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Abstract

For a 3-connected planar graph G with circumference c ≥ 44 it is
proved that G has a cycle of length at least 1

36
c + 20

3
through any four

vertices of G.
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1. Introduction and Result

We consider finite, simple, and undirected graphs. For terminology and
notation not defined here we refer to [2].

Let G be a planar graph and S ⊆ V (G) be a set of prescribed vertices
of G. In this paper we are interested in lower bounds on the length cS(G)
of a longest cycle of G containing S if such a cycle through S in G exists
at all.

If S′ ⊆ S ⊆ V (G) and if there is a cycle through S in G then cS′(G) ≥
cS(G). The circumference c∅(G) = c(G) is the length of a longest cycle of G.

∗H. Walther passed away in January 2005. The present paper reports partially the last

research results obtained by him during the last months before his very sudden and sad

death.
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In 1963, J.W. Moon and L. Moser [5] proved that for arbitrary ε > 0 there
is a 3-connected planar graph G such that c(G) < ε|V (G)|. Thus, a linear
lower bound on cS(G) should be in terms of c(G) instead in terms of |V (G)|.

First consider the case that G is a 2-connected planar graph. We will
show that it is possible that cS(G) is a constant (depending only on |S|) and
c(G) is arbitrarily large in this case.

For this purpose let G be a subdivision of K2,3, i.e., G consists of three
pairwise internally disjoint paths P , Q, and R having common end vertices.
Furthermore, let S be a set of at least two vertices of G such that S ⊆
V (P )∪V (Q), both P and Q have an inner vertex in S, and |V (P )∪V (Q)| =
max{|S|, 4}. Finally, let R be chosen such that |V (R)| is large. It follows
that c(G) ≥ |V (R)| + 1 and cS(G) = |V (P ) ∪ V (Q)|.

W.T. Tutte [7, 8] proved that a 4-connected planar graph is hamiltonian,
hence, cS(G) = c(G) for each 4-connected planar graph G and each set
S ⊆ V (G).

Now consider the remaining case that G is a 3-connected planar graph.
From results of A.K. Kelmans and M.V. Lomonosov [3] it follows that

for any set S of at most five vertices of a 3-connected planar graph G there
exists a cycle of G containing S.

Next it is shown that such a result is impossible if |S| ≥ 6. For this
purpose let T be a plane triangulation on n ≥ 5 vertices. Because n ≥ 5,
T has 2n − 4 ≥ n + 1 faces. Let G be obtained from T by inserting a new
vertex into n+1 faces of T and connecting it by an edge with each boundary
vertex of that face. The graph G is planar and 3-connected, there is no cycle
of G containing the set S of the n + 1 ≥ 6 new vertices of G because S is
independent and |V (G) \ S| < |S|.

Now we consider the case that a 3-connected planar graph G contains
a cycle through a set S of at least five prescribed vertices and we will show
that it is possible that cG(S) = 2|S| and c(G) is arbitrarily large.

Proposition 1. For any two positive integers k and l with 5 ≤ k < l there

is a 3-connected maximal planar graph G(k, l) = G such that G contains a

cycle through a certain independent set S of k prescribed vertices of degree

3, cS(G) = 2k, and c(G) ≥ l.

Proof. Let H be a 3-connected plane triangulation with c(H) ≥ l. Fur-
thermore, let fH be the outer face of H. Consider a plane triangulation T
on five vertices and let f be a face of T . The maximal planar graph G(5, l)
is obtained by inserting a new vertex of degree three into each face of T
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different from f and identifying the boundary of f with the boundary of fH

of H. Let S be the set of the five new vertices of G(5, l). The vertices of
S have degree three and are independent in G, a longest cycle containing S
has length 10 and c(G(5, l)) ≥ c(H).

Let G(k, l) be constructed and consider a vertex x ∈ S and a longest
cycle C through S in G(k, l). Let {a, b, c} be the neighbourhood of x and
the edges ax and bx belong to C. The graph G(k + 1, l) is obtained by
inserting two new vertices y and z of degree three into the faces acx and
bcx, respectively, and putting S = (S \ {x}) ∪ {y, z}. Then G(k + 1, l) is
maximal planar, the set S is an independent set of vertices of degree three
in G(k + 1, l), cS(G(k + 1, l)) = 2(k + 1), and c(G(k + 1, l)) ≥ c(G(k, l)).

It remains to consider a 3-connected planar graph G and a set S ⊂ V (G)
with 1 ≤ |S| ≤ 4. The following Theorem 2 was proved by A. Saito [6].

Theorem 2. Let x, y and z be arbitrary three vertices of a 3-connected pla-

nar graph G on at least six vertices. Then c{x}(G) ≥ 2

3
c(G)+2, c{x,y}(G) ≥

1

2
c(G) + 2, and c{x,y,z}(G) ≥ 1

4
c(G) + 3.

Our result is the following Theorem 3.

Theorem 3. A 3-connected planar graph G with c(G) ≥ 44 has a cycle of

length at least 1

36
c(G) + 20

3
through any four of its vertices.

2. Proof of Theorem 3

For A,B ⊆ V (G) an A−B-path is a path P from A to B such that |V (P )∩A|
= |V (P ) ∩ B| = 1. A common vertex of A and B is also an A − B-path.

A set S ⊆ V (G) separates the sets A,B ⊆ V (G) if any A − B-path
contains a vertex in S. For a set P of paths put V (P) =

⋃
P∈P V (P ). A

more detailed version of Menger’s Theorem (see [1]) is the following

Lemma 1. Let t be a non-negative integer, G be a graph, A,B ⊆ V (G) such

that A and B cannot be separated by a set of at most t vertices. Furthermore,

let Q be a set of t disjoint A−B-paths. Then there is a set R of t+1 disjoint

A − B-paths, such that A ∩ V (Q) ⊂ A ∩ V (R) and B ∩ V (Q) ⊂ B ∩ V (R).

For a vertex x ∈ V (G), N(x) denotes the neighbourhood of x in G. A
consequence of Lemma 1 (see also [4]) is
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Lemma 2. Let t < k be non-negative integers, G a k-connected graph,

x ∈ V (G), B ⊆ V (G) \ {x}, and |B| ≥ k. Furthermore, let Q be a set

of t {x} − B-paths having pairwise only x in common. Then there is a

set R of t + 1 {x} − B-paths having pairwise only x in common such that

B ∩ V (Q) ⊂ B ∩ V (R).

Proof of Lemma 2. In case B ⊆ N(x) nothing is to prove. If B 6⊆ N(x)
then |N(x)| ≥ k, B and N(x) cannot be separated by a set of at most t
vertices, and with Lemma 1 we are done.

Using Theorem 2, Theorem 3 is a consequence of the following Lemma 3.

Lemma 3. Let G be a 3-connected planar graph with c(G) ≥ 44 and

x1, x2, x3, x4 ∈ V (G). Among all cycles of G containing x2, x3, x4 let C
be a longest one. Then there is a cycle D of G which contains x1, x2, x3, x4

and has length at least 1

9
|V (C)| + 19

3
.

Proof of Lemma 3. Note that |V (C)| ≥ 1

4
c(G) + 3 by Theorem 2, hence,

|V (C)| ≥ 14.

Consider a fixed orientation φ of C. For a, b ∈ V (C) with a 6= b let
[a, b] be the path on C from a to b following φ. We write V [a, b] instead of
V ([a, b]).

If x1 ∈ V (C) then because |V (C)| > 1

9
|V (C)| + 19

3
we are done with

D = C. Thus we may assume x1 /∈ V (C).

With B = V (C), x = x1, and Lemma 2, let P1, P2, P3 be three {x1} −
V (C)-paths having only x1 in common and V (Pi) ∩ V (C) = {ui} for i =
1, 2, 3. Assume u2 ∈ V [u1, u3]. Because |V [u1, u2]|+|V [u2, u3]|+|V [u3, u1]| =
|V (C)| + 3 let |V [u1, u2]| ≥

1

3
|V (C)| + 1.

Case 1. {x2, x3, x4} ⊆ V [u1, u3] or {x2, x3, x4} ⊆ V [u3, u2].

Then one of the cycles P1 ∪ P3 ∪ [u1, u3] and P2 ∪ P3 ∪ [u3, u2] contains
x1, x2, x3, and x4 and each of them has length at least |V [u1, u2]| + 2 ≥
1

3
|V (C)|+3. Assume both cycles have length larger than 1

3
|V (G)|+3. Since

|V (G)| is an integer, it means that their length is at least 1

3
(|V (G)| + 10).

Then since |V (G)| ≥ 14, we have 1

3
(|V (G)| + 10) ≥ 1

9
|V (G)| + 19

3
.

Assume that the cycle P1 ∪ P3 ∪ [u1, u3] has length 1

3
|V (C)| + 3. Then

|V [u2, u3]| = 2, |V (C)| + 1 = |V [u1, u2]| + |V [u3, u1]|, and we may assume
that even |V [u1, u2]| > 1

2
|V (C)| in this case. Then both cycles have length

greater than 1

2
|V (C)| + 2 > 1

9
|V (C)| + 19

3
.
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Case 2. {x2, x3, x4} ⊆ V [u2, u1].

If {x2, x3, x4} ⊆ V [u2, u3] or {x2, x3, x4} ⊆ V [u3, u2] then we have Case 1,
thus, we may assume x2 ∈ V [u3, u1] \ {u3}, x3 ∈ V [u2, u3], x4 ∈ V [x3, u3],
and {x3, x4} 6= {u2, u3}. If x2 = u1 then again we have Case 1, consequently,
x2 6= u1.

If |V [u1, u2]| < 2

3
|V (C)| + 1, then |V [u1, u2]| ≤ 1

3
(2|V (C)| + 2) and

|V [u2, u1]| ≥
1

3
|V (C)| + 7

3
. Then |P1 ∪ P2 ∪ V [u2, u1]| ≥

1

3
|V (C)| + 10

3
≥

1

9
|V (C)| + 19

3
for |V (C)| ≥ 14.

Hence, we may assume |V [u1, u2]| ≥
2

3
|V (C)| + 1.

With t = 2, x = x2, B = V [u1, u3] ∪ V (P1) ∪ V (P2) ∪ V (P3), Q = {[x2, u1],
[u3, x2]}, and Lemma 2, consider a set R = {R1, R2, R3} of {x2} − B-paths
with V (R1)∩B = {u1}, V (R3)∩B = {u3}, and V (R2)∩(B\{u1, u3}) = {r}.

Case 2.1. r ∈ V (P2) \ {x1, u2}.

In this case the union of [u1, u3], P1, P2, P3, R1, R2, and R3 form a subdivision
of K3,3 contradicting the planarity of G.

Case 2.2. r ∈ V (P1) ∪ V (P3) ∪ V [u2, x3] \ {u2} ∪ V [x4, u3].

It is easy to see that there is always a cycle D with V [u1, u2] ∪ {x1, x2, x3,
x4, u3} ⊆ V (D), hence, |V (D)| ≥ 2

3
|V (C)| + 5.

Case 2.3. r ∈ V [u1, u2] \ {u2}.
For the cycles C1 = P1 ∪ P2 ∪ [u2, u3] ∪ R3 ∪ R2 ∪ [u1, r] and C2 = P1 ∪
P3 ∪ [r, u3] ∪ R2 ∪ R1 both containing x1, x2, x3, x4, |V (C1)| + |V (C2)| ≥
|V [u1, u2]| + 10 ≥ 2

3
|V (C)| + 11, hence, one of them has length at least

1

3
|V (C)| + 11

2
.

Case 2.4. r ∈ V [x3, x4] \ {x3, x4}.

With t = 2, x = x4, B = V (P1) ∪ V (P2) ∪ V (P3) ∪ V (R1) ∪ V (R2) ∪
V (R3) ∪ V [u1, r], Q = {[r, x4], [x4, u3]}, and Lemma 2, consider a set S =
{S1, S2, S3} of {x4} − B-paths with V (S1) ∩ B = {r}, V (S3) ∩ B = {u3},
and V (S2) ∩ (B \ {r, u3}) = {s}.

Case 2.4.1. s ∈ V (R1) \ {x2} ∪ V [u1, u2] \ {u2} ∪ V (P1) \ {x1}.
It is easy to see that G contains a subdivision of K3,3 in this case.

Case 2.4.2. s ∈ V (R2).

Then we argue as in Case 2.2.
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Case 2.4.3. s ∈ V (P2)\{u2}∪V (P3)∪V (R3)∪V [u2, x3]\{u2}∪V [x3, r].

It is easy to see that there is always a cycle D with V [u1, u2] ∪ {x1, x2, x3,
x4, u3} ⊆ V (D), hence, |V (D)| ≥ 2

3
|V (C)| + 5.

Case 2.4.4. s = u2.

We may assume x3 6= u2 because otherwise the cycle [u1, u2]∪S2∪S1∪R2∪
R3 ∪ P3 ∪ P1 has lenght at least 2

3
|V (C)| + 6.

With t = 2, x = x3, B = V (P1) ∪ V (P2) ∪ V (P3) ∪ V (R1) ∪ V (R2) ∪
V (R3) ∪ V (S1) ∪ V (S2) ∪ V (S3) ∪ V [u1, u2], Q = {[u2, x3], [x3, r]}, and
Lemma 2, consider a set T = {T1, T2, T3} of {x3}−B-paths with V (T1)∩B =
{r}, V (T2) ∩ B = {u2}, and V (T3) ∩ (B \ {r, u2}) = {q}.

Case 2.4.4.1. q ∈ V (P1)\{u1}∪V (P2)∪V (P3)∪V (R3)\{x2}∪V (S3)\
{x4}. It is easy to see that G contains a subdivision of K3,3 in this case.

Case 2.4.4.2. q ∈ V (R1) \ {u1} ∪ V (R2) ∪ V (S1) ∪ V (S2).

It is easy to see that there is always a cycle D with V [u1, u2]∪{x1, x2, x3, x4}
⊆ V (D), hence, |V (D)| ≥ 2

3
|V (C)| + 5.

Case 2.4.4.3. q ∈ V [u1, u2] \ {u1}.
For the cycles C1 = P1 ∪ P2 ∪ S2 ∪ S3 ∪ R3 ∪ R2 ∪ T1 ∪ T3 ∪ [u1, q] and
C2 = P1∪P3∪S3∪S2∪[q, u2]∪T3∪T1∪R2∪R1 both containing x1, x2, x3, x4,
|V (C1)|+ |V (C2)| ≥ |V [u1, u2]|+14 ≥ 2

3
|V (C)|+15, hence, one of them has

length at least 1

3
|V (C)| + 15

2
.

Case 2.4.4.4. q = u1.

The graph obtained from G by removing u1, u2 is connected, hence, there
is a (V [u1, u2] \ {u1, u2}) − (V (P1) ∪ V (P2) ∪ V (P3) ∪ V (R1) ∪ V (R2) ∪
V (R3)∪V (S1)∪ V (S2)∪V (S3)∪ V (T1)∪ V (T2)∪ V (T3))-path P in G with
u1, u2 /∈ V (P ). Let V (P )∩ (V [u1, u2]\{u1, u2}) = {v} and V (P )∩ (V (P1)∪
V (P2)∪V (P3)∪V (R1)∪V (R2)∪V (R3)∪V (S1)∪V (S2)∪V (S3)∪V (T1)∪
V (T2) ∪ V (T3)) = {w}.

Case 2.4.4.4.1. w ∈ V (P3) \ {x1} ∪ V (R1) ∪ V (R2) ∪ V (R3) ∪ V (S1) ∪
V (S2) ∪ V (S3) ∪ V (T1) \ {x3}.

If w ∈ V (R2)\{r} it is easy to see that G contains a subdivision of K3,3

in this case. If w = r, then we obtain a contradiction by reducing this case
to Case 2.4.4.3.



On Long Cycles Through Four Prescribed Vertices of ... 447

Case 2.4.4.4.2. w ∈ V (P1).

Let P ′ be the subpath of P1 connecting w and x1. The sum of the lengths
of the cycles P ∪P ′ ∪P2 ∪ S2 ∪S3 ∪R3 ∪R2 ∪ T1 ∪ T3 ∪ [u1, v] and P ∪P ′ ∪
P3 ∪R3 ∪R1 ∪ T3 ∪ T1 ∪S1 ∪S2 ∪ [v, u2] is at least 2

3
|V (C)|+ 19, hence, one

of them has the desired length.

Case 2.4.4.4.3. w ∈ V (P2).

Let P ′′ be the subpath of P2 connecting w and x1. One of the cycles P ∪
P ′′ ∪ P3 ∪ R3 ∪ R2 ∪ S1 ∪ S2 ∪ T2 ∪ T3 ∪ [u1, v] and P ∪ P ′′ ∪ P1 ∪ T3 ∪ T1 ∪
R2 ∪ R3 ∪ S3 ∪ S2 ∪ [v, u2] has the desired length.

Case 2.4.4.4.4. w ∈ V (T2).

Let T be the subpath of T2 connecting w and x3. One of the cycles P ∪ T ∪
T1 ∪ S1 ∪ S2 ∪ P2 ∪ P3 ∪ R3 ∪ R1 ∪ [u1, v] and P ∪ T ∪ T1 ∪ S1 ∪ S3 ∪ R3 ∪
R1 ∪ P1 ∪ P2 ∪ [v, u2] has the desired length.

Case 2.4.4.4.5. w ∈ V (T3).

Let T ′ be the subpath of T3 connecting w and x3. One of the cycles P ∪
T ′ ∪ T2 ∪ S2 ∪ S1 ∪ R2 ∪ R3 ∪ P3 ∪ P1 ∪ [u1, v] and P ∪ T ′ ∪ T1 ∪ S1 ∪ S3 ∪
R3 ∪ R1 ∪ P1 ∪ P2 ∪ [v, u2] has the desired length.

Case 2.5. r = u2.

Case 2.5.1. x3 = u2.

We have x4 6= u3 (otherwise Case 1). With t = 2, x = x4, B = V [u1, u2] ∪
V (P1)∪V (P2)∪V (P3)∪V (R1)∪V (R2)∪V (R3), Q = {[x4, u3], [u2, x4]}, and
Lemma 2, consider a set S = {S1, S2, S3} of {x4} − B-paths with V (S1) ∩
(B \ {u2, u3}) = {s}, V (S2) ∩ B = {u2}, and V (S3) ∩ B = {u3}. Because
of planarity s ∈ V (P2) ∪ V (P3) ∪ V (R2) ∪ V (R3) and it is easy to see that
there is a cycle D with V [u1, u2] ⊆ V (D) containing x1, x2, x4, u3.

Case 2.5.2. x3 6= u2.

We remark that possibly x4 = u3. With t = 2, x = x3, B = V [u1, u2] ∪
V [x4, u3]∪ V (P1)∪ V (P2)∪ V (P3)∪ V (R1)∪ V (R2)∪ V (R3), Q = {[x3, x4],
[u2, x3]}, and Lemma 2, consider a set S = {S1, S2, S3} of {x3} − B-paths
with V (S1)∩(B \{u2, x4}) = {s}, V (S2)∩B = {u2}, and V (S3)∩B = {x4}.
Because of planarity we have s /∈ V (P1) \ {x1} ∪ V (R1) \ {x2} ∪ V [u1, u2].
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Case 2.5.2.1. s ∈ V (P2) ∪ V (P3) \ {u3} ∪ V (R2) ∪ V (R3) \ {u3}.
It is easy to see that there is always a cycle D with V [u1, u2] ∪ {x1, x2, x3,
x4, u3} ⊆ V (D), hence, |V (D)| ≥ 2

3
|V (C)| + 5.

Case 2.5.2.2. s ∈ V [x4, u3] \ {x4}.
With t = 2, x = x4, B = V [s, u3] ∪ V [u1, u2] ∪ V (P1) ∪ V (P2) ∪ V (P3)
∪ V (R1) ∪ V (R2) ∪ V (R3) ∪ V (S1) ∪ V (S2), Q = {S3, [x4, s]}, and Lemma
2, consider a set T = {T1, T2, T3} of {x4} − B-paths with V (T1) ∩ (B \
{s, x3}) = {q}, V (T2) ∩ B = {s}, and V (T3) ∩ B = {x3}. Because of
planarity q /∈ V (P1) \ {x1} ∪ V (R1) \ {x2} ∪ V [u1, u2] \ {u2}.

Case 2.5.2.2.1. q ∈ V (P2)\{u2}∪V (P3)\{u3}∪V (R2)\{u2}∪V (R3)\
{u3}. It is easy to see that there is always a cycle D with V [u1, u2] ∪
{x1, x2, x3, x4} ⊆ V (D), hence, |V (D)| ≥ 2

3
|V (C)| + 5.

Case 2.5.2.2.2. q ∈ V [s, u3] \ {s}.
With t = 2, A = V (S1) ∪ V (T1) ∪ V (T2) ∪ V (T3) ∪ V [s, q], B = V [u1, u2] ∪
V (P1) ∪ V (P2) ∪ V (P3) ∪ V (R1) ∪ V (R2) ∪ V (R3), Q = {S2, [q, u3]}, and
Lemma 1, consider a set U = {U1, U2, U3} of disjoint A − B-paths with
x3, q ∈ A ∩ V (U) and u2, u3 ∈ B ∩ V (U). Note that in case q = u3 one
of the paths of U consists of that single vertex. Because of planarity for
u ∈ B ∩ V (U) \ {u2, u3} and u′ ∈ A ∩ V (U) \ {x3, q} we have u /∈ V (P1) \
{x1} ∪ V (R1) \ {x2} ∪ V [u1, u2] and u′ /∈ V (T2) \ {x4, s}.

Consider the subgraph H = S1∪T1∪T2∪T3∪ [s, q] of G. It can be seen
easily that there is a path P of H connecting x3 and u′ with x4 ∈ V (P ) and
q /∈ V (P ) and that there is a path Q of H connecting q and x ∈ {x3, u

′}
with x3, x4 ∈ V (Q). Note that the property q /∈ V (P ) will be used in
case q = u3. Consider the cycle D′ = P1 ∪ P3 ∪ R3 ∪ R2 ∪ [u1, u2]. If
u ∈ V (P3) then the cycle D obtained from D′ by replacing the subpath
of D′ between u and u3 not containing x1 by the union of the two paths
of U containing u and u3 and P or Q has all desired properties. The case
u ∈ V (R2) ∪ V (R3) can be handled similarly. If u ∈ V (P2) then consider
the cycle D′′ = P2 ∪ P3 ∪ R3 ∪ R1 ∪ [u1, u2] instead of D′.

Case 2.5.2.2.3. q ∈ V (S1) ∪ V (S2).
This case can be handled similarly as case 2.5.2.2.2.

Case 3. x2 ∈ V [u1, u2] \ {u1, u2}, x3 ∈ V [u2, u3] \ {u2, u3}, x4 ∈
V [u3, u1] \ {u1, u3}.
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Again let |V [u1, u2]| ≥
1

3
|V (C)| + 1.

With t = 2, x = x4, B = V [u1, u3] ∪ V (P1) ∪ V (P2) ∪ V (P3), Q =
{[x4, u1], [u3, x4]}, and Lemma 2, consider a set R = {R1, R2, R3} of {x4}−
B-paths with V (R1) ∩ B = {u1}, V (R3) ∩ B = {u3}, and V (R2) ∩ (B \
{u1, u3}) = {r}. Because of planarity r /∈ V (P2) \ {x1, u2}.

Case 3.1. r ∈ V (P1) ∪ V (P3) ∪ V [u2, u3] \ {u2}.
It is easy to see that there is always a cycle D with V [u1, u2]∪{x1, x3, x4, u3} ⊆
V (D), hence, |V (D)| ≥ 1

3
|V (C)| + 5.

Case 3.2. r ∈ V [u1, u2].

With t = 2, x = x3, B = V [u1, u2] ∪ V (P1) ∪ V (P2) ∪ V (P3) ∪ V (R1)
∪ V (R2) ∪ V (R3), Q = {[x3, u3], [u2, x3]}, and Lemma 2, consider a set
S = {S1, S2, S3} of {x3} − B-paths with V (S1) ∩ (B \ {u2, u3}) = {s},
V (S2) ∩ B = {u2}, and V (S3) ∩ B = {u3}. Because of planarity s /∈
V (P1) \ {x1} ∪ V (R1) \ {x4}.

Case 3.2.1. s ∈ V (P2) ∪ V (P3) ∪ V (R2) \ {r} ∪ V (R3).

This case can be handled similarly as Case 3.1.

Case 3.2.2. s ∈ V [u1, u2].

Because of planarity s ∈ V [r, u2].

Case 3.2.2.1. r, s ∈ V [u1, x2], r 6= s.

One of the cycles [r, u2]∪S2 ∪ S3 ∪P3 ∪P1 ∪R1 ∪R2 and [s, u2]∪P2 ∪P1 ∪
[u1, r] ∪ R2 ∪ R3 ∪ S3 ∪ S1 has the desired length.

Case 3.2.2.2. r, s ∈ V [x2, u2], r 6= s.

This case can be handled similarly as Case 3.2.2.1.

Case 3.2.2.3. r ∈ V [u1, x2], s ∈ V [x2, u2].

One of the cycles [r, u2]∪ S2 ∪S3 ∪P3 ∪P1 ∪R1 ∪R2 and [u1, s]∪ S1 ∪ S2 ∪
P2 ∪ P3 ∪ R3 ∪ R1 has the desired length.

Case 3.2.2.4. r = s ∈ V [u1, x2] \ {u1, x2}.

Case 3.2.2.4.1. |V [r, u2]| ≥
1

9
|V (C)| + 4

3
.

The cycle [r, u2] ∪ S2 ∪ S3 ∪ P3 ∪ P1 ∪ R1 ∪ R2 has the length at least
1

9
|V (C)| + 5 + 4

3
.
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Case 3.2.2.4.2. |V [r, u2]| < 1

9
|V (C)| + 4

3
.

We have |V [u1, r]| > 2

9
|V (C)| − 1

3
. With t = 2, x = x2, B = V [u1, r] ∪

V (P1)∪ V (P2)∪ V (P3)∪ V (R1)∪ V (R2)∪ V (R3)∪ V (S1)∪ V (S2)∪ V (S3),
Q = {[r, x2], [x2, u2]}, and Lemma 2, consider a set T = {T1, T2, T3} of
{x2} − B-paths with V (T1) ∩ (B \ {u2, r}) = {q}, V (T2) ∩ B = {u2}, and
V (T3) ∩ B = {r}. Because of planarity q /∈ V (P3) \ {x1} ∪ V (R1) \ {u1} ∪
V (R2) ∪ V (R3) ∪ V (S3) \ {x3}.

Case 3.2.2.4.2.1. q ∈ V (P1) \ {u1} ∪ V (P2) ∪ V (S1) ∪ V (S2).
It is easy to see that there is always a cycle D with V [u1, r] ∪ {x1, x2, x3,
x4, u3} ⊆ V (D), hence, |V (D)| > 2

9
|V (C)| + 5 − 1

3
. Because |V (D)| is

an integer, we obtain |V (D)| ≥ 2

9
|V (C)| + 43

9
≥ 1

9
|V (C)| + 19

3
. Note that

|V (C)| ≥ 14 is needed here.

Case 3.2.2.4.2.2. q ∈ V [u1, r] \ {u1}.
Consider the cycles [q, r]∪S1 ∪S3 ∪R3 ∪R1 ∪P1 ∪P2 ∪T2 ∪T1 and [u1, q]∪
T1 ∪ T2 ∪ P2 ∪ P3 ∪ S3 ∪ S1 ∪ R2 ∪ R1. The sum of their length is at least
|V [u1, r]| + 13 > 2

9
|V (C)| + 13 − 1

3
. Hence, one of them has the desired

length.

Case 3.2.2.4.2.3. q = u1.

We have |V [u1, r]| > 2

9
|V (C)| − 1

3
≥ 25

9
> 2. Then since |V [u1, r]| is an

integer, we have |V [u1, r]| ≥ 3 and V [u1, r] \ {u1, r} 6= ∅. The graph G′

obtained by removing {u1, r} is still connected. Hence, there is a V [u1, r]−
(V (P1)∪V (P2)∪V (P3)∪V (R1)∪V (R2)∪V (R3)∪V (S1)∪V (S2)∪V (S3)∪
V (T1) ∪ V (T2) ∪ V (T3))-path P connecting h ∈ V [u1, r] \ {u1, r} and a
certain vertex g in G′. Again consider the graph G. Because of planarity
g ∈ V (R1) ∪ V (R2) ∪ V (T1) ∪ V (T3). The cases g ∈ V (R2) and g ∈ V (T1)
can be handled similarly as the cases 3.2.2.1 and 3.2.2.4.2.2, respectively.

Case 3.2.2.4.2.3.1. g ∈ V (R1).
Let Q be the subpath of R1 connecting g and x4. Consider the cycles
Q∪P ∪ [q, h]∪T1 ∪T3 ∪S1 ∪S2 ∪P2 ∪P3 ∪R3 and Q∪P ∪ [h, r]∪S1 ∪S2 ∪
T2 ∪ T1 ∪ P1 ∪ P3 ∪ R3. The sum of their length is at least |V [u1, r]| + 13 >
2

9
|V (C)| + 13 − 1

3
. Hence, one of them has the desired length.

Case 3.2.2.4.2.3.2. g ∈ V (T3).
Let Q be the subpath of T3 connecting g and x2. Consider the cycles
Q ∪ P ∪ [u1, h] ∪ P1 ∪ P3 ∪ R3 ∪ R2 ∪ S1 ∪ S2 ∪ T2 and Q ∪ P ∪ [h, r] ∪ S1 ∪
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S2 ∪ P2 ∪ P3 ∪R3 ∪ R1 ∪T1. The sum of their length is at least |V [u1, r]|+
13 > 2

9
|V (C)| + 13 − 1

3
. Hence, one of them has the desired length.

Case 3.2.2.5. r = s ∈ V [x2, u2] \ {x2, u2}.
This case can be handled similarly as Case 3.2.2.4.
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[1] T. Böhme, F. Göring and J. Harant, Menger’s theorem, J. Graph Theory 37

(2001) 35–36.

[2] R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics 173,
2000).

[3] A.K. Kelmans and M.V. Lomonosov, When m vertices in a k-connected

graph cannot be walked round along a simple cycle, Discrete Math. 38 (1982)
317–322.

[4] L. Lovász, Combinatorial problems and exercises (Akadémiai Kiadó, Budapest,
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