T ′ are also joined by a path in T (G,C).

Subcase 1.2. γ ∈ X.
This case can be proved in the same way interchanging γ with δ and a with b.

Subcase 1.3. δ, γ 6∈ X.
Since X is a basis of Γ(U + Y ), by reordering X we can also assume that
there exists an integer 1 ≤ r ≤ k − 2 such that σ0∆ · · ·∆σr = δ. Since
δ∆γ = σ = σ0∆ · · ·∆σk, it follows that γ = σr+1∆ · · ·∆σk.

Let A = {σ0, . . . , σr} and B = {σr+1, . . . , σk}. If an edge ei ∈ Y \{ek−1}
is such that ei ∈ E(ρ) for some cycle ρ ∈ A and ei ∈ E(ρ′) for some ρ′ ∈ B,
then ei ∈ E(δ) ∩ E(γ). Since E(δ) ∩ E(γ) ⊆ E(U + ek−1), ei = ek−1, which
is impossible. Thus, A and B induce a partition of the edges in Y \{ek−1}
and this partition is not trivial because every ρ ∈ X contains at least one
edge in Y \{ek−1}.

Then, we can reorder the edges of Y \{ek−1} in such a way that there
exists an integer 0 ≤ t ≤ k − 2, such that A′ = {e0, . . . , et−1} is the set of
edges in Y \{ek−1} contained in elements of A and B ′ = {et, . . . , ek−2} is the
set of edges in Y \{ek−1} contained in elements of B.

Let U1 = (U − b) + ek−1 and U2 = (U − a) + ek−1. Notice that U1 is
a δ-unicycle and U2 is a γ-unicycle. We will show that (δ, U1) and (γ, U2)
have properties ∆r and ∆k−r+1, respectively.

It is not difficult to see that no cycle of A contains b and that no cycle
of B contains a. That means that every cycle in A is contained in U1 + A′

and every cycle in B is contained in U2 + B′. It follows that A is a linear
independent set of Γ(U1+A′) and B is a linear independent set of Γ(U2+B′),
so |A| ≤ |A′|+1 and |B| ≤ |B ′|+1. That is, r+1 ≤ t+1 and (k+1)−(r+1) ≤
((k − 1) − t) + 1. Thus, t ≤ r ≤ t; this implies r = t.

Since the dimension of Γ(U1 +A′) is t+1 and A is a linear independent
set of Γ(U1 + A′) with t + 1 cycles, A is a basis of Γ(U1 + A′). Therefore δ,
U1, A and A′ satisfy (P1). Analogously γ, U2, B and B′ satisfy (P1).

Let ρ ∈ A and x ∈ E(ρ)\E(δ). If x ∈ E(σ) ∩ ((E(ρ)\E(δ)), there exists
a unique cycle in X that contains x, because σ, U , X and Y satisfy (P3).
Then, ρ is the unique cycle of X that contains x and therefore also the
unique cycle of A that contains x. Thus, x is an edge of ∆

ρ∈A
ρ = δ which

is impossible. It follows that x 6∈ E(σ). Since σ, U , X and Y satisfy (P2),
there exists a unique ρ′ ∈ X such that ρ′ 6= ρ and x ∈ E(ρ′). It is clear
that if ρ′ ∈ B, then x ∈ E(γ) ∩ E(δ) which is impossible. Thus, ρ′ ∈ A.
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Therefore δ, U1, A and A′ satisfy (P2). Analogously γ, U2, B and B′ satisfy
(P2).

Let x ∈ E(δ). If x ∈ E(σ), then there exists a unique cycle ρ ∈ X
such that x ∈ E(ρ) because σ, U , X and Y satisfy (P3). Since x ∈ E(δ),
ρ ∈ A. If x 6∈ E(σ), then x ∈ E(γ) ∩ E(δ). Since δ = ∆

ρ∈A
ρ, x ∈ E(ρ) for

some ρ ∈ A and since γ = ∆
ρ∈B

ρ, x ∈ E(ρ′) for some ρ′ ∈ B. There are
at most two cycles in X containing x because (σ,U) has property ∆k with
respect to C. Thus, if x ∈ E(δ), there exists a unique cycle ρ ∈ A such that
x ∈ E(ρ). Therefore δ, U1, A and A′ satisfy (P3). Analogously γ, U2, B
and B′ satisfy (P3).

We can now apply the inductive hypothesis to (δ, U1) and to (γ, U2).

Let R = (T − a) + ek−1 = (T ′ − b) + ek−1. Since R is a spanning tree
of both U1 and U2, there exists a path in T (G,C) from T to R and a path
from R to T ′. Therefore T and T ′ can also be joined by a path in T (G,C).

Case 2. a ∈ E(γ)\E(δ) and b ∈ E(δ)\E(γ).

This case can be proved as Case 1 by interchanging a with b.

Case 3. a, b ∈ E(δ)\E(γ).

Consider an edge c ∈ E(γ)\E(δ) and let Q = (T − a) + c = (T ′ − b) + c.
Notice that Q is a spanning tree of U . Applying Case 1 to T and Q and
to Q and T ′, we have that T and Q are joined by a path in T (G,C) and
also there exists a path between Q and T ′ in T (G,C). It follows that there
exists a path from T to T ′ in T (G,C).

Case 4. a, b ∈ E(γ)\E(δ).

The proof of this case is analogous to that of Case 3 by interchanging δ
with γ.

Theorem 1. Let C be a set of cycles of a connected graph G. The graph

T (G,C) is connected if and only if T (G, cl+
G

(C)) is connected.

Proof. If T (G,C) is connected then T (G, cl+
G

(C)) is connected because
C ⊆ cl+

G
(C).

Let σ1, σ2, . . . , σn be the sequence of cycles added to C while obtaining
cl+

G
(C) and let C0 = C and Ci = C ∪ {σ1, σ2, . . . , σi} for 1 ≤ i ≤ n. Let

1 ≤ i ≤ n. Since σi has property ∆+ with respect to Ci−1, for every
σi-unicycle U of G there exists a positive integer k such that (σi, U) has
property ∆k with respect to Ci−1.
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Suppose that T (G,Ci) is connected and let T and T ′ be two spanning trees
of G adjacent in T (G,Ci). If T and T ′ are not adjacent in T (G,Ci−1), then
T ∪T ′ is a σi-unicycle. By Lemma 1, there exists a TT ′-path in T (G,Ci−1).
Therefore if T (G,Ci) is connected, then T (G,Ci−1) is connected. Clearly
this implies that if T (G, cl+

G
(C)) is connected, then T (G,C) is connected.

Corollary 1. If C is ∆+-dense, then T (G,C) is connected.

Proof. If C is ∆+-dense, then T (G, cl+
G

(C)) = T (G) which is always
connected. By Theorem 1, T (G,C) is connected.

2. Main Result

Let G be a connected graph and C be a family of cycles of G such that
T (G,C) is connected. For any spanning trees T and T ′ of G, let dC(T, T ′)
denote the distance between T and T ′ in T (G,C). For any edge x of G, we
denote by Ax the set of spanning trees of G containing x. For a spanning
tree T of G such that x 6∈ E(T ), the distance dC(T,Ax) from T to Ax is the
minimum distance dC(T,R) with R ∈ Ax.

Lemma 2. Let C be a family of cycles of a connected graph G such that

every edge of G is in at most two cycles of C. Let U be a σ-unicycle of G
for some cycle σ 6∈ C. If T (G,C) is connected, then (σ,U) has property ∆k

for some positive integer k.

Proof. Let T be a spanning tree of U , and let x be the unique edge of U
not in T . Since T (G,C) is connected, there exists a spanning tree Tx such
that the path between T and Tx has length d = dC(T,Ax). Since σ 6∈ C,
d ≥ 2. We shall prove by induction on d that (σ,U) has property ∆k for
some integer k.

Suppose d = 2 and let S 6∈ Ax be such that {T, S, Tx} is a path in
T (G,C). Since T is adjacent to S in T (G,C), there exist a ∈ E(T )\E(S),
e ∈ E(S)\E(T ) and δ ∈ C such that S = (T −a)+e and S∪T is a δ-unicycle
of G. On the other hand, since S is adjacent to Tx in T (G,C), there exist
b ∈ E(S)\E(Tx) and γ ∈ C such that Tx = (S − b) + x and Tx ∪ S is a
γ-unicycle of G.

Notice that x ∈ E(γ)\E(δ) since S 6∈ Ax. Thus δ 6= γ and U+e contains
three different cycles: δ, γ and σ. Therefore σ = δ∆γ. We conclude that
(σ,U) has property ∆1.
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We proceed by induction assuming d ≥ 3 and that (γ, V ) has property ∆s

for some positive integer s for each cycle γ 6∈ C and each γ-unicycle V of G
whenever there exists a spanning tree R of V such that R + z = V for some
edge z ∈ E(V )\E(R) and dC(R,Az) < d.

Let {T = T0, T1, . . . , Tn = Td} be a TTx-path of length d in T (G,C).
Since T and T1 are adjacent in T (G,C), there exists a ∈ E(T )\E(T1),
b ∈ E(T1)\E(T ) and a cycle δ ∈ C such that T1 = (T − a) + b and T ∪ T1 is
a δ-unicycle of G. Let γ be the unique cycle in V = T1 + x.

Since x 6∈ E(T1), dC(T1, Ax) = d−1. By the inductive hypothesis, (γ, V )
has property ∆s for some integer s. Therefore there exists a set of cycles
X1 = {γ0, . . . , γs} ⊆ C and a set of edges Y1 = {e0, . . . , es−1} ⊆ E(G)\E(V )
such that γ, V , X1 and Y1 satisfy (P1), (P2) and (P3).

Case 1. γ = σ.

If b /∈ E(ρ) for any ρ ∈ X1 then E(ρ) ⊆ (E(V )\{b})∪E(Y1) = E(U)∪E(Y1).
So (σ,U) has the property ∆s because σ, U , X1 and Y1 satisfy (P1), (P2)
and (P3).

Then, we can assume b ∈ E(ρ) for some ρ ∈ X1. Clearly b 6∈ E(σ)
because b 6∈ E(U) and U contains σ. Since γ, V , X1 and Y1 satisfy (P2)
there exists ρ′ ∈ X1 such that b ∈ E(ρ′). Since b is also an edge of δ and b is
in at most two cycles of C, without loss of generality we can assume ρ = δ.
Since a ∈ E(δ)\E(V ), a = et for some 0 ≤ t ≤ s−1. Then, it is not difficult
to prove that σ, U , X and Y satisfy (P1), (P2) and (P3), where X = X1

and Y = (Y1\{a}) ∪ {b}. This also implies that (σ,U) has property ∆s.

Case 2. ρ 6= σ.

In this case U + b contains exactly three cycles σ, δ, γ. Since b 6∈ E(σ),
b ∈ E(δ) ∩ E(γ) and δ∆γ = σ.

Subcase 2.1. a 6∈ E(ρ) for any ρ ∈ X.

Let X = X1 ∪ {δ} and Y = Y1 ∪ {a}. Since δ is the unique cycle in X
containing a, then X is a linear independent set of Γ(G). Note that every
cycle in X is a cycle of U + Y and Γ(U + Y ) has dimension s + 1, then X
is a basis of Γ(U + Y ).

Let x ∈ E(ρ)\E(σ) for some ρ ∈ X. If x 6∈ E(γ), then there exists
ρ′ ∈ X1 such that x ∈ E(ρ′) because γ, V , X1 and Y1 satisfy (P2). If
x ∈ E(γ) then x ∈ E(δ) because σ = δ∆γ. It follows that if x ∈ E(ρ), then
x lies in at least two cycles of X. Since every edge is in at most two cycles
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of C, x belongs to exactly two cycles of X. In other words, if x ∈ E(ρ) for
some ρ ∈ X ′, then there exists a unique cycle ρ′ ∈ X such that x ∈ E(ρ′).

Let x ∈ E(σ). If x 6∈ E(δ), then x ∈ E(γ) because σ = δ∆γ. Since
γ, V , X1, and Y1 satisfy (P3), there exists a unique cycle ρ ∈ X1 such that
x ∈ E(ρ). Thus there exists a unique cycle ρ ∈ X such that x ∈ E(ρ)
because x 6∈ E(δ).

Now suppose that x ∈ E(δ), then x 6∈ E(γ) because σ = σ∆γ. If
x ∈ E(ρ) for some ρ ∈ X1, then there exists ρ′ ∈ X1 such that x ∈ E(ρ′)
because γ, V , X1 and Y1 satisfy (P2). Then x is an edge of δ, ρ and ρ′ which
is impossible because x can not be an edge of three cycles of C. Thus, the
unique cycle in X containing x is δ.

Therefore σ, U , X and Y satisfy (P1), (P2) and (P3). This implies that
(σ,U) has property ∆s+1.

Subcase 2.2. a ∈ E(ρ) for some ρ ∈ X.

In this case we can suppose w.l.o.g that a = es−1. By property ∆s of (γ, V ),
the edge a is in exactly two cycles of X1. Since a ∈ E(δ) and a is in at
most two cycles of C, then we can assume δ = γs. Let X = X1\{γs} and
Y = Y1\{es−1}.

Since b ∈ E(δ)\E(σ) and σ = δ∆γ, then b ∈ E(δ) ∩ E(γ). Thus,
there exists a unique cycle ρ ∈ X1 containing b because γ, V , X1 and
Y1 satisfy (P3). Therefore, δ = ρ. It follows that E(ρ) ⊆ E(V + Y1) =
(E(U) ∪ E(Y ))\{b} for every ρ ∈ X. Then, it is clear that X is a basis of
Γ(U + Y ).

Let x ∈ E(ρ)\E(σ) for some ρ ∈ X. Since every edge in E(γ)\E(σ)
is an edge of δ, it follows that E(γ) ∩ E(ρ) = ∅ because γ, V , X1 and Y1

satisfy (P3). Thus, x 6∈ E(γ). It follows that there exists a unique ρ′ ∈ X1

such that x ∈ E(ρ′) because V , X1 and Y1 satisfy (P2). If ρ′ = δ, then
x ∈ E(δ)\(E(σ) ∪ E(γ)) which is impossible because σ = δ∆γ. Therefore
ρ′ ∈ X.

Let x ∈ E(σ). If x ∈ E(σ) ∩ E(γ), there exists a unique ρ ∈ X1 such
that x ∈ E(ρ) because γ, V , X1 and Y1 satisfy (P3). Clearly ρ 6= δ because
E(σ) ∩ E(γ) ∩ E(δ) = ∅. If x ∈ E(σ)\E(γ) = E(σ) ∩ E(δ). Since δ ∈ X1

and γ, V , X1 and Y1 satisfy (P2), there exists a unique ρ′ ∈ X1, ρ′ 6= δ such
that x ∈ E(ρ′). Thus, we have proved that there exists a unique ρ ∈ X such
that x ∈ E(ρ).

Therefore σ, U , X and Y satisfy (P1), (P2) and (P3), which, in this
case, implies that (σ,U) has property ∆s−1.
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Theorem 2. Let C be a family of cycles of G such that every edge of G lies

in at most two cycles of C. The graph T (G,C) is connected if and only if

every cycle σ 6∈ C has property ∆+ with respect to C.

Proof. If every cycle σ 6∈ C has property ∆+ with respect to C, then C
is ∆+-dense. By Corollary 1, T (G,C) is connected.

Conversely, let σ be a cycle of G not in C. By Lemma 2, if T (G,C) is
connected, then for each σ-unicycle of G, (σ,U) has property ∆k for some
integer k. This implies that σ has property ∆+ with respect to C.
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