ON THE TREE GRAPH OF A CONNECTED GRAPH

Ana Paulina Figueroa

Instituto de Matemáticas Universidad Nacional Autónoma de México Ciudad Universitaria, México D.F. 04510, México

AND

Eduardo Rivera-Campo

Departmento de Matemáticas Universidad Autónoma Metropolitana-Iztapalapa Av. San Rafael Atlixco 186, México D.F. 09340, México

Abstract

Let G be a graph and C be a set of cycles of G. The tree graph of G defined by C, is the graph T(G, C) that has one vertex for each spanning tree of G, in which two trees T and T' are adjacent if their symmetric difference consists of two edges and the unique cycle contained in $T \cup T'$ is an element of C. We give a necessary and sufficient condition for this graph to be connected for the case where every edge of G belongs to at most two cycles in C.

Keywords: tree graph, property Δ^* , property Δ^+ . 2000 Mathematics Subject Classification: 05C05.

INTRODUCTION

The tree graph of a connected graph G is the graph T(G) whose vertices are the spanning trees of G, in which two trees T and T' are adjacent if $T \cup T'$ contains a unique cycle. It is well-known that the T(G) is always connected.

Research supported by CONACYT (México).

Several variations of the tree graph have been studied; see for instance the *adjacency tree graph* studied by Zhang and Chen in [5] and by Heinrich and Liu in [3], and the *leaf exchange tree graph* of Broersma and Li [1] and Harary *et al.* [2].

Let G be a connected graph and C be a set of cycles of G. The tree graph of G defined by C is the spanning subgraph T(G, C) of T(G) in which two trees T and T' are adjacent if they are adjacent in T(G) and the unique cycle contained in $T \cup T'$ is an element of C.

A unicycle U of G is a connected spanning subgraph of G that contains exactly one cycle. In [4], Li *et al.* defined the following property: A cycle σ of G has property Δ^* with respect to C if for any unicycle U of G containing σ , there are two cycles $\delta, \gamma \in C$, contained in U + e for some edge e of G, such that $\sigma = \delta \Delta \gamma$. The closure $cl_G(C)$ of the set C is the set of cycles obtained from C by successively adding new cycles of G that satisfy property Δ^* until no such cycle remains. A set C is Δ^* -dense if $cl_G(C)$ is the set of all cycles of G. Li *et al.* proved that if T(G, C) is connected, then C must span the cycle space of G and that if C is Δ^* -dense, then T(G, C) is connected.

In this article we define a weaker property which we call Δ^+ and show that being Δ^+ -dense is also a sufficient condition for T(G, C) to be connected. We also prove that if T(G, C) is connected and every edge of G lies in at most two cycles of C, then C is Δ^+ -dense.

1. Δ^+ -Dense: A New Sufficient Condition

We denote by $\Gamma(G)$ the cycle space of a graph G. Let σ be a cycle and U be a unicycle of G, we say that U is a σ -unicycle if the unique cycle contained in U is σ .

For an integer k, a cycle σ and a σ -unicycle U of G, (σ, U) has property Δ_k with respect to C if there exists a set of cycles $X = \{\sigma_0, \ldots, \sigma_k\} \subseteq C$ and a set of edges $Y = \{e_0, \ldots, e_{k-1}\} \subseteq E(G) \setminus E(U)$ such that the following conditions are satisfied:

- (\mathcal{P}_1) X is a basis of $\Gamma(U+Y)$.
- (\mathcal{P}_2) Let $\rho \in X$. For every edge $x \in E(\rho) \setminus E(\sigma)$, there exists a unique $\rho' \in X$ such that $\rho \neq \rho'$ and $x \in E(\rho')$.
- (\mathcal{P}_3) For every edge $x \in E(\sigma)$, there exists a unique $\rho \in X$ such that $x \in E(\rho)$.

We say a cycle σ of G has property Δ^+ with respect to C if for every σ -unicycle U of G, there exists a positive integer k such that (σ, U) has property Δ_k with respect to C.

The closure $cl_G(C)^+$ of the family C is the set of cycles obtained from C by successively adding new cycles of G that satisfy property Δ^+ until no such cycle remains. It is not difficult to prove that this closure is well defined. We say C is Δ^+ -dense if $cl_G^+(C)$ is the set of all cycles of G.

Remark 1. If C is Δ^* -dense, then C is Δ^+ -dense.

Note that σ has property Δ^* with respect to C if and only if (σ, U) has property Δ_1 with respect to C for every σ -unicycle U of G.

Lemma 1. Let C be a family of cycles of a connected graph G, U be a σ -unicycle of G for some cycle $\sigma \notin C$ and k be a positive integer. If (σ, U) has property Δ_k with respect to C, then every pair of spanning trees of U is connected by a path in T(G, C).

Proof. By induction on k. The induction basis follows from the proof of Lemma 3.1 in [4]. Nevertheless, we will include a proof here.

Let U be a σ -unicycle of G such that (σ, U) has the property Δ_1 and T and T' be two spanning trees of U. There exists an edge $e \notin E(U)$ and two cycles $\delta, \gamma \in C$ of U + e such that $\sigma = \delta \Delta \gamma$. Let a and b be edges of U such that T' = (T - a) + b.

If $a \in E(\delta) \setminus E(\gamma)$ and $b \in E(\gamma) \setminus E(\delta)$, let Q = (T - a) + e. It follows that Q = (T' - b) + e. Since the unique cycle of G contained in $Q \cup T$ is δ and the unique cycle of G contained in $Q \cup T'$ is γ , we have that Q is adjacent to T and to T' in T(G, C). Thus, we have found the path $\{T, Q, T'\}$ from T to T' in T(G, C).

If $a \in E(\gamma) \setminus E(\delta)$ and $b \in E(\delta) \setminus E(\gamma)$ we can interchange γ with δ in the previous argument.

If $a, b \in E(\delta) \setminus E(\gamma)$ let $c \in E(\gamma) \setminus E(\delta)$ and consider the spanning trees Q = (T - c) + e and Q' = (T' - c) + e of G. Notice that Q is adjacent to T in T(G, C) because the unique cycle contained in $Q \cup T$ is γ and that Q' is adjacent to T' in T(G, C) because the unique cycle contained in $T' \cup Q$ is also γ . Even more, Q is adjacent to Q' in T(G, C) because Q' = (Q - a) + b and the unique cycle contained in $Q \cup Q'$ is δ . Thus, $\{T, Q, Q', T'\}$ is a path connecting T and T' in T(G, C).

Finally, if $a, b \in E(\gamma) \setminus E(\delta)$, we interchange γ with δ in the previous argument.

Suppose now that the result is true for every positive integer less than k. Let U be a σ -unicycle of G such that (σ, U) has the property Δ_k with respect to C. Then there exists a set of cycles $X = \{\sigma_0, \ldots, \sigma_k\} \subseteq C$ and a set of edges $Y = \{e_0, \ldots, e_{k-1}\}$ of G that satisfy $(\mathcal{P}_1), (\mathcal{P}_2)$ and (\mathcal{P}_3) .

Let T and T' be spanning trees of U and $a, b \in E(U)$ be such that T' = (T - a) + b. Notice that $\sigma_0 \Delta \cdots \Delta \sigma_k = \sigma$ because every edge of σ is in exactly one cycle in X and every edge of a cycle in X that is not an edge of σ is an edge of exactly two cycles in X. Thus, there must exist at least one cycle $\rho \in X$ such that $E(\rho) \cap E(\sigma) \neq \emptyset$. It follows that at least one edge $e \in E(\rho) \cap Y$ is such that U + e contains two cycles δ and γ such that $\delta \Delta \gamma = \sigma$. Without loss of generality we assume $e = e_{k-1}$.

Case 1. $a \in E(\delta) \setminus E(\gamma)$ and $b \in E(\gamma) \setminus E(\delta)$.

Subcase 1.1. $\delta \in X$.

We can rename the cycles in X in such a way that $\delta = \sigma_k$. Let $U' = (U-a) + e_{k-1}$, clearly U' is a γ -unicycle of G. We shall prove that (γ, U') has property Δ_{k-1} . Let $X' = \{\sigma_0, \ldots, \sigma_{k-1}\}$ and $Y' = \{e_0, \ldots, e_{k-2}\}$.

Let $x \in E(\rho)$, for $\rho \in X'$, then $x \in E(U) \cup Y = (E(U') \cup Y') \cup \{a\}$. Notice that $a \in E(\sigma_k) \cap E(\sigma)$, so the unique cycle in X that contains a is σ_k because σ , U, X and Y satisfy (\mathcal{P}_3). It follows that $x \neq a$, so $x \in E(U') \cup Y'$. Then, every cycle in X' is a cycle of U' + Y'. The dimension of $\Gamma(U' + Y')$ is k, and X' is a linear independent set consisting of k cycles of U' + Y', then X' is a basis of $\Gamma(U' + Y')$. Therefore γ , U', X' and Y' satisfy property (\mathcal{P}_1).

Let $\rho \in X'$ and $x \in E(\rho) \setminus E(\gamma)$. If $x \in E(\sigma)$, then $x \in E(\sigma) \setminus E(\gamma)$. Since $\sigma = \gamma \Delta \sigma_k$ and σ , U, X and Y satisfy (\mathcal{P}_3) , the unique cycle in X that contains x is σ_k which is impossible because $\rho \neq \sigma_k$ and $\rho \in X$. It follows that $x \notin E(\sigma)$ and $x \notin E(\sigma_k)$ because $\sigma = \sigma_k \Delta \gamma$. Since σ, U, X and Y satisfy (\mathcal{P}_2) , there exists a unique $\rho' \in X$ such that $x \in E(\rho')$. Clearly $\rho' \neq \sigma_k$, so $\rho' \in X'$. Therefore γ, U', X' and Y' satisfy (\mathcal{P}_2) .

Let $x \in \sigma$. If $x \in E(\gamma)$, there exists a unique cycle $\rho \in X$ such that $x \in E(\rho)$ because σ , U, X and Y satisfy (\mathcal{P}_3) . Since $\sigma = \delta \Delta \gamma$, $\rho \neq \sigma_k$. It follows that $\rho \in X'$. If $x \in E(\gamma) \setminus E(\sigma)$, $x \in E(\sigma_k)$. We know that σ , U, X and Y satisfy (\mathcal{P}_2) implying there exists a unique cycle $\rho \in X \setminus \{\sigma_k\} = X'$ containing x. Therefore γ , U', X' and Y' satisfy (\mathcal{P}_3) .

Since (\mathcal{P}_1) , (\mathcal{P}_2) and (\mathcal{P}_3) are satisfied, (γ, U') has property Δ_{k-1} and the inductive hypothesis applies. Let $Q = (T-a) + e_{k-1}$, since Q and T' are spanning trees of U', by induction Q and T' are joined by a path in T(G, C). On the other hand, T is adjacent to Q in T(G, C) because δ is the unique cycle of $T \cup Q$. So, T and T' are also joined by a path in T(G, C).

Subcase 1.2. $\gamma \in X$.

This case can be proved in the same way interchanging γ with δ and a with b.

Subcase 1.3. $\delta, \gamma \notin X$.

Since X is a basis of $\Gamma(U+Y)$, by reordering X we can also assume that there exists an integer $1 \leq r \leq k-2$ such that $\sigma_0 \Delta \cdots \Delta \sigma_r = \delta$. Since $\delta \Delta \gamma = \sigma = \sigma_0 \Delta \cdots \Delta \sigma_k$, it follows that $\gamma = \sigma_{r+1} \Delta \cdots \Delta \sigma_k$.

Let $A = \{\sigma_0, \ldots, \sigma_r\}$ and $B = \{\sigma_{r+1}, \ldots, \sigma_k\}$. If an edge $e_i \in Y \setminus \{e_{k-1}\}$ is such that $e_i \in E(\rho)$ for some cycle $\rho \in A$ and $e_i \in E(\rho')$ for some $\rho' \in B$, then $e_i \in E(\delta) \cap E(\gamma)$. Since $E(\delta) \cap E(\gamma) \subseteq E(U + e_{k-1})$, $e_i = e_{k-1}$, which is impossible. Thus, A and B induce a partition of the edges in $Y \setminus \{e_{k-1}\}$ and this partition is not trivial because every $\rho \in X$ contains at least one edge in $Y \setminus \{e_{k-1}\}$.

Then, we can reorder the edges of $Y \setminus \{e_{k-1}\}$ in such a way that there exists an integer $0 \le t \le k-2$, such that $A' = \{e_0, \ldots, e_{t-1}\}$ is the set of edges in $Y \setminus \{e_{k-1}\}$ contained in elements of A and $B' = \{e_t, \ldots, e_{k-2}\}$ is the set of edges in $Y \setminus \{e_{k-1}\}$ contained in elements of B.

Let $U_1 = (U - b) + e_{k-1}$ and $U_2 = (U - a) + e_{k-1}$. Notice that U_1 is a δ -unicycle and U_2 is a γ -unicycle. We will show that (δ, U_1) and (γ, U_2) have properties Δ_r and Δ_{k-r+1} , respectively.

It is not difficult to see that no cycle of A contains b and that no cycle of B contains a. That means that every cycle in A is contained in $U_1 + A'$ and every cycle in B is contained in $U_2 + B'$. It follows that A is a linear independent set of $\Gamma(U_1 + A')$ and B is a linear independent set of $\Gamma(U_2 + B')$, so $|A| \leq |A'| + 1$ and $|B| \leq |B'| + 1$. That is, $r+1 \leq t+1$ and $(k+1)-(r+1) \leq$ ((k-1)-t)+1. Thus, $t \leq r \leq t$; this implies r = t.

Since the dimension of $\Gamma(U_1 + A')$ is t + 1 and A is a linear independent set of $\Gamma(U_1 + A')$ with t + 1 cycles, A is a basis of $\Gamma(U_1 + A')$. Therefore δ , U_1 , A and A' satisfy (\mathcal{P}_1). Analogously γ , U_2 , B and B' satisfy (\mathcal{P}_1).

Let $\rho \in A$ and $x \in E(\rho) \setminus E(\delta)$. If $x \in E(\sigma) \cap ((E(\rho) \setminus E(\delta)))$, there exists a unique cycle in X that contains x, because σ , U, X and Y satisfy (\mathcal{P}_3) . Then, ρ is the unique cycle of X that contains x and therefore also the unique cycle of A that contains x. Thus, x is an edge of $\Delta_{\rho \in A} \rho = \delta$ which is impossible. It follows that $x \notin E(\sigma)$. Since σ , U, X and Y satisfy (\mathcal{P}_2) , there exists a unique $\rho' \in X$ such that $\rho' \neq \rho$ and $x \in E(\rho')$. It is clear that if $\rho' \in B$, then $x \in E(\gamma) \cap E(\delta)$ which is impossible. Thus, $\rho' \in A$. Therefore δ , U_1 , A and A' satisfy (\mathcal{P}_2) . Analogously γ , U_2 , B and B' satisfy (\mathcal{P}_2) .

Let $x \in E(\delta)$. If $x \in E(\sigma)$, then there exists a unique cycle $\rho \in X$ such that $x \in E(\rho)$ because σ , U, X and Y satisfy (\mathcal{P}_3) . Since $x \in E(\delta)$, $\rho \in A$. If $x \notin E(\sigma)$, then $x \in E(\gamma) \cap E(\delta)$. Since $\delta = \Delta_{\rho \in A}\rho$, $x \in E(\rho)$ for some $\rho \in A$ and since $\gamma = \Delta_{\rho \in B}\rho$, $x \in E(\rho')$ for some $\rho' \in B$. There are at most two cycles in X containing x because (σ, U) has property Δ_k with respect to C. Thus, if $x \in E(\delta)$, there exists a unique cycle $\rho \in A$ such that $x \in E(\rho)$. Therefore δ , U_1 , A and A' satisfy (\mathcal{P}_3) . Analogously γ , U_2 , Band B' satisfy (\mathcal{P}_3) .

We can now apply the inductive hypothesis to (δ, U_1) and to (γ, U_2) .

Let $R = (T - a) + e_{k-1} = (T' - b) + e_{k-1}$. Since R is a spanning tree of both U_1 and U_2 , there exists a path in T(G, C) from T to R and a path from R to T'. Therefore T and T' can also be joined by a path in T(G, C).

Case 2. $a \in E(\gamma) \setminus E(\delta)$ and $b \in E(\delta) \setminus E(\gamma)$.

This case can be proved as Case 1 by interchanging a with b.

Case 3. $a, b \in E(\delta) \setminus E(\gamma)$.

Consider an edge $c \in E(\gamma) \setminus E(\delta)$ and let Q = (T - a) + c = (T' - b) + c. Notice that Q is a spanning tree of U. Applying Case 1 to T and Q and to Q and T', we have that T and Q are joined by a path in T(G, C) and also there exists a path between Q and T' in T(G, C). It follows that there exists a path from T to T' in T(G, C).

Case 4. $a, b \in E(\gamma) \setminus E(\delta)$.

The proof of this case is analogous to that of Case 3 by interchanging δ with γ .

Theorem 1. Let C be a set of cycles of a connected graph G. The graph T(G,C) is connected if and only if $T(G,cl_G^+(C))$ is connected.

Proof. If T(G,C) is connected then $T(G,cl_G^+(C))$ is connected because $C \subseteq cl_G^+(C)$.

Let $\sigma_1, \sigma_2, \ldots, \sigma_n$ be the sequence of cycles added to C while obtaining $cl_G^+(C)$ and let $C_0 = C$ and $C_i = C \cup \{\sigma_1, \sigma_2, \ldots, \sigma_i\}$ for $1 \leq i \leq n$. Let $1 \leq i \leq n$. Since σ_i has property Δ^+ with respect to C_{i-1} , for every σ_i -unicycle U of G there exists a positive integer k such that (σ_i, U) has property Δ_k with respect to C_{i-1} .

Suppose that $T(G, C_i)$ is connected and let T and T' be two spanning trees of G adjacent in $T(G, C_i)$. If T and T' are not adjacent in $T(G, C_{i-1})$, then $T \cup T'$ is a σ_i -unicycle. By Lemma 1, there exists a TT'-path in $T(G, C_{i-1})$. Therefore if $T(G, C_i)$ is connected, then $T(G, C_{i-1})$ is connected. Clearly this implies that if $T(G, cl_G^+(C))$ is connected, then T(G, C) is connected.

Corollary 1. If C is Δ^+ -dense, then T(G,C) is connected.

Proof. If C is Δ^+ -dense, then $T(G, cl_G^+(C)) = T(G)$ which is always connected. By Theorem 1, T(G, C) is connected.

2. MAIN RESULT

Let G be a connected graph and C be a family of cycles of G such that T(G,C) is connected. For any spanning trees T and T' of G, let $d_C(T,T')$ denote the distance between T and T' in T(G,C). For any edge x of G, we denote by A_x the set of spanning trees of G containing x. For a spanning tree T of G such that $x \notin E(T)$, the distance $d_C(T,A_x)$ from T to A_x is the minimum distance $d_C(T,R)$ with $R \in A_x$.

Lemma 2. Let C be a family of cycles of a connected graph G such that every edge of G is in at most two cycles of C. Let U be a σ -unicycle of G for some cycle $\sigma \notin C$. If T(G,C) is connected, then (σ,U) has property Δ_k for some positive integer k.

Proof. Let T be a spanning tree of U, and let x be the unique edge of U not in T. Since T(G, C) is connected, there exists a spanning tree T_x such that the path between T and T_x has length $d = d_C(T, A_x)$. Since $\sigma \notin C$, $d \geq 2$. We shall prove by induction on d that (σ, U) has property Δ_k for some integer k.

Suppose d = 2 and let $S \notin A_x$ be such that $\{T, S, T_x\}$ is a path in T(G, C). Since T is adjacent to S in T(G, C), there exist $a \in E(T) \setminus E(S)$, $e \in E(S) \setminus E(T)$ and $\delta \in C$ such that S = (T-a)+e and $S \cup T$ is a δ -unicycle of G. On the other hand, since S is adjacent to T_x in T(G, C), there exist $b \in E(S) \setminus E(T_x)$ and $\gamma \in C$ such that $T_x = (S-b) + x$ and $T_x \cup S$ is a γ -unicycle of G.

Notice that $x \in E(\gamma) \setminus E(\delta)$ since $S \notin A_x$. Thus $\delta \neq \gamma$ and U + e contains three different cycles: δ , γ and σ . Therefore $\sigma = \delta \Delta \gamma$. We conclude that (σ, U) has property Δ_1 . We proceed by induction assuming $d \geq 3$ and that (γ, V) has property Δ_s for some positive integer s for each cycle $\gamma \notin C$ and each γ -unicycle V of G whenever there exists a spanning tree R of V such that R + z = V for some edge $z \in E(V) \setminus E(R)$ and $d_C(R, A_z) < d$.

Let $\{T = T_0, T_1, \ldots, T_n = T_d\}$ be a TT_x -path of length d in T(G, C). Since T and T_1 are adjacent in T(G, C), there exists $a \in E(T) \setminus E(T_1)$, $b \in E(T_1) \setminus E(T)$ and a cycle $\delta \in C$ such that $T_1 = (T - a) + b$ and $T \cup T_1$ is a δ -unicycle of G. Let γ be the unique cycle in $V = T_1 + x$.

Since $x \notin E(T_1)$, $d_C(T_1, A_x) = d-1$. By the inductive hypothesis, (γ, V) has property Δ_s for some integer s. Therefore there exists a set of cycles $X_1 = \{\gamma_0, \ldots, \gamma_s\} \subseteq C$ and a set of edges $Y_1 = \{e_0, \ldots, e_{s-1}\} \subseteq E(G) \setminus E(V)$ such that γ, V, X_1 and Y_1 satisfy $(\mathcal{P}_1), (\mathcal{P}_2)$ and (\mathcal{P}_3) .

Case 1. $\gamma = \sigma$.

If $b \notin E(\rho)$ for any $\rho \in X_1$ then $E(\rho) \subseteq (E(V) \setminus \{b\}) \cup E(Y_1) = E(U) \cup E(Y_1)$. So (σ, U) has the property Δ_s because σ , U, X_1 and Y_1 satisfy (\mathcal{P}_1) , (\mathcal{P}_2) and (\mathcal{P}_3) .

Then, we can assume $b \in E(\rho)$ for some $\rho \in X_1$. Clearly $b \notin E(\sigma)$ because $b \notin E(U)$ and U contains σ . Since γ , V, X_1 and Y_1 satisfy (\mathcal{P}_2) there exists $\rho' \in X_1$ such that $b \in E(\rho')$. Since b is also an edge of δ and b is in at most two cycles of C, without loss of generality we can assume $\rho = \delta$. Since $a \in E(\delta) \setminus E(V)$, $a = e_t$ for some $0 \le t \le s - 1$. Then, it is not difficult to prove that σ , U, X and Y satisfy (\mathcal{P}_1) , (\mathcal{P}_2) and (\mathcal{P}_3) , where $X = X_1$ and $Y = (Y_1 \setminus \{a\}) \cup \{b\}$. This also implies that (σ, U) has property Δ_s .

Case 2. $\rho \neq \sigma$.

In this case U + b contains exactly three cycles σ , δ , γ . Since $b \notin E(\sigma)$, $b \in E(\delta) \cap E(\gamma)$ and $\delta \Delta \gamma = \sigma$.

Subcase 2.1. $a \notin E(\rho)$ for any $\rho \in X$.

Let $X = X_1 \cup \{\delta\}$ and $Y = Y_1 \cup \{a\}$. Since δ is the unique cycle in X containing a, then X is a linear independent set of $\Gamma(G)$. Note that every cycle in X is a cycle of U + Y and $\Gamma(U + Y)$ has dimension s + 1, then X is a basis of $\Gamma(U + Y)$.

Let $x \in E(\rho) \setminus E(\sigma)$ for some $\rho \in X$. If $x \notin E(\gamma)$, then there exists $\rho' \in X_1$ such that $x \in E(\rho')$ because γ , V, X_1 and Y_1 satisfy (\mathcal{P}_2) . If $x \in E(\gamma)$ then $x \in E(\delta)$ because $\sigma = \delta \Delta \gamma$. It follows that if $x \in E(\rho)$, then x lies in at least two cycles of X. Since every edge is in at most two cycles

of C, x belongs to exactly two cycles of X. In other words, if $x \in E(\rho)$ for some $\rho \in X'$, then there exists a unique cycle $\rho' \in X$ such that $x \in E(\rho')$.

Let $x \in E(\sigma)$. If $x \notin E(\delta)$, then $x \in E(\gamma)$ because $\sigma = \delta \Delta \gamma$. Since γ, V, X_1 , and Y_1 satisfy (\mathcal{P}_3) , there exists a unique cycle $\rho \in X_1$ such that $x \in E(\rho)$. Thus there exists a unique cycle $\rho \in X$ such that $x \in E(\rho)$ because $x \notin E(\delta)$.

Now suppose that $x \in E(\delta)$, then $x \notin E(\gamma)$ because $\sigma = \sigma \Delta \gamma$. If $x \in E(\rho)$ for some $\rho \in X_1$, then there exists $\rho' \in X_1$ such that $x \in E(\rho')$ because γ , V, X_1 and Y_1 satisfy (\mathcal{P}_2). Then x is an edge of δ , ρ and ρ' which is impossible because x can not be an edge of three cycles of C. Thus, the unique cycle in X containing x is δ .

Therefore σ , U, X and Y satisfy (\mathcal{P}_1) , (\mathcal{P}_2) and (\mathcal{P}_3) . This implies that (σ, U) has property Δ_{s+1} .

Subcase 2.2. $a \in E(\rho)$ for some $\rho \in X$.

In this case we can suppose w.l.o.g that $a = e_{s-1}$. By property Δ_s of (γ, V) , the edge a is in exactly two cycles of X_1 . Since $a \in E(\delta)$ and a is in at most two cycles of C, then we can assume $\delta = \gamma_s$. Let $X = X_1 \setminus \{\gamma_s\}$ and $Y = Y_1 \setminus \{e_{s-1}\}$.

Since $b \in E(\delta) \setminus E(\sigma)$ and $\sigma = \delta \Delta \gamma$, then $b \in E(\delta) \cap E(\gamma)$. Thus, there exists a unique cycle $\rho \in X_1$ containing b because γ , V, X_1 and Y_1 satisfy (\mathcal{P}_3) . Therefore, $\delta = \rho$. It follows that $E(\rho) \subseteq E(V + Y_1) =$ $(E(U) \cup E(Y)) \setminus \{b\}$ for every $\rho \in X$. Then, it is clear that X is a basis of $\Gamma(U + Y)$.

Let $x \in E(\rho) \setminus E(\sigma)$ for some $\rho \in X$. Since every edge in $E(\gamma) \setminus E(\sigma)$ is an edge of δ , it follows that $E(\gamma) \cap E(\rho) = \emptyset$ because γ , V, X_1 and Y_1 satisfy (\mathcal{P}_3) . Thus, $x \notin E(\gamma)$. It follows that there exists a unique $\rho' \in X_1$ such that $x \in E(\rho')$ because V, X_1 and Y_1 satisfy (\mathcal{P}_2) . If $\rho' = \delta$, then $x \in E(\delta) \setminus (E(\sigma) \cup E(\gamma))$ which is impossible because $\sigma = \delta \Delta \gamma$. Therefore $\rho' \in X$.

Let $x \in E(\sigma)$. If $x \in E(\sigma) \cap E(\gamma)$, there exists a unique $\rho \in X_1$ such that $x \in E(\rho)$ because γ , V, X_1 and Y_1 satisfy (\mathcal{P}_3). Clearly $\rho \neq \delta$ because $E(\sigma) \cap E(\gamma) \cap E(\delta) = \emptyset$. If $x \in E(\sigma) \setminus E(\gamma) = E(\sigma) \cap E(\delta)$. Since $\delta \in X_1$ and γ , V, X_1 and Y_1 satisfy (\mathcal{P}_2), there exists a unique $\rho' \in X_1$, $\rho' \neq \delta$ such that $x \in E(\rho')$. Thus, we have proved that there exists a unique $\rho \in X$ such that $x \in E(\rho)$.

Therefore σ , U, X and Y satisfy (\mathcal{P}_1) , (\mathcal{P}_2) and (\mathcal{P}_3) , which, in this case, implies that (σ, U) has property Δ_{s-1} .

Theorem 2. Let C be a family of cycles of G such that every edge of G lies in at most two cycles of C. The graph T(G,C) is connected if and only if every cycle $\sigma \notin C$ has property Δ^+ with respect to C.

Proof. If every cycle $\sigma \notin C$ has property Δ^+ with respect to C, then C is Δ^+ -dense. By Corollary 1, T(G, C) is connected.

Conversely, let σ be a cycle of G not in C. By Lemma 2, if T(G, C) is connected, then for each σ -unicycle of G, (σ, U) has property Δ_k for some integer k. This implies that σ has property Δ^+ with respect to C.

References

- H.J. Broersma and X. Li, The connectivity of the of the leaf-exchange spanning tree graph of a graph, Ars. Combin. 43 (1996) 225–231.
- [2] F. Harary, R.J. Mokken and M. Plantholt, Interpolation theorem for diameters of spanning trees, IEEE Trans. Circuits and Systems 30 (1983) 429–432.
- [3] K. Heinrich and G. Liu, A lower bound on the number of spanning trees with k endvertices, J. Graph Theory 12 (1988) 95–100.
- [4] X. Li, V. Neumann-Lara and E. Rivera-Campo, On a tree graph defined by a set of cycles, Discrete Math. 271 (2003) 303–310.
- [5] F.J. Zhang and Z. Chen, Connectivity of (adjacency) tree graphs, J. Xinjiang Univ. Natur. Sci. 3 (1986) 1–5.

Received 12 February 2008 Revised 18 June 2008 Accepted 18 June 2008