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1. Introduction

Let G = (V,E) be a mixed graph of order n with vertex set V (G) =
{v1, v2, . . . , vn} and edge set E(G) = {e1, . . . , em}, which is obtained from an
undirected graph by orienting some of its edges. Then some edges of G have
a special head and tail, while others do not. The sign of e ∈ E(G) is denoted
by sgn e and defined as sgn e = 1 if e is unoriented and sgn e = −1 other-
wise. Set aij = sgn vivj if vivj ∈ E(G) and aij = 0 else. Then A(G) = [aij ]
is called the adjacency matrix of G. The degree of the vertex v ∈ V (G)
is denoted by dv and is defined to be the number of all (oriented and un-
oriented) edges incident to v. The incidence matrix of G is the n × m
matrix M = M(G) = [mij ] whose entries are given by mij = 1 if ej is
an unoriented edge incident with vi or ej is an oriented edge with head vi,
mij = −1 if ej is an oriented edge with tail vi, and mij = 0 otherwise. The
Laplacian matrix of G is defined as L = L(G) = MM T ([1]), where MT

denotes the transpose of M . One can find that L(G) = D(G)+A(G), where
D(G) = diag{dv1

, dv2
, . . . , dvn

}. It is easy to see that L(G) is symmetric and
positive semidefinite so that its eigenvalues can be arranged as follows:

0 ≤ λn(G) ≤ λn−1(G) ≤ · · · ≤ λ1(G).

We refer λ1(G) the spectral radius of G, and denote it as ρ(G).
A mixed graph G is called singular (or nonsingular) if L(G) is singu-

lar (or nonsingular). Clearly, if G is all-oriented (i.e., all edges of G are
oriented), then L(G) is a standard Laplacian matrix which is consistent
with the Laplacian matrix of a simple graph (see [11]); and there are a
lot of results involved with the relations between its spectrum and numer-
ous graph invariants, such as connectivity, diameter, isoperimetric number,
and expanding properties of a graph; see, for example, [8, 11, 12]. If G
is all-unoriented (i.e., all edges of G are unoriented), then L(G) is called
the unoriented Laplacian matrix ([9]). So the notion of a mixed graph
generalizes both the classical approach of orienting all edges and the un-
oriented approach. For algebraic properties of mixed graphs, one can refer
to [1, 3, 4, 5, 6, 14, 15].

A mixed graph G is called quasi-bipartite if it does not contain non-
singular cycles, or equivalently, G contains no cycles with an odd number

of unoriented edges ([1, Lemma 1]). Denote by
−→
G an all-oriented graph

obtained from a mixed graph G by assigning to each unoriented edge of G
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an arbitrary orientation (of two possible directions). Note that a signature
matrix is a diagonal matrix with ±1 along its diagonal.

Lemma 1.1 [14, Lemma 3.2]. A connected mixed graph G is singular if
and only if it is quasi-bipartite.

Theorem 1.2 [1, Theorem 4]. A mixed graph G is quasi-bipartite if and

only if there exists a signature matrix D such that DT L(G)D = L(
−→
G).

Suppose G is connected. If G is singular, then by above results the spectrum

of L(G) is exactly that of L(
−→
G), and there are a lot of results on the work

of the eigenvalues of L(
−→
G). One can find that all trees are singular. So

we focus on the work of mixed graphs containing cycles; in particular, we
discuss the eigenvalues of unicyclic mixed graphs. In the paper [4] Fan
determined the unique graph with the largest spectral radius among all
nonsingular unicyclic mixed graph of given order, and in the paper [6] Fan
et.al. determined the graphs respectively with the largest, the second largest
and the third largest spectral radius among all unicyclic mixed graphs of
given order. If we restrict our attention to all-unoriented mixed graphs, then
by the results of [6] we have found two graphs respectively with the largest
and the second largest spectral radius among all unicyclic all-unoriented
mixed graphs of given order.

Which is (are) the graph(s) with the third largest (or smaller) spectral
radius among all unicyclic all-unoriented mixed graphs of given order ?

In this paper, we discuss above problem and determine the graphs re-
spectively with the third and the fourth largest spectral radius among all
unicyclic all-unoriented mixed graphs of given order.

Note that the Laplacian matrix of an all-unoriented mixed graph is also
called the unoriented Laplacian matrix [7, 13], or signless Laplaican matrix
[2], or quasi-Laplacian matrix (by some Chinese researchers) of the graph,
which is received much attention in recent.

2. Preliminaries

We first introduced five all-unoriented unicyclic mixed graphs of order n
used in [6]: G1(r, s;n), r ≥ s; G2(r, s;n), r ≥ s; G3(r, s;n); G4(r, s;n), s ≥ 1;
G5(r, s;n), r ≥ s. Here r, s are nonnegative integers, which are respectively
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the number of pendant vertices adjacent to u and v, moreover parameters
n, r, s are related by n = r + s + 3, n = r + s + 4, n = r + s + 5.
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Figure 2.1. Five all-unoriented unicyclic mixed graphs on n vertices.

We next list main results of [6], where two mixed graphs G1 and G2 of same
order are said signature isomorphic if there exist a signature matrix D and
a permutation matrix P such that L(G1) = (DP )T L(G2)DP .

Theorem 2.1 [6, Theorem 3.3]. For n ≥ 5, up to signature isomorphisms,
G1(n − 3, 0;n) of Figure 2.1 is the unique graph with the largest spectral
radius among all unicyclic mixed graphs of order n.

Theorem 2.2 [6, Theorem 3.5]. For n ≥ 5, up to signature isomorphisms,

Ĝ1(n − 3, 0;n) is the unique graph with the second largest spectral radius

among all unicyclic mixed graphs of order n, where Ĝ1(n−3, 0;n) is obtained
from G1(n − 3, 0;n) by orienting the edge {u, v}.

Theorem 2.3 [6, Theorem 3.6]. For n ≥ 5, up to signature isomorphisms,
G1(n−4, 1;n) of Figure 2.1 is the unique graph with the third largest spectral
radius among all unicyclic mixed graphs of order n.

By Theorems 2.1–2.3, we immediately get the following result.
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Corollary 2.4. For n ≥ 5, up to isomorphisms, the graphs G1(n − 3, 0;n)
and G1(n− 4, 1;n) of Figure 2.1 are two graphs respectively with the largest
and the second largest spectral radius among all unicyclic all-unoriented
mixed graphs of order n.

We also need some other results which will be used later. Denote by Gc the
mixed graph obtained from a mixed graph G by orienting all its unoriented
edges and unorienting all its oriented edges, and denote by ∆(G) the maxi-
mum degree among all vertices of G. A graph is called regular if all vertices
have the same degrees, and is called semi-regular if it is bipartite and the
vertices in each partition have the same degrees.

Lemma 2.5 ([10, Theorem 3.5(1), Theorem 3.10], [15, Lemma 3.1]). Let
G be a mixed graph of order n which contains at least one edge. Then

∆(G) + 1 ≤ ρ(G) ≤ max{d(u) + d(v) : uv ∈ E(G)}.

Moreover, if G is connected, then the left equality holds if and only if
∆(G) = n − 1 and G is quasi-bipartite; and the right equality holds if and
only if G is regular or semi-regular and Gc is quasi-bipartite.

Lemma 2.6 [3, Lemma 2.4]. Let G be a unicyclic mixed graph on n ver-
tices. Then

s = max{d(u) + d(v) : uv ∈ E(G)} ≤ n + 1,

with equality if and only if G is one such that G is G1(r, s;n) of Figure 2.1,
and s = n if and only if G is one such that G is one of the graphs Gi(r, s;n)
of Figure 2.1 for i = 2, 3, 4, 5, where G is one obtained from the mixed graph
G by unorienting all its oriented edges.

3. Main Results

For convenience, We simply refer the first, second, third, fourth graphs of or-
der n respectively to the graphs with the largest, the second largest, the third
largest, the fourth largest spectral radius among all unicyclic all-unoriented
mixed graphs of order n. By Corollary 2.4, the first graph and the second
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graph of order n ≥ 5 have been determined. In this section, we will deter-
mine the third graph(s) and the fourth graph(s). In following we consider
only all-unoriented mixed graphs and unoriented Laplacian matrices.

Let G be a connected all-unoriented graph of order n. Then L(G)
is (entrywise) nonnegative, irreducible and positive semidefinite symmetric
matrix. By the Perron-Frobenius theory, the spectral radius ρ(G) = λ1(G)
is a simple eigenvalue of L(G) and there is a unique (up to multiples) cor-
responding positive eigenvector, usually referred to as its Perron vector of
L(G). By the theory of a symmetric matrix,

(3.1) ρ(G) = max
y,‖y‖=1

yT L(G)y = max
y,‖y‖=1

∑

uv∈E(G)

(yu + yv)
2,

with equality if and only if y is an eigenvector corresponding to ρ(G), where
yu denotes the component of y for the entry that corresponds to the vertex
u. We also find that y 6= 0 is an eigenvector of L(G) corresponding to the
eigenvalue λ if and only if for each vertex u of G

(3.2) (λ − du)yu =
∑

v∈N(u)

yv,

where N(u) is the neighbour set of u in G, i.e., the set of all vertices in G
adjacent to u.

Lemma 3.1 [6, Lemma 3.3 ]. Let Gi(r, s;n), Gi(r + 1, s − 1;n), Gi(r − 1,
s + 1;n) be mixed graphs of Figure 2.1 on n ≥ 5 vertices for i = 1, . . . , 5.
Then

(1) for i = 1, 2, 5 and for r ≥ s ≥ 1, ρ(Gi(r, s;n)) < ρ(Gi(r + 1, s − 1;n)).

(2) for r ≥ s − 1 ≥ 0, ρ(G3(r, s;n)) < ρ(G3(r + 1, s − 1;n)), and for
1 ≤ r < s − 1, ρ(G3(r, s;n)) < ρ(G3(r − 1, s + 1;n)).

(3) for r ≥ s − 2 ≥ 0, ρ(G4(r, s;n)) < ρ(G4(r + 1, s − 1;n)), and for
1 ≤ r < s − 2, ρ(G4(r, s;n)) < ρ(G4(r − 1, s + 1;n)).

By Lemma 3.1 and the fact G2(n − 4, 0;n) ∼= G1(n − 4, 1;n) and G3(0,
n − 5;n) ∼= G4(n − 4, 1;n), we have

ρ(G1(n − 3, 0;n)) = max{ρ(G1(r, s;n)), for r ≥ s ≥ 0};

ρ(G2(n − 4, 0;n)) = max{ρ(G2(r, s;n)), for r ≥ s ≥ 0}

(= ρ(G1(n − 4, 1;n)));



Order Unicyclic Graphs According to Spectral Radius ... 493

ρ(G3(n − 5, 0;n)) = max{ρ(G3(r, s;n)), for r ≥ s − 1 ≥ −1};

ρ(G3(0, n − 5;n)) = max{ρ(G3(r, s;n)), for 0 ≤ r < s − 1};

ρ(G4(n − 4, 1;n)) = max{ρ(G4(r, s;n)), for r ≥ s − 2 ≥ −1}

(= ρ(G3(n − 5, 0;n)));

ρ(G4(0, n − 4;n)) = max{ρ(G4(r, s;n)), for 0 ≤ r < s − 2};

ρ(G5(n − 4, 0;n)) = max{ρ(G5(r, s;n)), for r ≥ s ≥ 0}.

Denote the set

S = {G1(n − 5, 2;n), G2(n − 5, 1;n), G3(0, n − 5;n), G3(n − 5, 0;n),

G4(0, n − 4;n), G5(n − 4, 0;n)}.

Lemma 3.2. For n ≥ 7, ρ(G3(n − 5, 0;n)) > ρ(G5(n − 4, 0;n)) > n − 1.

Proof. Let x be the unit Perron vector of G5(n−4, 0;n) corresponding to
ρ(G5(n − 4, 0;n)) =: ρ. Note that G3(n − 5, 0;n) is isomorphic to a graph
(denoted by G) obtained from G5(n − 4, 0;n) by replacing the edge vp2 by
the edge vu1, and by equation (3.1)

xT L(G)x − xT L(G5(n − 4, 0;n))x = (xv + xu1
)2 − (xv + xp2

)2

= (xu1
− xp2

)(xp2
+ xu1

+ 2xv).

If we can show xu1
> xp2

, then

ρ(G3(n − 5, 0;n)) = ρ(G) ≥ xT L(G)x > xT L(G5(n − 4, 0;n))x

= ρ(G5(n − 4, 0;n)).

Now we prove xu1
> xp2

. Note that there exists an automorphism σ of
G5(n−4, 0;n) that interchanges p1 and v and keeps other vertices invariant.
Then we obtain a vector xσ defined as: (xσ)v = xσ(v) for each vertex v of
G5(n − 4, 0;n), which is also a unit Perron vector of L(G5(n − 4, 0;n)) by
equation (3.2). As the unit Perron vector of L(G5(n − 4, 0;n)) is unique,
xσ = x so that xp1

= xv. By equation (3.2) and the fact xp1
= xv,

(ρ − 1)xu1
= xu, (ρ − 2)xv = xp2

+ xu, (ρ − 2)xp2
= 2xv .

Thus (
1

2
ρ2 − 2ρ + 1

)
xp2

= (ρ − 1)xu1
.
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By Lemma 2.6, ρ(G5(n− 4, 0;n)) = ρ > n− 1. If n ≥ 7 then 1
2ρ2 − 2ρ + 1−

(ρ − 1) > 0, and hence xu1
> xp2

. The result follows.

Lemma 3.3. The third and the fourth graph(s) of order n ≥ 7 belong to the
set S.

Proof. By Corollary 2.4, G1(n − 3, 0;n) is the unique first graph and
G1(n− 4, 1;n) ∼= G2(n− 4, 0;n) is the unique second graph. By Lemma 3.1,
except the graphs G1(n−3, 0;n) and G1(n−4, 1;n), the graphs respectively
with the largest and the second largest spectral radius among all graphs
of Figure 2.1 belong to the set S. By Lemma 3.1, G3(n − 5, 0;n) and
G5(n − 4, 0;n) have different spectral radii both larger than n − 1. For any
unicyclic graph G of order n ≥ 7 such that G is not one graph of Figure 2.1,
then by Lemma 2.5 and Lemma 2.6, ρ(G) ≤ n − 1. The result follows.

Lemma 3.4. For n ≥ 7, ρ(G1(n − 5, 2;n)) < n − 1.

Proof. Let λ (λ 6= 1) be an eigenvalue of L(G1(n − 5, 2;n)) with the
corresponding eigenvector x. Then by euation (3.2), we have

xu1
= xu2

= · · · = xun−5
=: y1, xv1

= xv2
=: y2

and λ is a root of the following equations:




(λ − 1)y1 = xu,

(λ − n + 3)xu = (n − 5)y1 + xv + xw,

(λ − 4)xv = xw + xu + 2y2,

(λ − 2)xw = xu + xv,

(λ − 1)y2 = xv.

Then λ is a root of the characteristic polynomial f(λ) of the coefficient
matrix of above homogeneous linear equations, where

f(λ) = det




λ − 1 −1 0 0 0
−n + 5 λ − n + 3 −1 −1 0

0 −1 λ − 4 −1 −2
0 −1 −1 λ − 2 0
0 0 −1 0 λ − 1




= λ5 − (n + 5)λ4 + (7n − 3)λ3 − (11n − 13)λ2 + (3n + 8)λ − 4.
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If n ≥ 7, then f(0) = −4 < 0, f(1/3) = (2/81)n − 14/243 > 0, f(1) =
−2n+10 < 0, f(2) = 2n−8 > 0, f(5) = −10n−14 < 0, f(n−1) = (n−1)2

[(n− 9/2)2 − 41/4] + (3n− 4)(n + 3) > 0. As ρ(G1(n− 5, 2;n)) > n− 2 ≥ 5
is the largest root of f(λ), ρ(G1(n − 5, 2;n)) < n − 1.

Lemma 3.5. For n ≥ 7,

ρ(G1(n−5, 2;n)) > ρ(G2(n−5, 1;n)) > ρ(G3(0, n−5;n)) > ρ(G4(0, n−4;n)).

Proof. (1) ρ(G1(n − 5, 2;n)) > ρ(G2(n − 5, 1;n)). Let x be a unit Per-
ron vector of L(G2(n − 5, 1;n)) corresponding to ρ(G2(n − 5, 1;n)). Note
that G1(n− 5, 2;n) is isomorphic to a graph (denoted by G) obtained from
G2(n − 5, 1;n) by replacing the edge p1w by p1v, and

xT L(G)x − xT L(G2(n − 5, 1;n))x = (xv − xw)(2xp1
+ xv + xw).

There exists an automorphism σ of G2(n− 5, 1;n) such that σ interchanges
p1 and v1, w and v, and keeps other vertices invariant. Hence xv = xw, and
therefore

ρ(G1(n − 5, 2;n)) = ρ(G) ≥ xT L(G)x = xT L(G2(n − 5, 1;n))x

= ρ(G2(n − 5, 1;n)).

We assert that the inequality should be strict. Otherwise x is also a Perron
vector of G. Then applying Eq. (3.2) to the vertex w of the graph G, we
have

[ρ(G) − 2]xw = xu + xv.

However, for the graph G2(n − 5, 1;n),

[ρ(G2(n − 5, 1;n)) − 3]xw = xp1
+ xu + xv,

which yields a contradiction to above equality.

(2) ρ(G2(n − 5, 1;n)) > ρ(G3(0, n − 5;n)). Following the route of above
proof, let x be a unit Perron vector of L(G3(0, n − 5;n)) corresponding
to ρ(G3(0, n−5;n)) =: ρ. Note that G2(n−5, 1;n) is isomorphic to a graph
(also denoted by G) obtained from G3(0, n−5;n) by replacing the edge p1p2

by p1w, and

xT L(G)x − xT L(G3(0, n − 5;n))x = (xw − xp2
)(2xp1

+ xw + xp21).
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Next we will show xw > xp2
and hence ρ(G2(n − 5, 1;n)) = ρ(G) >

ρ(G3(0, n − 5;n)). Also by equation (3.2),

(
ρ − 2 −

1

ρ − 1

)
xp2

= xu, (ρ − 3)xu = xp2
+ xw + xv, (ρ − 2)xw = xu + xv.

Then we have
[
(ρ − 2)

(
ρ − 2 −

1

ρ − 1

)
− 1

]
xp2

= (ρ − 1)xw.

As ρ > n−2 by Lemma 2.5, if n ≥ 7 then (ρ−2)(ρ−2− 1
ρ−1 )−1− (ρ−1) >

ρ2 − 5ρ + 3 > 0, and hence xw > xp2
, which prove the result.

(3) ρ(G3(0, n − 5;n)) > ρ(G4(0, n − 4;n)). Let x be a unit Perron vector
of L(G4(0, n − 4;n)) corresponding to ρ(G4(0, n − 4;n)) =: ρ. Note that
G3(0, n − 5;n) is isomorphic to a graph (also denoted by G) obtained from
G4(0, n − 4;n) by replacing the edge up1 by uv1. Thus

xT L(G)x − xT L(G4(0, n − 4;n))x = (xv1
− xp1

)(2xu + xv1
+ +xp1

).

It suffices to show xv1
> xp1

. Note that there is an automorphism σ of
G4(0, n − 4;n) such that σ interchanges p1 and p2 and keeps other vertices
invariant. Hence xp1

= xp2
. By equation (3.2),

(ρ − 1)xv1
= xv, (ρ − 3)xu = xp1

+ xp2
+ xv, (ρ − 2)xp1

= xp2
+ xu.

Substituting xp1
= xp2

, we have

[(ρ − 3)2 − 2]xp1
= (ρ − 1)xv1

.

If n ≥ 8, then by Lemma 2.6, ρ > n−2 ≥ 6, and hence (ρ−3)2−2 > ρ−1 > 0
so that xv1

> xp1
, which prove the result. For n = 7, by the software

Mathematica, ρ(G3(0, 2; 7)) ≈ 5.55336 > ρ(G4(0, 3; 7)) ≈ 5.35386. The
result also follows.

Theorem 3.6. For n ≥ 7, G3(n − 5, 0;n) is the unique third graph.

Proof. By Lemma 3.3, The third graph(s) of order n ≥ 7 belong(s) to the
set S. By Lemma 3.2, Lemma 3.4 and Lemma 3.5, the result follows.
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Lemma 3.7. For n ≥ 7, ρ(G1(n − 5, 2;n)) > max{ρ(G3(n − 6, 1;n)),
ρ(G5(n − 5, 1;n)}.

Proof. We first prove ρ(G1(n− 5, 2;n)) > ρ(G3(n− 6, 1;n)). Let x be the
unit Perron vector of L(G3(n−6, 1;n)) corresponding to ρ(G3(n−6, 1;n)) =:
ρ. Note that G1(n−5, 2;n) is isomorphic to a graph (denoted by G) obtained
from G3(n − 6, 1;n) by replacing the edge p1p2 by the edge p1v, and

xT L(G)x − xT L(G3(n − 6, 1;n))x = (xv − xp2
)(2xp2

+ xv + xp2
).

It suffice to show xv > xp2
. By equation (3.2),

(
ρ−2−

1

ρ − 1

)
xp2

= xu,

(
ρ−3−

1

ρ − 1

)
xv = xw +xu, (ρ−2)xw = xu +xv.

Then
[
(ρ − 2)

(
ρ − 3 −

1

ρ − 1

)
− 1

]
xv = (ρ − 1)

(
ρ − 2 −

1

ρ − 1

)
xp2

.

One can easily find that xv > xp2
and the results follows.

Next we prove ρ(G1(n − 5, 2;n)) > ρ(G5(n − 5, 1;n). Let x be the unit
Perron vector of L(G5(n− 5, 1;n)) corresponding to ρ(G5(n− 5, 1;n)) =: ρ.
Note that G1(n − 5, 2;n) is isomorphic to a graph (also denoted by G)
obtained from G5(n − 5, 1;n) by replacing the edge p1p2 by the edge p1v,
and

xT L(G)x − xT L(G5(n − 5, 1;n))x = (xv − xp2
)(2xp2

+ xv + xp2
).

It suffice to show xv > xp2
. By equation (3.2),

(
ρ− 3−

1

ρ − 1

)
xv = xp2

+ xu, (ρ− 2)xp2
= xp1

+ xv, (ρ− 2)xp1
= xp2

+ xu.

Then

(ρ − 2)2xp2
=

(
2ρ − 5 −

1

ρ − 1

)
xv.

So xv > xp2
and the results follows.

Theorem 3.8. For n ≥ 7, G5(n − 4, 0;n) is the unique fourth graph.
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Proof. By Lemma 3.3, The fourth graph(s) of order n ≥ 7 belong(s) to
the set S. By Lemma 3.7, Lemma 3.4 and Lemma 3.2,

ρ(G3(n − 6, 1;n)) < ρ(G1(n − 5, 2;n)) < n − 1 < ρ(G5(n − 4, 0;n)).

Using Lemma 3.5, we find the result follows.

Remark. G1(n − 5, 2;n) is the fifth graph among all graphs of Figure 2.1.
The reason is as follows. By Lemma 3.5, ρ(G1(n − 5, 2;n)) > max{ρ(G2

(n − 5, 1;n)), ρ(G3(0, n − 5;n)), ρ(G4(0, n − 4;n))}, by Lemma 3.7, ρ(G1

(n − 5, 2;n)) > max{ρ(G3(n − 6, 1;n)), ρ(G5(n − 5, 1;n)}. However, we
do not know whether G1(n − 5, 2;n) is the fifth graph among all unicyclic
graphs of order n, as ρ(G1(n − 5, 2;n)) < n − 1 by Lemma 3.4 and there
maybe exists a graph not in Figure 2.1 but with spectral radius greater than
ρ(G1(n − 5, 2;n)). As a conclusion, we give a partial order of the unicyclic
graphs according to spectral radius, where the graphs Gi(r, s;n) are simply
written to Gi(r, s).

G1(n−3, 0) 1st graph

G1(n−4, 1) G2(n−4, 0) 2nd graph

G3(n−5, 0) 3rd graph

G5(n−4, 0) 4th graph

G1(n−5, 2) unknown

G1(n−6, 3) G2(n−5, 1) G3(n−6, 1) G3(0, n−5) G4(0, n−5) G5(n−5, 1) order

Figure 3.1. A partial order of the unicyclic graphs.

References

[1] R.B. Bapat, J.W. Grossmana and D.M. Kulkarni, Generalized matrix tree the-
orem for mixed graphs, Linear Multilinear Algebra 46 (1999) 299–312.

[2] D. Cvetković, P. Rowlinson and S.K. Simić, Signless Laplacians of finite graphs,
Linear Algebra Appl. 423 (2007) 155–171.

[3] Y.-Z. Fan, On spectral integral variations of mixed graph, Linear Algebra Appl.
374 (2003) 307–316.

[4] Y.-Z. Fan, Largest eigenvalue of a unicyclic mixed graph, Appl. Math. J. Chi-
nese Univ. (B) 19 (2004) 140–148.

[5] Y.-Z. Fan, On the least eigenvalue of a unicyclic mixed graph, Linear Multi-
linear Algebra 53 (2005) 97–113.



Order Unicyclic Graphs According to Spectral Radius ... 499

[6] Y.-Z. Fan, H.-Y. Hong, S.-C. Gong and Y. Wang, Order unicyclic mixed graphs
by spectral radius, Australasian J. Combin. 37 (2007) 305–316.

[7] Y.-Z. Fan, B.-S. Tam and J. Zhou, Maximizing spectral radius of unoriented
Laplacian matrix over bicyclic graphs of a 798 given order, Linear and Multi-
linear Algebra (2007), doi: 10.1080/03081080701306589.

[8] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973)
298–305.

[9] J.W. Grossman, D.M. Kulkarni and I.E. Schochetman, Algebraic Graph Theory
Without Orientation, Linear Algebra Appl. 212/213 (1994) 289–307.

[10] Y.-P. Hou, J.-S. Li and Y.-L. Pan, On the Laplacian eigenvalues of signed
graphs, Linear Multilinear Algebra 51 (2003) 21–30.

[11] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl.
197/198 (1998) 143–176.

[12] B. Mohar, Some applications of Laplacian eigenvalues of graphs, in: Graph
Symmetry (G. Hahn and G. Sabidussi Eds (Kluwer Academic Publishers, Dor-
drecht, 1997) 225–275.

[13] B.-S. Tam, Y.-Z. Fan and J. Zhou, Unoriented Laplacian maximizing graphs
are degree maximal, Linear Algebra Appl. (2008), doi:10.1016/j.laa.2008.04.002

[14] X.-D. Zhang and J.-S. Li, The Laplacian spectrum of a mixed graph, Linear
Algebra Appl. 353 (2002) 11–20.

[15] X.-D. Zhang and Rong Luo, The Laplacian eigenvalues of mixed graphs, Linear
Algebra Appl. 362 (2003) 109–119.

Received 18 December 2007
Revised 13 May 2008

Accepted 13 May 2008

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

