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Abstract

In this paper we describe a natural extension of the well-known
ρ-labeling of graphs (also known as rosy labeling). The labeling, called
product rosy labeling, labels vertices with elements of products of addi-
tive groups. We illustrate the usefulness of this labeling by presenting
a recursive construction of infinite families of trees decomposing com-
plete graphs.
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1. Introduction

Graph labelings of various kinds are being used in many different contexts.
One of the most studied applications is the decomposition of complete and
complete bipartite graphs into mutually isomorphic subgraphs. In particu-
lar, decompositions into isomorphic trees were investigated by many authors.

Let G be a graph with at most n vertices. We say that the complete
graph Kn has a G-decomposition if there are subgraphs G0, G1, G2, . . . , Gs

of Kn, all isomorphic to G, such that each edge of Kn belongs to exactly
one Gi.

In 1967 A. Rosa [20] introduced some important types of vertex label-
ings. Graceful labeling (called β-valuation by AR) and rosy labeling (called
ρ-valuation by AR) are useful tools for decompositions of complete graphs
K2n+1 into graphs with n edges. We define rosy labeling in a slightly different
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manner which suits better our further needs. A labeling of a graph G with n
edges is an injection from V (G), the vertex set of G, into a subset S of the set
{0, 1, 2, . . . , 2n} of elements of the additive group Z2n+1. Later we will use a
more general definition. Let ρ be the injection. The length of an edge e with
endvertices x and y is defined as `(e) = min{ρ(x)−ρ(y), ρ(y)−ρ(x))}. Notice
that the subtraction is performed in Z2n+1 and hence 1 ≤ `(e) ≤ n. If the set
of all lengths of the n edges is equal to {1, 2, . . . , n} and S ⊆ {0, 1, . . . , 2n},
then ρ is a rosy labeling; if S ⊆ {0, 1, . . . , n} instead, then ρ is a graceful

labeling. A graceful labeling ρ is said to be an α-labeling if there exists a
number ρ0 with the property that for every edge e in G with endvertices
x and y and with ρ(x) < ρ(y) it holds that ρ(x) ≤ ρ0 < ρ(y). Obviously,
G must be bipartite to allow an α-labeling. We also say that a graph is

graceful or rosy rather than that it has a graceful or rosy labeling. For an
exhaustive survey of graph labelings, see Gallian [9].

Each graceful labeling is of course also a rosy labeling. One can observe
that if a graph G with n edges has a graceful or rosy labeling, then K2n+1

can be cyclically decomposed into 2n+1 copies of G. It is so because K2n+1

has exactly 2n+ 1 edges of length i for every i = 1, 2, . . . , n and each copy
of G contains exactly one edge of each length. The cyclic decomposition
is constructed by taking a labeled copy of G, say G0, and then adding an
element i ∈ Z2n+1 to the label of each vertex of G0 to obtain a copy Gi for
i = 1, 2, . . . , 2n.

Because of this nice property of rosy labelings, the most studied decom-
positions of complete graphs into trees deal with trees with n edges decom-
posing K2n+1. Another direction is based on applications of α-labelings. It
was shown in [20] that if G with n edges allows an α-labeling, then there
exists a G-decomposition of K2nm+1 for every positive integer m. Decompo-
sitions into spanning trees (i.e., factorizations) gained some attention only
recently. For factorization of complete graphs, see, e.g., [2, 4–8, 12–17], for
factorization of complete bipartite graphs, see [3].

Clearly, for decomposition purposes a graceful labeling seemingly offers
little advantage over a rosy labeling, because a rosy labeling is less restrictive
and therefore often easier to find. It is worth noting that in spite of that
there has been significantly more effort in the investigation of graceful graphs
than in rosy graphs. This may be due to two reasons. The first reason is the
Kotzig-Ringel-Rosa conjecture, which predicts that all trees are graceful. (In
fact, Ringel [18] only conjectured that for a given tree T on n+ 1 vertices,
there is a T -decomposition of K2n+1, while Kotzig later conjectured that
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there is a cyclic decomposition—see [20]. This along with Rosa’s discovery
of β-labeling and Golomb’s introduction of the name “graceful” is probably
the complete etymology of the Graceful Tree Conjecture.) This conjecture
is indeed very appealing, and apparently very hard. There are too many
papers constructing various classes of graceful trees to be listed here. Despite
this tremendous effort, the conjecture is far from being solved. The most
significant “closed” families of graceful trees are caterpillars [20], trees with
at most four vertices of degree 1 [20], trees of diameter at most 4 [21] and
at most 5 [11], and all trees with at most 27 vertices [1].

As far as the other reason is concerned, we dare to suggest that it is the
name of the labeling. While the graceful labeling has an attractive name,
this was not true until recently for the rosy labeling, which was only known
as the ρ-labeling. We certainly hope that the introduction of its new name
will help the labeling to gain more attention.

2. Product Rosy Labeling

We present here a labeling, which generalizes properties of the rosy labeling
introduced by A. Rosa. Using this labeling, we then describe a recursive
procedure that produces infinite families of trees that decompose complete
graphs. To simplify our notation, we usually identify vertices with their
respective labels. We will say “a vertex i” rather than “a vertex x with
ρ(x) = i”.

While the rosy labeling is based on the additive group Z2n+1, we gener-
alize the idea in this note and label graphs by elements of products of odd
additive groups, Z2n1+1 × Z2n2+1 × · · · × Z2nq+1.

For simplicity, we define our labeling just for the product Z = Z2n+1 ×
Z2m+1. The generalization to a product of q groups is straightforward and
left to the reader. We denote by (x, y) a vertex with x ∈ Z2n+1, y ∈ Z2m+1

and by [(x, y)(u, v)] an edge joining vertices (x, y) and (u, v).

Definition 1. Let n,m ≥ 1 and G be a graph with n+m(2n+1) = 2nm+
n+m edges and the vertex set V ⊆ Z2n+1×Z2m+1. Let e = [(x1, y1)(x2, y2)]
be an edge of G. We define the dimension of e as dim(e) = ‖a, b‖, where
b = min(y1 − y2, y2 − y1) and the subtraction is performed in Z2m+1, and

(1) a = min(x1 − x2, x2 − x1) if b = 0 or

(2) a = x1 − x2 if b 6= 0 and y1 = y2 + b (mod 2m+ 1) or

(3) a = x2 − x1 if b 6= 0 and y2 = y1 + b (mod 2m+ 1).
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The subtractions x1 − x2 and x2 − x1 are performed in Z2n+1.

We say that G has a product rosy labeling ρ× if the set of dimensions of
all edges of G is equal to {‖i, 0‖ : i = 1, 2, . . . , n} ∪ {‖j, k‖ : j = 0, 1, . . . , 2n;
k = 1, . . . ,m}. (Formally, ρ× can be viewed as the mapping from the
unlabeled graph G into Z.)

Notice that if b = 0, then y1 = y2 and the vertices (x1, y1) and (x2, y2) belong
to the same coset of Z/Z2m+1 and x1 6= x2. Therefore, in this case a cannot
be equal to zero. At the same time, because here a = min(x1−x2, x2−x1), it
is obvious that a ≤ n. On the other hand, if the vertices (x1, y1) and (x2, y2)
belong to different cosets of Z/Z2m+1, we always subtract both entries in
the same order. It means that either dim(e) = ‖x2 − x1, y2 − y1‖ (when
y2 − y1 < y1 − y2), or dim(e) = ‖x1 − x2, y1 − y2‖ (when y1 − y2 < y2 − y1).
In this case the difference x1 − x2 or x2 − x1 can be any element of Z2n+1.

We also remark that if we allow m = 0, then the labeling is equivalent
to a rosy labeling on Z2n+1. Therefore, we will further assume that both n
and m are greater than zero.

We observed above that the decompositions based on rosy labelings are
cyclic. Although it is not true for decompositions arising from product rosy
labelings (unless 2n+ 1 and 2m+ 1 are co-prime), one important property
of rosy decompositions is carried over to the product rosy decompositions.

Definition 2. Let H = {H0,H1, . . . ,H2p} be an H-decomposition of K2p+1

defined by isomorphisms ϕi(H0) = Hi for i = 0, 1, . . . , 2p. If for a vertex
x ∈ H the mapping Φ(x) : {ϕi(x) : i = 0, 1, . . . , 2p} → V (K2p+1) is a
bijection, we say that x is a bijective vertex in H. If all vertices of H are
bijective in H, then we say that H is a bijective decomposition of K2p+1.

As an example of a graph that allows both bijective and non-bijective de-
composition, we use a caterpillar R with four edges. There are two such
caterpillars, P4, and R with adjacent vertices x0 and x1 of degree 2 and
3, respectively, and three vertices of degree 1: y0 adjacent to x0 and y1, y2

adjacent to x1. Obviously, K9 has a bijective R-decomposition, since R is
graceful, and the decomposition is in fact cyclic. Let us now denote the ver-
tices of K9 by pairs (i, j), where i, j ∈ {0, 1, 2}. Let the nine copies of R be
Rrs, where also r, s ∈ {0, 1, 2}, and let Rrs = ψrs(R). Set ψrs(xl) = (r, s+ l)
and ψrs(yt) = (r + 1, t), where the addition is performed modulo 3. One
can check that this collection gives an R-decomposition of K9 in which, e.g.,
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the vertex (1, 0) is an image of y0 in precisely three copies of R. Namely, in
R00, R01, R02. Therefore, the decomposition is not bijective.

We now prove that a graph G with 2nm+n+m edges and a product rosy
labeling decomposes the complete graphK2p+1 with 2p+1 = (2n+1)(2m+1)
vertices.

Theorem 3. Let n,m ≥ 1 and G be a graph with p = 2nm+ n+m edges

that allows a product rosy labeling. Then there exists a G-decomposition of

the complete graph K2p+1 with 2p+1 = (2n+1)(2m+1) vertices. Moreover,

this decomposition is bijective.

Proof. Let G00
∼= G. Define mappings ϕ′

cd : Z → Z for c = 0, 1, . . . , 2n;
d = 0, 1, . . . , 2m by ϕ′

cd(x, y) = (x + c, y + d). Obviously, the induced
mappings ϕcd : V (G00) → V (Gcd) are graph isomorphisms. Our goal is to
show that the family G = {Gcd : c = 0, 1, . . . , 2n; d = 0, 1, . . . , 2m} is a
G-decomposition of K2p+1.

First we want to prove that the isomorphisms are edge-dimension-
preserving. Suppose that dim[(x, y)(u, v)] = ‖a, b‖ where, without loss
of generality (WLOG), a = u − x, b = v − y. Then [ϕ(x, y)ϕ(u, v)] =
[(x + c, y + d)(u + c, v + d)] and since u + c − (x + c) = u − x = a and
v + d− (y + d) = v − d = b, we have dim[ϕ(x, y)ϕ(u, v)] = ‖a, b‖.

Now we show that an arbitrary edge e′ = [(x′, y′)(u′, v′)] with dimension
‖a, b‖ belongs to at least one image of G00. We can suppose WLOG that

(1) a = u′ − x′ and b = v′ − y′.

Because G00 has a product rosy labeling, there is exactly one edge of dimen-
sion ‖a, b‖ in G00, say e = [(x, y)(u, v)]. There indeed exist c ∈ Z2n+1 and
d ∈ Z2m+1 such that

(2) x′ = x+ c and y′ = y + d.

We want to show that then u′ = u+c, v′ = v+d and hence e′ = [(x′, y′)(u′, v′)]
belongs to Gcd. For if dim(e) = ‖a, b‖, then WLOG

(3) a = u− x and b = v − y.

Combining (1) and (3), we get

(4) u′ − x′ = u− x and v′ − y′ = v − y,
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which along with (2) immediately yields

u′ − u = x′ − x = c and v′ − v = y′ − y = d,

which we wanted to show. Thus e′ = [(x′, y′)(u′, v′)] = [(x + c, y + d)(u +
c, v + d)] and e′ ∈ Gcd.

Because there are exactly (2n + 1)(2m + 1) graphs Gcd defined by the
above isomorphisms, it now follows by a simple counting argument that e′

belongs to exactly one such image. Therefore, the family G forms the desired
decomposition.

The fact that all 2p+1 images of any (x, y) ∈ G00 are mutually distinct
vertices of K2p+1 should be obvious by similar arguments as above.

The following theorem is a natural generalization of Theorem 3. The proof
is a straightforward modification of the previous one and is left to the reader.

Theorem 4. Let 2p + 1 = (2n1 + 1)(2n2 + 1) . . . (2nq + 1) with ni ≥ 1
and G be a graph with p edges that allows a product rosy labeling. Then

there exists a G-decomposition of the complete graph K2p+1. Moreover, this

decomposition is bijective.

3. Examples

We illustrate the usefulness of the product labeling by two simple examples.

Example 5. Let H1 be a graph with n1 edges and a rosy labeling. Pick
any n2 ≥ 1, and glue the central vertices of n2 stars Si

2
∼= K1,2n1+1 for

i = 1, 2, . . . , n2 to some vertices of H1. Notice that we can glue more than
one star to the same vertex of H1. The resulting graph, H2, allows a product
rosy labeling. Each original label y of H1 is replaced by label (y, 0). The
vertices of degree one in each star S i

2 for i = 1, 2, . . . , n2 will receive labels
(j, i), i = 0, 1, . . . , 2n1 for some j. Therefore, their dimensions are ‖j, i‖, j =
0, 1, . . . , 2n1; i = 1, 2, . . . , n2. It is easy to check that the resulting graph has
a product rosy labeling.

Because this labeling is bijective, we can now construct a sequence
H1,H2, . . . ,Hk, . . . ,Hm of graphs with product rosy labelings. In each step,
to obtain a graph Hk+1 we glue to the graph Hk with pk edges nk+1 stars
Si

k+1
∼= K1,2pk+1.
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In the following example we present a method of constructing trees with
product rosy labelings from smaller trees with rosy labelings.

Example 6. Let T and R be trees with n and m edges and rosy labelings
τ and ρ, respectively. Pick a vertex t ∈ T and label T such that τ(t) = 0.
Similarly, select a vertex r ∈ R, label R such that ρ(r) = 0, and view R as a
rooted tree with the root 0. Glue R and T together at the vertices labeled 0.

Now we assign labels to the vertices of the amalgamated tree as follows.
Each vertex of T receives label (y, 0), where y is the original label of that
vertex in τ . More precisely, for every t ∈ T let ρ×(t) = (τ(t), 0). On the
other hand, a vertex of R with label x in ρ will receive label (0, x) in ρ× or,
strictly speaking, for every r ∈ R let ρ×(r) = (0, ρ(r)). Finally, we add some
new edges. For every edge labeled [(0, x1)(0, x2)], where x1 is the parent and
x2 is the child in the rooted tree R, we add 2n new edges [(0, x1)(k, x2)] for
k = 1, 2, . . . , 2n. One can check that the resulting tree has a product rosy
labeling. As the verification is straightforward, we are leaving it to the
reader.

We believe that this labeling can be useful for further attempts to prove
the original Ringel conjecture. While the decompositions based on product
rosy labeling in general are not cyclic, there may be large classes of graphs
obtained by amalgamating graceful and bigraceful graphs (defined by Ringel,
Llado, and Serra—see, e.g., [19]) that would allow product rosy labeling and
thus decompose complete graphs. Although we currently have no particular
results in this direction, we certainly hope that our method will become a
useful tool in the future.
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