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Abstract

We inductively describe an embedding of a complete ternary tree
T}, of height h into a hypercube Q of dimension at most [(1.6)h] + 1
with load 1, dilation 2, node congestion 2 and edge congestion 2. This
is an improvement over the known embedding of T} into Q. And it is
very close to a conjectured embedding of Havel [3] which states that
there exists an embedding of T}, into its optimal hypercube with load
1 and dilation 2. The optimal hypercube has dimension [(log, 3)h|
(= [(1.585)R]) or [(logy 3)h] + 1.
Keywords: complete ternary trees, hypercube, interconnection net-
work, embedding, dilation, node congestion, edge congestion.
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1. INTRODUCTION

Graph embeddings constitute a central topic in the area of parallel and dis-
tributed computing; see [5, 6, 8]. They are natural mathematical models
capturing the issues involved in the design of parallel algorithms. We as-
sume that the reader is familiar with the terminology associated with graph
embeddings. However, since the terminology is varied in the literature, we
recall the most general definition of a graph embedding to avoid any confu-
sion.

Let G and H be any two graphs and let p(H) denote the set of all paths
in H. An embedding of a guest graph G(V, E) into a host graph H(W, F')
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is a pair of functions (f,p) where f : V. — W and p : E — p(H) such
that p maps an edge uv of G to a path connecting f(u) and f(v) in H.
The parameters load, dilation, node congestion, and edge congestion are
associated with such an embedding (f, p) to measure its qualities.

The load of a node v € V(H) is the number of nodes of V(G) that are
mapped onto v by f; the load of (f,p) is the maximum load over all nodes
of H. Note that, if f is an injective map, then the load is 1.

The dilation of an edge e(uv) in G is the length of the path p(e). The
dilation of (f,p) is the maximum dilation over all edges of G. Note that,
if there exists a load 1 and dilation 1 embedding of G into H, then G is
isomorphic to a subgraph of H.

The congestion of an edge ¢’ € H is the number of edges e € E(G) such
that the path p(e) contains e’. The edge congestion of (f, p) is the maximum
congestion over all edges of H.

The congestion of a node v € H is the number of edges e € F(G) such
that v is an internal vertex of the path p(e). The node congestion of (f,p)
is the maximum congestion over all nodes of H.

All embeddings discussed in this paper have load 1, that is f is an injec-
tion. Also, we map every edge e(uv) onto a shortest (f(u), f(v))-path. Nev-
ertheless, it is still important which paths we choose, since we are interested
in obtaining an embedding with node congestion 2 and edge congestion 2.

There is a vast body of work on embedding of various kinds of trees into
hypercubes. In particular, complete k-ary trees have received special atten-
tion as they represent algorithms that employ divide-and-conquer strategy.

A complete k-ary tree of height h, is a rooted tree in which each internal
vertex has exactly k children and the distance from the root to each leaf is
exactly h.

For n > 1, the n-dimensional hypercube (or n-cube), Q,, is the graph
whose vertex set is the set of binary strings V(Q,) := {X = z122... 2y :
x; € {0,1},1 < i < n} and edge set E(Q,) := {XY : X and Y differ
in exactly one position }. Alternatively, hypercubes are recursively defined
through the cartesian product (x) of graphs as @1 = K», and for n > 2,
Qn = @Qn_1 X Ky. This definition permits a decomposition of @, into two
copies of Q,_1, say Q¥ _; and QL _; as follows: V(Q" ;) = {X € V(Q,) :
X =0r9...2,} and V(QL_|) ={X € V(Q,) : X = 1xg...2,}. Any vertex
0xg...7, € V(QY_,) is adjacent to a unique vertex lzs ...z, € V(QL_).
Similarly, we can further decompose Q%—l and Q,ll_l and obtain four copies

30727 21727 Q%L(lz and Q#fz of Qp—2.
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Given a tree T, let n be the smallest integer such that 2™ > |V(T')|. Then @,
is called the optimal hypercube of T, and Q41 is called the next-to-optimal
hypercube.

Henceforth, T}, will denote a complete 3-ary tree (that is, a ternary tree)
of height h. The root of T} will be denoted by Rj. The three children of the
root Rp, namely the left child, the middle child and the right child will be
denoted by ¢;, ¢, and ¢, respectively. Since T}, has (3thl —1)/2 vertices, it
follows that its optimal hypercube has dimension |[(log, 3)h](~ [(1.585)h])
or [(logy 3)h] 4 1. The following conjecture is open since 1990.

Conjecture 1.1 (Havel [3]). Any complete ternary tree of height h can be
embedded with load 1 and dilation 2 into its optimal hypercube.

The following result achieves the smallest dilation, node congestion, and edge
congestion known so far for embedding T}, into a [(1.6)h] + 1-dimensional
hypercube.

Theorem 1.2 (Gupta et al. [2]). Any complete ternary tree of height h
can be embedded with load 1, dilation 3 and edge congestion 3 into Q g,
where d(h) = [(1.6)h] + 1.

The related results on embedding of ternary trees into hypercubes can be
found in many papers [1, 4, 7, 8|.
In this paper, we prove the following improvement of the above theorem.

Theorem 1.3. Any complete ternary tree of height h can be embedded with
load 1, dilation 2, edge congestion 2 and node congestion 2 into Q 4, where

o — [(1.6)h], if h =2 (mod 5) or h =4 (mod 5),
= [(1.6)h]4+1, if h=0(mod 5) or h =1 (mod 5) or h = 3 (mod 5).

2. EMBEDDING OF COMPLETE TERNARY TREES

Let 75, denote the tree obtained from 73 by adding a new vertex D and
joining it to the root Rp of Tj. Here, we call the vertex D as the deep
root of the tree 7,,. If a tree 71, is embeddable into a hypercube @ with
load 1, dilation 2, node congestion 2 and edge congestion 2, such that the
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root Ry and the deep root D are mapped onto adjacent nodes and the edge
(f(Rp), f(D)) € Q has congestion 1, then we write 75 — Q. We first prove
the following result which implies our main result, Theorem 1.3, by induction
on h, since T}, is a subgraph of 73. Its proof technique is a refinement of the
technique employed in [2].

Theorem 2.1. If 7, — Qg, then Thi5 — Q4is-

Proof. We prove the result by describing the following five embeddings.

(1) Thy1 = Qa2
) Thi2 = Qaya,

(ili) This = Qars,
) Thta — Qa7 and
)

Thts — Qd48-

(i) Th+1 — Qas2: The embedding (f,p) of 7h41 in Qgio is schematically
shown in Figure 1.

To obtain this embedding, we first decompose Q412 into four copies of
Q4. For i,j € {0,1}, we have a copy of 75, in QZ] denoted by ij7y; see Figure
1(b). So, we suitably combine these embeddings, as shown in Figure 1(c),
to obtain an embedding of 7511, with 10D as its deep root and 00D as its
root. The embedding maps the three children ¢;, ¢, ¢, of the root Ry in
T},+1 onto the vertices 01 Ry, 00R;, and 10R;, respectively, with the following
properties.

(i) The edges Rpy1¢; and Rp41¢. of Tj41 are mapped onto the paths
(00D,01D,01Ry) and (00D,00Ry, 10R,) of Q412, respectively. So, they
have dilation 2. The edges Rji1¢, and Rp1D are mapped onto the
edges (00D,00R;,) and (00D, 10D), respectively. So, they have dilation
1. The edge joining the root Rj.1 and the deep root D, (that is, the edge
(00D, 10D)) has congestion 1. Note that the edge (00D,00R},) has conges-
tion 2, since it belongs to p(Rpi1¢.) and p(Rp41¢m)-

(ii) The edges of the three trees T}, rooted at ¢, ¢, ¢ in Thyq, retain
their dilation attained in the embedding 7, — Q4. Every node and every
edge of Q42 retains its congestion attained in the embedding ijr), — QZ],

i,j €{0,1}.
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Input:
D
R
Figure 1(a). 7, — Qg. D and R}, are d-bit binary strings.
00Ry, -~~~ " 00D]--~"7-~10R; ~---10D
00 | | 10
d ! ! d
01Ry, | 11Ry, |
le 01D 11D Q(lil
Figure 1(b). ijm, < Q%.,i,5 € {0,1}
Embedding;:
Figure 1(c). The edge (00D, 00R;) has congestion 2.
Output:

Figure 1(d). Th41 < Qg+2. The 7, shown on the right with light edges
contains unutilized vertices.

Figure 1. The steps involved in an embedding of 7441 — Qg442, with the input
Th = Q.
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(iii) Figure 1(c) also shows a ternary tree 75, (with 11D as the deep root
and 11R}, as the root) embedded in @42 whose vertices are not yet utilized.
These vertices would be used in the subsequent embeddings. Here again,
the edge (11D, 11Ry,) has congestion 1.

(iv) Every parameter namely, dilation, node congestion and edge con-
gestion of this embedding is bounded by 2.

The output of this step, shown in Figure 1(d), is the input for embedding
Thio in Qgr4 in the next step.

(ii) Tht2 — Qd+4: The embedding (f,p) of Thyo in Qgyq is described in
Figure 2.

Similar to the previous step, we obtain an embedding of 75,19 with
1010D as its deep root and 0010D as the root; see Figure 2(b). The em-
bedding maps the three children ¢;, ¢, ¢ of the root Rpyo in Thi9 onto
the vertices 0100D, 0000D, and 1000D, respectively. The edges Rjyoc; and
Rpioc, of Thio have dilation 2. The edges Rpioc, and RpoD have dila-
tion 1. The rest of the edges of T}o retain their dilation attained in the
embedding 7,11 — Qgi12. Note that the node 0110D which appears twice
(shown inside a circle) and the node 0111D which appears twice (shown
inside a square) will receive node congestion 2 in the subsequent steps, as
the nodes appear in the set of vertices which are yet to be utilized. The
edge p(Rp4+2D) = (0010D,1010D) receives congestion 1. Note also that the
edge (0010D,0000D) has congestion 2, since it belongs to p(Rpy2¢,) and
p(Rp42¢m). The remaining nodes and edges of Q444 retain their congestion
attained in the embedding ij7),11 — Q, ,, for 4,5 € {0,1}.

Figure 2(b) also shows two copies of 7541 (one with 1110D as the deep
root and 1100D as the root 7511 and the second with 0111D as the deep root
and 1111D as the root) and a copy of 7, (with 0011D as the deep root and
0011Ry, as the root) embedded in Q414 whose vertices are not yet utilized.
In each case, the edge joining the root and the deep root of the tree are
mapped onto adjacent nodes and receives congestion 1. Every parameter
namely, dilation, node congestion and edge congestion of these embeddings
is bounded by 2.

The output of this step, shown in Figure 2(c), is the input for the next
step to embed 77,43 in Qg4s5.

(iii) Th43 — Qq+5: The embedding (f,p) of 7543 in Q45 is described in
Figure 3.
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Input: The output of the embedding 7,11 < Qq2; see Figure 1(d).

<. 1010D 1011D
Qdk Qifko
Qi i
Embedding:

Figure 2(b). The edge (0010D,0000D) has congestion 2. The nodes 0110D and 0111D
are the candidates to receive node congestion 2 in the subsequent steps.

Output:

1110D 1100D

Figure 2(c). Thi2 < Qg+4. The subgraph shown on the right with
light edges contains unutilized vertices.

469

Figure 2. The steps involved in an embedding of 71,49 < Q444, with the input

Tht1 = Qdyo-
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Input: The output of the embedding 7,12 — Qg+4; see Figure 2(c).

Embedding:

01110D  01100D
0101001
< | 00110D_—00111D /\
. 01111 =+
00011D¢ /Thi1 :
' 00011R; 3
/ ’,
RN i 11110D 11100D
11010D'y .
N RTIST)) 111D D/\
10010040 - it 11111 L
1 \
aH 10011D% /Thiq
10011R;

Figure 3(a). imp2 — Qi 4, i€ {0,1}

11110D

11111D
h+1
10110D 10111 +
¢10011D
00011Ry,
2 10011 Ry,
T

Output:

Figure 3(c). Th4+3 < Qa445. The subgraph shown on the right with

Figure 3(b). The edges (01110D,01100D) and (01010D,00010D) have edge congestion 2.

11010D ¢

11110D

11111D

01010D,

AR

10111
10110D

Tht1

910011D

00011Ry, 2 10011Ry,
AN

light edges contains unutilized vertices.

Figure 3. The steps involved in an embedding of 7443 — Q445, with the input
Thi2 > Qd+a-
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Here, we consider the decomposition of Q445 into two copies of Q414 and
combine the embeddings such that we obtain an embedding of 75,3 with
11010D as the deep root and 01010D as the root; see Figure 3(b). The
three children ¢;, ¢;,, and ¢, of the root Ry 3 are mapped respectively, on to
01110D, 00010D and 10010D. The edge Rj+3D € 7h43 (mapped onto the
edge (11010D,01010D)) has dilation 1 and the edge (11010D,01010D) has
congestion 1. Each of the parameters namely, dilation, edge congestion and
node congestion of the embedding is bounded by 2.

Figure 3(c), also show embeddings of a T}41 (with 11111D as the root)
and two copies of T}, rooted at 00011 Ry, and 10011 R;, whose vertices will be
utilized in the subsequent steps. In all the embeddings, the edge joining the
root and the deep root of the tree are mapped onto the adjacent nodes and
they receive edge congestion 1. Every parameter dilation, node congestion
and edge congestion of these embeddings is bounded by 2.

Here again, the output of this step, shown in Figure 3(c), is the input
for the next step to embed 77,44 in Qg47.

(iv) Thta — Qd+7 : The embedding (f, p) of Thy4 in Qg7 is described in
Figure 4.

Similar to steps (i) and (ii), we obtain an embedding of 75,14 with the
deep root mapped on to 1011010D and the root of the tree T},4 mapped
on to 0011010D; refer to Figure 4(b). The edges Rp14¢; and Rpi4c¢, have
dilation 2. The edges Rpi4¢y and Ry 4D have dilation 1 and rest of the
edges of T4 retain their dilation attained in the embedding 77,43 in Qgy5.
Also, the edge (1011010D,0011010D) receives congestion 1. Each of the
parameters namely, node congestion and edge congestion of the embedding
is bounded by 2.

Figure 4(b) also shows two copies of Tjio rooted at 1110111D and
0110111D, and a T}43 rooted at 1101010D embedded in Q447. In all em-
beddings, the edge joining the root and the deep root of the tree are mapped
onto the adjacent nodes and they receive edge congestion 1. The vertices
of these trees are not yet utilized. These vertices will be utilized in the
next step. The nodes 0010111D and 1010111D receive congestion 2; see
Figure 2(b). Every parameter namely, dilation, node congestion and edge
congestion of these embeddings is bounded by 2.

The output of this step, shown in Figure 4(c), is the input to embed
Thas in Qgrg in the next step.
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Input: The output of the embedding 7,413 — Qq+5; see Figure 3(c).
s -m e Qits
_.--70011110D __ 0011111D 10111100 1011111D
001101004 4 ==-1.1 101101009
0001010DA_0010110D ¢—— bt 1001010DA_1010110D é—— bt
, L~ 10010111D L~ 11010111D
A /" .40010011D /" _4$1010011D

', 0000011 Rja————A0010011R,
N /Th :"‘ ; TN

1000011R, = 1010011Ry,
/T : ; TN

N T

\
L

0100011Ry, 0110011Ry,
/" Th ; ; TN

. VN 0111111D ) - {------- —__L11110D 1111111D
0111010D : 1110100 g
0111110D | ™, A o
0101010DA_0110110D &< hil 1101010 DA_1110110D é>— hitl
. | 0110111D ~ | 1110111D
0110011D 1110011D

1100011 Ry, pv 1110011Ry,
Th Tk\

01
d+5

Embedding:

11
Qi+s

Figure 4(a). ij743 — ing,[ﬁimj €{0,1}

0011010D

1011010D 1111010D

1101010D

11101100 1111110D

1001010D

1110111D

1010111D 0111111

11D

Th+s
111111D
@ 1110
2

Th1

0110111D

0010111D

1010011D 00100110

10011Ry,
N

1100011R;,
0010011R;,

1010011Ry,

Figure 4(b). The edges (0011010D,0001010D),(1110011D,1110011R}) and
(0110011D,0110011R),) have edge congestion 2.

Output:

1011010D 1111010D 1101010D

00110100 1111110D1

0110111D 21110111D
NN

1110110D's

Figure 4(c). Th+a < Qat7. The subgraph shown on the right with light edges

contains unutilized vertices.

Figure 4. The steps involved in an embedding of 7444 — Qg447, with the input

The3 — Qdys-
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(v) Th+s — Qd+s : The embedding (f,p) of 715 in Q44s is described in
Figure 5.

We decompose Q415 into two hypercubes Q?l 7 and Q}i 7. And embed
07ht4 in QY7 and 17444 in QY ;; see Figure 5(a). We combine these two
trees, as shown in Figures 5(a) and 5(b), to obtain the required embedding
of 1,15 into Qgyg with 11011010D as the deep root and 01011010D as the
root of the tree Tp15. Note that, the edge Rp+5D is mapped onto the
edge (01011010D,11011010D). Therefore, Ry, 5D receives dilation 1 and
moreover, (01011010D,11011010D) has edge congestion 1. The dilation of
each of the edges of T} 5 is bounded by 2 and that the congestion of each
node and edge of Q445 is also bounded by 2.

Hence, given 75, — @4, we have obtained an embedding of 735 into
Qg1 with load 1, dilation 2, node congestion 2 and edge congestion 2 in
five steps (i) to (v ) ]

Theorem 2.2. Any complete ternary tree Ty is embeddable with load 1,
dilation 2, node congestion 2 and edge congestion 2 into Q 4), where

[(1.6)h], if h=2(mod 5) or h =4 (mod 5),
[(1.6)h] + 1, if h=0(mod 5) or h =1 (mod 5) or h = 3 (mod 5).

Proof. We embed 7, into Q) by induction on A (mod 5). The theorem
follows, since T}, is a subtree of 73,. For the base case, we have constructed
embeddings of 1, 71, T, T3 and 74 into @1, @3, Q4, Qg and Q7 respectively,
with load 1, dilation 2, node congestion 2 and edge congestion 2. For the
inductive step, we assume that 7, — Q) and show that 715 — Qg(ns)
where d(h +5) = [(1.6)(h +5)] or [(1.6)(h + 5)] + 1. By Theorem 2.1, we
have 7,45 — Qq(n)+8, Where

d(h) +8 = ([(1.6)h] or [(L.6)A] +1) +8

(I
([(1.6)h + 8] or [(1.6)h + 8] + 1)
= [
=d(h+

6)(h +5)] or [(1.6)(h +5)] +1
5)-

Since, in the basic step, we have 7, — Q[(1.6)n], when h = 2 or 4, and we
have 75, — Qr(1.6)n]+1, when h = 0,1 or 3, the theorem follows. [
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Input: The output of the embedding 7j+4 < Qq47; see Figure 4(c).
01111010D
. 01101010D

=
=
&

" 401110110D

0
Qa7

1

- 01110111D

/,’ i 00110111/DT57
| Thyio \‘l\/ Ty

1
\

T

\

o

'
\
I
LN
N

| 11111010D-
11011010y 11

101010D

\

11111110D,

Qir 10()1101()b!
10110111}W 11110111D
Thio hk

Figure 5(a). iTp14 — in+7,i € {0,1}

%

N

11110110D

o

01011010D 11011010D

00110100 10011010D

Embedding:

01111010D
11111010D

01111110D

Figure 5(b). The edges (01110110D,01110111D) and (01011010D,00011010D)
have edge congestion 2.

Output:
D :=11011010D

s = 010110100

Figure 5(¢c). This — Qdts

Figure 5. The steps involved in an embedding of 7,45 — Q4+s, with the input

Thta = Qdy7-
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Conclusions and Remarks

1. In this paper, we have obtained a load 1, dilation 2, node congestion
2 and edge congestion 2 embedding of the complete ternary tree of height
h into a hypercube of dimension d(h) = [(1.6)h] or [(1.6)h] + 1. More
precisely,

oy — [(1.6)h], if h =2 (mod 5) or h =4 (mod 5),
= [(1.6)h] + 1, if h=0(mod 5) or h =1 (mod 5) or h = 3 (mod 5).

Though the hypercube Q43 is not optimal, its dimension is very close to
the dimension of the optimal hypercube which is [(logy 3)h|(= [(1.585)h])
or [(logy 3)h] + 1.

2. Let n(h) denote the dimension of the optimal hypercube of T},. Let
d(h) be as defined in Theorem 1.3. We have computationally verified that
d(h) =n(h) for 2 < h < 15, and that n(h) < d(h) < n(h)+1 for 16 < h < 80.
Therefore, by using our embeddings 75 — Q1, 71 — @3, To — Q4, T3 — Qg
and 74 — @7 and the inductive description of the embedding given in the
proof of Theorem 2.1, we conclude that

(i) for 2 < h < 15, we have embedded T}, in its optimal hypercube, and

(ii) for 16 < h < 80, we have embedded T}, either in its optimal hypercube
or next-to-optimal hypercube.
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