THE BONDAGE NUMBER OF GRAPHS: GOOD AND BAD VERTICES

Vladimir Samodivkin
Department of Mathematics
University of Architecture Civil Engineering and Geodesy Hristo Smirnenski 1 Blv., 1046 Sofia, Bulgaria
e-mail: vlsam_fte@uacg.bg

Abstract

The domination number $\gamma(G)$ of a graph G is the minimum number of vertices in a set D such that every vertex of the graph is either in D or is adjacent to a member of D. Any dominating set D of a graph G with $|D|=\gamma(G)$ is called a γ-set of G. A vertex x of a graph G is called: (i) γ-good if x belongs to some γ-set and (ii) γ-bad if x belongs to no γ-set. The bondage number $b(G)$ of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater then $\gamma(G)$. In this paper we present new sharp upper bounds for $b(G)$ in terms of γ-good and γ-bad vertices of G.

Keywords: bondage number, γ-bad/good vertex.
2000 Mathematics Subject Classification: 05C69.

1. Introduction

All graphs considered in this article are finite, undirected, without loops or multiple edges. For the graph theory terminology not presented here, we follow Haynes, et al. [11]. We denote the vertex set and the edge set of a graph G by $V(G)$ and $E(G)$, respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G\rangle$. For a vertex x of $G, N(x, G)$ denote the set of all neighbors of x in $G, N[x, G]=N(x, G) \cup\{x\}$ and the degree of x is $\operatorname{deg}(x, G)=|N(x, G)|$. The minimum degree of vertices in G is denoted by $\delta(G)$ and the maximum degree by $\Delta(G)$. If $x \in V(G)$ and $\emptyset \neq Y \subseteq V(G)$
we let $E(x, Y)$ represents the set of edges of G of the form $x y$ where $y \in Y$, and let $e(x, Y)=|E(x, Y)|$.

A set $D \subseteq V(G)$ dominates a vertex $v \in V(G)$ if either $v \in D$ or $N(v, G) \cap D \neq \emptyset$. If D dominates all vertices in a subset T of $V(G)$ we say that D dominates T. When D dominates $V(G), D$ is called a dominating set of the graph G. The domination number $\gamma(G)$ of a graph G is the minimum cardinality taken over all dominating sets of G. Any dominating set of cardinality $\gamma(G)$ is called a γ-set. A dominating set D is called an efficient dominating set if the distance between any two vertices in D is at least three. Not all graphs have efficient dominating sets. A vertex v of a graph G is critical if $\gamma(G-v)<\gamma(G)$, and G is vertex dominationcritical if each its vertex is critical. We refer to graphs with this property as vc-graphs.

Much has been written about the effects on domination related parameters when a graph is modified by deleting an edge. For surveys see [11, Chapter 5] and [12, Chapter 16]. One measure of the stability of the domination number of G under edge removal is the bondage number defined in [6] (previously called the domination line-stability in [2]). The bondage number $b(G)$ of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than $\gamma(G)$. Since the domination number of every spanning subgraph of a nonempty graph G is at least as great as $\gamma(G)([11])$, the bondage number of a nonempty graph is well defined. First results on bondage number can be found in a 1983 article of Bauer et al. [2].

Theorem 1.1 (Bauer et al. [2]). If G is a nontrivial graph, then
(i) $b(G) \leq \operatorname{deg}(u, G)+\operatorname{deg}(v, G)-1$ for every pair of adjacent vertices u and v of G;
(ii) If there exists a vertex $v \in V(G)$ for which $\gamma(G-v) \geq \gamma(G)$, then $b(G) \leq \operatorname{deg}(v, G) \leq \Delta(G)$.

As a corollary of Theorem 1.1(i) it immediately follows the next theorem.
Theorem 1.2 (Fink et al. [6]). If G is a graph with no isolated vertices, then $b(G) \leq \delta(G)+\Delta(G)-1$.

An extension of a result in Theorem 1.1 which include distance 2 vertices is the next theorem.

Theorem 1.3 (Hartnell and Rall [10] and Teschner [17]). If u and v are different vertices of G such that the distance between them is at most 2 , then $b(G) \leq \operatorname{deg}(u, G)+\operatorname{deg}(v, G)-1$.

A generalization of Theorem 1.2 was found independently by Hartnell and Rall [10] and Teschner [17].

Theorem 1.4 (Hartnell and Rall [10] and Teschner [17]). If G has edgeconnectivity $\lambda(G) \geq 1$, then $b(G) \leq \Delta(G)+\lambda(G)-1$.

Hartnell and Rall [9] improved the bound of Theorem 1.1(i) for adjacent vertices.

Theorem 1.5 (Hartnell and Rall [9]). For every pair of u and v of adjacent vertices of $G, b(G) \leq \operatorname{deg}(u, G)+e(v, V(G)-N[u, G])=\operatorname{deg}(u, G)+$ $\operatorname{deg}(v, G)-1-|N(u, G) \cap N(v, G)|$.

In [18], Wang, by careful consideration of the nature of the edges from the neighbors of u and v, further refine this bound.

Theorem 1.6 (Wang [18]). For each edge uv of a graph G, let
$T_{1}(u, v)=N[u, G] \cap N(v, G)$,
$T_{2}(u, v)=\{w: w \in N(v, G)$ and $N[w, G] \subseteq N[v, G]-\{u\}\}$,
$T_{3}(u, v)=\{w: w \in N(v, G)$ and $N[w, G] \subseteq N[x, G]-\{u\}$, where
$x \in N(u, G) \cap N(v, G)\}$, and
$T_{4}(u, v)=\left\{w: w \in N(v, G)-\left(T_{1}(u, v) \cup T_{2}(u, v) \cup T_{3}(u, v)\right)\right\}$.
Then $b(G) \leq \min _{u \in V(G), v \in N(u, G)}\left\{\operatorname{deg}(u, G)+\left|T_{4}(u, v)\right|\right\}$.
The concept of γ-bad/good vertices in graphs was introduced by Fricke et al. in [7]. A vertex v of a graph G is called:
(i) [7] γ-good, if v belongs to some γ-set of G and
(ii) $[7] \gamma-b a d$, if v belongs to no γ-set of G.

For a graph G we define:
$\mathbf{G}(G)=\{x \in V(G): x$ is γ-good $\} ;$
$\mathbf{B}(G)=\{x \in V(G): x$ is γ-bad $\} ;$
$V^{-}(G)=\{x \in V(G): \gamma(G-x)<\gamma(G)\}$.
Clearly, $\{\mathbf{G}(G), \mathbf{B}(G)\}$ is a partition of $V(G)$. In this paper we present new sharp upper bounds for $b(G)$ in terms of γ-good and γ-bad vertices of G.

2. Good and Bad Vertices

Our main result in this section is the next theorem.
Theorem 2.1. Let G be a graph.
(i) If $V(G) \neq V^{-}(G)$, then $b(G) \leq \min \{\operatorname{deg}(x, G)-(\gamma(G-x)-\gamma(G))$: $\left.x \in V(G)-V^{-}(G)\right\}$.
(ii) If G has a γ-bad vertex, then $b(G) \leq \min \{|N(x, G) \cap \mathbf{G}(G)|: x \in$ $\mathbf{B}(G)\}$.
(iii) If $V_{1}^{-}(G)=\left\{x \in V^{-}(G): \operatorname{deg}(x, G) \geq 1\right\} \neq \emptyset$, then $b(G) \leq \min _{x \in V_{1}^{-}(G), y \in \mathbf{B}(G-x)}\{\operatorname{deg}(x, G)+|N(y, G) \cap \mathbf{G}(G-x)|\}$.

Proof. Notice that if $x \in V(G)$ is isolated then x is critical and γ-good.
(i) Let $x \in V(G)$ with $\gamma(G-x)=\gamma(G)+p, p \geq 0$. If $p=0$, then $b(G) \leq \operatorname{deg}(x, G)$ by Theorem 1.1 (ii). Now, we need the following lemma.

Lemma 2.1.1 ([2]). If v is a vertex of a graph G and $\gamma(G-v)>\gamma(G)$, then v is not an isolate and is in every γ-set of G.

We return to the proof of Theorem 2.1. Assume $p \geq 1$. By the above lemma, it follows that x is in every γ-set of G. Let M be a γ-set of G. Then $Q=(M-\{x\}) \cup N(x, G)$ is a dominating set of $G-x$ which implies $\gamma(G)+p=\gamma(G-x) \leq|Q|=\gamma(G)-1+\operatorname{deg}(x, G)$. Hence $1 \leq p \leq$ $\operatorname{deg}(x, G)-1$. Let $S \subseteq E(x, N(x, G))=E_{x}$ and $|S|=\operatorname{deg}(x, G)-p$. Then $\gamma(G-S) \geq \gamma\left(G-E_{x}\right)-p=\gamma(G-x)+1-p=\gamma(G)+1$ which implies $b(G) \leq|S|=\operatorname{deg}(x, G)+\gamma(G)-\gamma(G-x)$.
(ii) Fact 1. Let $x \in \mathbf{B}(G), y \in \mathbf{G}(G), x y \in E(G)$ and $\gamma(G-x y)=\gamma(G)$. Then $\mathbf{G}(G-x y) \subseteq \mathbf{G}(G)$ and $\mathbf{B}(G-x y) \supseteq \mathbf{B}(G)$.

Proof. Every γ-set of $G-x y$ is a γ-set of G.
Fact 2. If $x \in \mathbf{B}(G)$, then $\gamma(G-E(x, \mathbf{G}(G)))>\gamma(G)$.
Proof. Assume to the contrary, that $\gamma\left(G_{1}\right)=\gamma(G)$, where $G_{1}=G-$ $E(x, \mathbf{G}(G))$. By Fact 1 we have $\mathbf{B}\left(G_{1}\right) \supseteq \mathbf{B}(G)$ which implies $N\left[x, G_{1}\right] \subseteq$ $\mathbf{B}\left(G_{1}\right)$. But this is clearly impossible.

The result immediately follows by Fact 2 .
(iii) Let $x \in V_{1}^{-}(G)$ and M be a γ-set of $G-x$. Then clearly no neighbor of x is in M which implies $\emptyset \neq N(x, G) \subseteq \mathbf{B}(G-x)$. Since $\gamma(G-E(x, N(x, G)))=\gamma(G)$ it follows that $b(G) \leq \operatorname{deg}(x, G)+b(G-x)$. By (ii), $b(G-x) \leq|N(y, G) \cap \mathbf{G}(G-x)|$ for any $y \in \mathbf{B}(G-x)$. Hence $b(G) \leq \operatorname{deg}(x, G)+|N(y, G) \cap \mathbf{G}(G-x)|$.

Lemma 2.2. Under the notation of Theorem 1.6, if u is critical, then $\left(T_{1}(u, v)-\{u\}\right) \cup T_{2}(u, v) \cup T_{3}(u, v) \subseteq N(v, G) \cap \mathbf{B}(G-u)$.

Proof. From definitions $T_{1}(u, v) \cup T_{2}(u, v) \cup T_{3}(u, v) \subseteq N(v, G)$. By the proof of Theorem 2.1 (iii), $N(u, G) \subseteq \mathbf{B}(G-u)$. Since $T_{1}(u, v)-\{u\} \subseteq$ $N(u, G)$ we have $T_{1}(u, v)-\{u\} \subseteq \mathbf{B}(G-u)$. Observe that if H is a graph, $z \in \mathbf{B}(H), y \in V(H)$ and $N[y, H] \subseteq N[z, H]$ then clearly $y \in \mathbf{B}(H)$. From this fact and $N(u, G) \subseteq \mathbf{B}(G-u)$ it immediately follows that $T_{2}(u, v) \cup$ $T_{3}(u, v) \subseteq \mathbf{B}(G-u)$.

By Lemma 2.2, if u is a critical vertex of a graph G, then

$$
\begin{aligned}
& \operatorname{deg}(u, G)+\min _{v \in N(u, G)}\left\{\left|T_{4}(u, v)\right|\right\} \geq \operatorname{deg}(u, G)+\min _{v \in N(u, G)}\{\mid N(v, G) \cap \\
& \mathbf{G}(G-u) \mid\} \geq \operatorname{deg}(u, G)+\min _{v \in \mathbf{B}(G-u)}\{|N(v, G) \cap \mathbf{G}(G-u)|\} .
\end{aligned}
$$

Hence Theorem 1.6 (and clearly Theorems 1.1, 1.2 and 1.5) can be seen to follow from Theorem 2.1. Any graph G with $b(G)$ achieving the upper bound of some of Theorems 1.1, 1.2, 1.5 and 1.6 can be used to show that the bound of Theorem 2.1 is sharp. For such examples see $[5,6,9,14,18]$.

Example 2.3. Let $t \geq 2$ be an integer. Let $H_{1}, H_{2}, \ldots, H_{t+1}$ be mutually vertex-disjoint graphs such that H_{t+1} is isomorphic to K_{t+3} and H_{i} is isomorphic to $K_{t+3}-e$ for $i=1,2, \ldots, t$. Let $x_{t+1} \in V\left(H_{t+1}\right)$ and $x_{i 1}, x_{i 2} \in V\left(H_{i}\right)$, $x_{i 1} x_{i 2} \notin E\left(H_{i}\right)$ for $i=1,2, \ldots, t$. Define a graph R_{t} as follows:
$V\left(R_{t}\right)=\{u, v\} \cup\left(\cup_{k=1}^{t+1} V\left(H_{k}\right)\right)$ and
$E\left(R_{t}\right)=\left(\cup_{k=1}^{t+1} E\left(H_{k}\right)\right) \cup\left(\cup_{i=1}^{t}\left\{u x_{i 1}, u x_{i 2}\right\}\right) \cup\left\{u x_{t+1}, u v\right\}$.
Observe that $\gamma\left(R_{t}\right)=t+2, \mathbf{G}\left(R_{t}\right)=V\left(R_{t}\right), \operatorname{deg}\left(u, R_{t}\right)=2 t+2, \operatorname{deg}\left(x_{t+1}, R_{t}\right)$ $=t+3, \operatorname{deg}\left(v, R_{t}\right)=1, \lambda\left(R_{t}\right)=1$ and for each $y \in V\left(R_{t}-\left\{v, u, x_{t+1}\right\}\right)$, $\operatorname{deg}\left(y, R_{t}\right)=t+2$. Moreover, v is a critical vertex and if $y \in V\left(R_{t}\right)-\{v\}$ then $\gamma\left(R_{t}-y\right)=\gamma\left(R_{t}\right)$. Hence each of the bounds stated in Theorems 1.1-1.6 is greater than or equals $t+2$.

Consider the graph $R_{t}-u v$. Clearly $\gamma\left(R_{t}-u v\right)=\gamma\left(R_{t}\right)$ and $\mathbf{B}\left(R_{t}-u v\right)$ $=\mathbf{B}\left(R_{t}-v\right)=\{u\} \cup V\left(H_{t+1}-x_{t+1}\right) \cup\left(\cup_{k=1}^{t}\left\{x_{k 1}, x_{k 2}\right\}\right)$. Therefore $N\left(u, R_{t}\right) \cap$
$\mathbf{G}\left(R_{t}-v\right)=\left\{x_{t+1}\right\}$ which implies that the upper bound stated in Theorem 2.1 (iii) is equals to $\operatorname{deg}\left(v, R_{t}\right)+\left|\left\{x_{t+1}\right\}\right|=2$. Clearly $b\left(R_{t}\right)=2$ and hence this bound is sharp for R_{t}.

Figure 1. The graph R_{2}.
By Example 2.3, it immediately follows:
Remark 2.4. For every integer $t \geq 2$, the difference between any upper bound stated in Theorems 1.1-1.6 and the upper bound of Theorem 2.1(iii), provided $G=R_{t}$, is greater than or equals t.

3. VC-Graphs

The concept of vc-graphs plays an important role in the study of the bondage number. For instance, it immediately follows from Theorem 1.1(ii) that if $b(G)>\Delta(G)$ then G is vc-graph. The bondage number of a vc-graphs is examined in [15]. If G is a vc-graph then $|V(G)| \leq(\Delta(G)+1)(\gamma(G)-1)+1$. In this section we give an upper bound for the bondage number of such vcgraphs. We need the following results.

Theorem 3.1. Let G be a vc-graph.
(i) $[3]$ Then $|V(G)| \leq(\Delta(G)+1)(\gamma(G)-1)+1$.
(ii) [8] If $|V(G)|=(\Delta(G)+1)(\gamma(G)-1)+1$, then G is regular.

Theorem 3.2 [1]. Let G be a graph.
(i) If G has vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then G has an efficient dominating set if and only if some subcollection of $\left\{N\left[v_{1}, G\right], N\left[v_{2}, G\right]\right.$, $\left.\ldots, N\left[v_{n}, G\right]\right\}$ partitions $V(G)$.
(ii) If G has an efficient dominating set, then the cardinality of any efficient dominating set equals the domination number of G.

Lemma 3.3. Let x and v be different critical vertices of a graph G. Let v belong to some efficient dominating set of $G-x$ and let $G-v$ have an efficient dominating set. Then x belongs to all efficient dominating sets of $G-v$ and v belongs to all efficient dominating sets of $G-x$.

Proof. Let M be an arbitrary efficient dominating set of $G-v, Q$ be an efficient dominating set of $G-x$ and $v \in Q$. Hence the closed neighborhoods of each two different vertices of Q are vertex disjoint and each vertex of $Q-\{v\}$ dominates a unique vertex of M, by Theorem 3.2. Since $|M|=$ $\gamma(G-v)=\gamma(G)-1=\gamma(G-x)=|Q|$, there exists exactly one vertex in M, say w, which is not dominated by $Q-v$. If $w \neq x$ then w must be dominated by v, which is impossible because $|M|=\gamma(G-v)<\gamma(G)$ implies that M does not dominate v in G. Therefore x belongs to all efficient dominating sets of $G-v$. By symmetry, v belongs to all efficient dominating sets of $G-x$.

Theorem 3.4. Let G be a vc-graph with $(\Delta(G)+1)(\gamma(G)-1)+1$ vertices. Then for every vertex $x \in V(G), G-x$ has exactly one γ-set and the unique γ-set of $G-x$ is efficient dominating.

Proof. Let x be an arbitrary vertex of G and M an arbitrary γ-set of $G-x$. Since $|M|=\gamma(G)-1$ and $\Delta(G-x) \leq \Delta(G)$, it follows that $|V(G-x)| \leq|M|(\Delta(G-x)+1) \leq(\gamma(G)-1)(\Delta(G)+1)=|V(G-x)|$. Hence each element of M dominates exactly $\Delta(G)+1$ vertices in $G-x$ and the closed neighborhoods of all vertices of M form a partition of $V(G-x)$. Now Theorem 3.2 implies that M is an efficient dominating set of $G-x$. Hence for each $u \in V(G)$, all γ-sets of $G-u$ are efficient dominating. Now if v is a γ-good vertex of $G-x$ then by Lemma 3.3, v belongs to all efficient dominating sets of $G-x$. Hence $G-x$ has exactly one γ-set.

Lemma 3.5 ([17]). If G is a nontrivial graph with a unique minimum dominating set, then $b(G)=1$.

Lemma 3.6. Let G be a graph, $x \in V^{-}(G), \operatorname{deg}(x, G) \geq 1$ and let $G-x$ have exactly one γ-set. Then $b(G) \leq \operatorname{deg}(x, G)+1$.

Proof. It follows by Lemma 3.5 that $b(G-x)=1$. Hence $b(G) \leq$ $e(x, N(x, G))+b(G-x)=\operatorname{deg}(x, G)+1$.

We now state and prove the principal result of this section.
Theorem 3.7 (Teschner [15] when $\gamma(G)=3$). If G is a nontrivial vc-graph with $(\Delta(G)+1)(\gamma(G)-1)+1$ vertices, then $b(G) \leq \Delta(G)+1=\delta(G)+1$.

Proof. Let $x \in V(G)$. By Theorem 3.1 (ii), $\operatorname{deg}(x, G)=\Delta(G)=\delta(G)$ and by Theorem 3.4, $G-x$ has exactly one γ-set. The result immediately follows by Lemma 3.6.

4. Open Problems

Conjecture 4.1 (Teschner [15]). For any vc-graph $G, b(G) \leq 1.5 \Delta(G)$.
Teschner [15] has shown that Conjecture 4.1 is true when $\gamma(G) \leq 3$. Note that if $G=K_{t} \times K_{t}$ for a positive integer $t \geq 2$, then $b(G)=1.5 \Delta(G)$ as was found independently by Hartnell and Rall [9] and Teschner [16].

Conjecture 4.2 (Hailong Liu and Liang Sun [13]). For any positive integer r, there exists a vc-graph G such that $b(G) \geq \Delta(G)+k(G)+r$ where $k(G)$ is the vertex connectivity of G.

Motivated by Theorem 2.1(iii) and Theorem 3.6 we state the following:
Conjecture 4.3. For every connected nontrivial vc-graph G,
$\min _{x \in V(G), y \in \mathbf{B}(G-x)}\{\operatorname{deg}(x, G)+|N(y, G) \cap \mathbf{G}(G-x)|\} \leq 1.5 \Delta(G)$.
Conjecture 4.4. If G is a vc-graph with $(\Delta(G)+1)(\gamma(G)-1)+1$ vertices then $b(G)=\Delta(G)+1$.

References

[1] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient Dominating Sets in Graphs, in: R.D. Ringeisen and F.S. Roberts (Eds.), Applications of Discrete Mathematics (SIAM, Philadelphia, PA, 1988) 189-199
[2] D. Bauer, F. Harary, J. Nieminen and C.L. Suffel, Domination alteration sets in graphs, Discrete Math. 47 (1983) 153-161.
[3] R.C. Brigham, P.Z. Chinn and R.D. Dutton, Vertex domination-critical graphs, Networks 18 (1988) 173-179.
[4] J.R. Carrington, F. Harary and T.W. Haynes, Changing and unchanging the domination number of a graph, J. Combin. Math. Combin. Comput. 9 (1991) 57-63.
[5] J.E. Dunbar, T.W. Haynes, U. Teschner and L. Volkmann, Bondage, insensitivity and reinforcement, in: T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998) 471-489.
[6] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990) 47-57.
[7] G.H. Fricke, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and R.C. Laskar, Excellent trees, Bull. Inst. Comb. Appl. 34 (2002) 27-38.
[8] J. Fulman, D. Hanson and G. MacGillivray, Vertex domination-critical graphs, Networks 25 (1995) 41-43.
[9] B.L. Hartnell and D.F. Rall, Bounds on the bondage number of a graph, Discrete Math. 128 (1994) 173-177.
[10] B.L. Hartnell and D.F. Rall, A bound on the size of a graph with given order and bondage number, Discrete Math. 197/198 (1999) 409-413.
[11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs (Marcel Dekker, Inc., New York, NY, 1998).
[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs: Advanced topics (Marcel Dekker, Inc., New York, NY, 1998).
[13] Hailong Liu and Liang Sun, The bondage and connectivity of a graph, Discrete Math. 263 (2003) 289-293.
[14] U. Teschner, A counterexample to a conjecture on the bondage number of a graph, Discrete Math. 122 (1993) 393-395.
[15] U. Teschner, A new upper bound for the bondage number of a graphs with small domination number, Aus. J. Combin. 12 (1995) 27-35.
[16] U. Teschner, The bondage number of a graphs G can be much greater than $\Delta(G)$, Ars. Combinatoria 43 (1996) 81-87.
[17] U. Teschner, New results about the bondage number of a graph, Discrete Math. 171 (1997) 249-259.
[18] Yue-Li Wang, On the bondage number of a graph, Discrete Math. 159 (1996) 291-294.

Received 20 September 2007
Revised 14 July 2008
Accepted 14 July 2008

