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Abstract

The distinguishing number D(G) of a graph G is the least integer
d such that G has a labeling with d colors that is not preserved by any
nontrivial automorphism. The restriction to proper labelings leads to
the definition of the distinguishing chromatic number χD(G) of G.

Extending these concepts to infinite graphs we prove that D(Qℵ0
) =

2 and χD(Qℵ0
) = 3, where Qℵ0

denotes the hypercube of countable
dimension. We also show that χD(Q4) = 4, thereby completing the
investigation of finite hypercubes with respect to χD.

Our results extend work on finite graphs by Bogstad and Cowen
on the distinguishing number and Choi, Hartke and Kaul on the dis-
tinguishing chromatic number.
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1. Introduction and Definitions

Given a graph G, its distinguishing number D(G) is the least integer d such
that G has a d-distinguishing labeling, where a labeling is d-distinguishing

if it is not invariant under any nontrivial automorphism.
The distinguishing number was introduced by Albertson and Collins [2].

There exist numerous results about distinguishing numbers of graphs. For
example Bogstad and Cowen [3] determined the distinguishing number of
the hypercube Qn of dimension n. They proved D(Qn) = 2 for n ≥ 4.



420 W. Klöckl

One way of looking at the n-cube is to consider it as Kn
2 , the Cartesian

product of n factors, all isomorphic to K2. For the definition and many facts
about this product we refer to [8]. In this sense Albertson [1] generalized
the result of Bogstad and Cowen to connected, prime graphs G. He proved
that D(Gr) = 2 for all r ≥ 4, and, if |V (G)| ≥ 5, then D(Gr) = 2 for all
r ≥ 3. Finally, the distinguishing number of all finite Cartesian powers was
determined in [9] by proving that D(Gk) = 2 for any connected graph G
and any k ≥ 2, with the following three exceptions: D(K 2

2 ) = D(K3
2 ) =

D(K2
3 ) = 3.

In the following section we generalize the result of Bogstad and Cowen
to finite or countably infinite products of K2’s and K3’s, in particular to
the infinite hypercube Qℵ0

. Its vertex set consists of all 0-1 sequences with
finitely many 1s, where two vertices are adjacent if they differ in only one
place. It can also be defined as the weak Cartesian product, see [8], of
infinitely many K2’s. The first main result of this paper is that the dis-
tinguishing number of the weak Cartesian product of countably many Pi,
Pi ∈ {K2,K3}, is 2.

An interesting variant of the distinguishing number is the distinguishing

chromatic number χD(G). It is defined as the least integer d such that G has
a d-distinguishing labeling which is a proper coloring of G (adjacent vertices
have different labels) and was introduced in 2006 by Collins and Trenk [6].
They determined χD(G) of paths and cycles and upper bounds of χD(G) in
terms of ∆(G) for trees and connected graphs in general.

Choi, Hartke and Kaul [5] proved, among other results, that χD(Qn) = 3
for 5 ≤ n < ℵ0 and n = 3. In the third section we complete the investigation
of hypercubes with respect to the distinguishing chromatic number. We
show that χD(Q4) = 4 and give a proof of χD(Qn) = 3 for 8 ≤ n ≤ ℵ0.
In the finite case our coloring has one color that is used only O(n/2) times,
whereas both other colors occur O(2n−1) times.

2. Finite and Countable Products of K2 and K3

We start with a formal definition of the Cartesian product of possibly in-
finitely many factors. To this end let I be an index set and Gi, i ∈ I, be a
family of graphs. Then the Cartesian product

G =
∏

i∈I

Gi
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is defined on the set x of all functions x : i 7→ xi, xi ∈ V (Gi), where two
vertices x, y are adjacent if there exists a k ∈ I such that xkyk ∈ E(Gk)
and xi = yi for i ∈ I \ {k}.

For products of infinitely many nontrivial graphs Gi, we note the first
fundamental difference to the finite case. If we have only finitely many
factors, then the product is connected if and only if the factors are. If we have
infinitely many nontrivial factors, there are vertices that differ in infinitely
many coordinates xi. One cannot connect them by paths of finite length,
since the endpoints of every edge differ in just one coordinate. Therefore such
products are disconnected and we call the components of G weak Cartesian

products. To identify a component, it suffices to know a single vertex of it.
Thus the weak Cartesian product

G =
a∏

i∈I

Gi

is the connected component of G =
∏

i∈I Gi containing the vertex a. Since
we consider (only) countably infinite products, we can identify vertices with
sequences, for example: The vertex x : N →

⋃
i∈N V (Gi), i 7→ xi ∈ V (Gi)

can be identified with the sequence (x1, x2, . . .).
The goal of this section is to prove D(H) = 2, where H is the weak

Cartesian product
∏v0

i∈N
Pi with V (Ki) = {0, 1, . . . , i − 1}, Pi ∈ {K2,K3}

and v0 = (0, 0, . . .). Note that the infinite hypercube Qℵ0
is a special case

of the graph H. We begin with the labeling that was used by Bogstad and
Cowen to show that D(Kn

2 ) = 2 for n > 3, because variants of this labeling
will be used for the new results.

Theorem 2.1 (Bogstad and Cowen [3]). D(Kn
2 ) = 2 for n > 3.

Proof. Given n ∈ N, n > 3. We represent the vertices of Kn
2 by all 0 − 1

vectors of length n. Denote the vertex all of whose coordinates are zero by
v0 and the vertices whose first i coordinates are 1 and all the others zero
by vi (i = 1, 2, . . . , n). Clearly v0v1v2 . . . vn is a path P of length n that is
isometrically embedded in Kn

2 .
(a) We color all vertices of P and v = (1, 0, 0, . . . , 0, 1) white, the others

black, and claim that this is a distinguishing coloring. The only white vertex
with three white neighbors is v1, thus it is fixed by any color preserving
automorphism α. The vertices v, v0 and vn are the only white ones which
have exactly one white neighbor. From n > 3 we conclude that vn has
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the largest distance to v1 among them. Hence the vertices v1, v2, . . . , vn are
fixed by α. But then v0 is fixed as the antipode of vn and also v as the only
remaining white vertex.

(b) Consider two different vertices x, y of the hypercube that are not on
the path P . Suppose they differ in coordinate i: x(i) = 1 6= 0 = y(i). If they
have different distance to vi, x cannot be mapped on y by α. If they have
equal distance to vi, we know that d(x, vi−1) = d(x, vi) + 1 = d(y, vi) + 1 =
d(y, vi−1) + 2, which means that x and y have different distance to vi−1.
Therefore we know again that x cannot be mapped on y by α. Since x and
y were arbitrarily chosen, all vertices of Qn are fixed by α.

The main additional idea of the following corollary is that two fixed vertices
in a triangle also fix the third vertex in the triangle. Using this fact, we
can generalize the result of Bogstad and Cowen to arbitrary finite Cartesian
products of K2’s and K3’s with more than three factors.

Corollary 2.2. D(
∏

i∈S Pi) = 2 for Pi ∈ {K2,K3} if S is a finite set with

|S| > 3.

Proof. H =
∏

i∈S Pi, |S| = n. The vertex set of H be the set of all vectors
of length n with entries 0, 1 or 2 in the coordinates i with Pi = K3 and
entries 0 or 1 in the coordinates j with Pj = K2. The vertices v0, v1,. . . ,vn

and v and the path P be defined as in the proof of Theorem 2.1.

We color all vertices of P and v = (0, 1, 0, 0, . . . .) white, the others black.
Then each single vertex of P is fixed by any color preserving automorphism
α by the same arguments as in part (a) of the last proof.

Furthermore we define the vertex ui0 for every index i0 with Pi0 = K3

as follows: ui0 is the vertex with i0−1 entries 1 in the first i0−1 coordinates,
2 in the i0-th and 0 in the other coordinates. ui0 is fixed, because it is the
only common neighbor of vi0−1 and vi0 .

Consider two different vertices x, y of the given product that are not on
the path P . Suppose they differ in coordinate i. W.l.o.g. we assume x(i) =
2 6= 0 = y(i). If they have different distance to ui, x cannot be mapped
on y by α. If they have equal distance to ui, we know that d(x, vi−1) =
d(x, ui) + 1 = d(y, ui) + 1 = d(y, vi−1) + 2, which means that x and y have
different distance to vi−1. Therefore we infer that x cannot be mapped onto
y by α. Since x and y were arbitrarily chosen, all vertices of the product are
fixed by α.
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We now present the main result of the section. It states that the distin-
guishing number of the weak Cartesian product of K2’s and K3’s is 2. The
proof extends the preceding ideas.

Theorem 2.3. D(
∏v0

i∈N
Pi) = 2 for V (Ki) = {0, 1, . . . , i−1}, Pi ∈ {K2,K3}

and v0 = (0, 0, . . .).

Proof. Given H =
∏v0

i∈N
Pi as in the statement. The vertex set of H is

the set of all sequences with finitely many entries different from 0, where
the entries in the coordinates i with Pi = K3 are from the set {0, 1, 2} and
the other entries are in {0, 1}. Let the vertices v1, v2, . . . be defined as in
the proof of Theorem 2.1 and P be the one-sided infinite path v0v1v2 . . ..
We color all vertices of P white, the others black, and claim that this is a
distinguishing coloring.

Every color-preserving automorphism α of H stabilizes P . Since v0 is
the only vertex of degree 1 in P , considered as a subgraph of H, it is fixed
by α. But then v1, as the only neighbor of v0 in P , is also fixed. In general,
each vertex vi (i > 0) is the only white vertex of distance i to v0. Thus
every vi must be fixed.

The proof is completed analogously to the proof of Corollary 2.2.

3. The Distinguishing Chromatic Number

At the beginning of this section we determine the only not-yet-known dis-
tinguishing chromatic number of a finite hypercube, namely χD(Q4). In the
first part of the proof of Theorem 3.1 we show that there is no chromatic
3-distinguishing coloring of Q4. Unfortunately we have to consider many
cases. In the second part we simply define a proper 4-coloring which turns
out to be also 4-distinguishing.

Theorem 3.1. The distinguishing chromatic number of the hypercube of

dimension 4 is 4.

Proof. We label the vertices of Q4 with the subsets of the set {1, 2, 3, 4}
in such a way that adjacent vertices have labels that differ in exactly one
of the elements 1, 2, 3, 4. For example, the vertices {1, 2} and {1, 2, 3} are
adjacent, but not {1, 2, 3} and {1, 2, 4}, because they can be distinguished
by 3 and 4, see Figure 1.
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{1, 4}

{1, 2, 4} {2, 4}

{4}

{2, 3} {1, 2, 3}

{3} {1, 3}

{}

{2} {1, 2}

{1}

Figure 1. The labeling of Q4

The distance between two vertices in Q4 is the cardinality of the symmetric
difference of their labels. Thus {} and {1, 2, 3, 4} are antipodal vertices just
as {1, 3} and {2, 4}. The set of vertices of distance i (0 ≤ i ≤ 4) from {}
constitutes level i and is denoted Li.

It is nice to see that the interchange of two digits, for example 2 and 3, in
each label defines an automorphism on Q4. Such automorphisms are denoted
by α(ij) (1 ≤ i < j ≤ 4), where the digits i and j are interchanged. Similarly
α(ij)(kl) denotes the product of α(ij) and α(kl). All these automorphisms
preserve all Li.

It is useful to see that V1 ∪ V2 is the bipartition of Q4, where V1 =⋃
i∈{1,3} Li and V2 =

⋃
i∈{0,2,4} Li. Further, we sometimes need that the

union of two neighborhoods of two vertices in V2 (it also holds for V1) covers
at least six vertices. This is clear, because by symmetry we can assume that
{} is one of the vertices and the second vertex covers at least two vertices
of L3.

Claim. The union of the neighborhoods of three vertices in V1 or V2, re-
spectively, covers at least seven vertices in V2 or V1, respectively.

Proof of the Claim. By symmetry we can assume that {} is one of the
three vertices. If the the antipode {1, 2, 3, 4} is one of the two other vertices,
all eight vertices in V1 are covered by the neighborhoods of these three
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vertices. If the two other vertices are both in L2, they cover at least three
(additional) vertices in L3, because two vertices in L2 have at most one
common neighbor in L3.

We now show that there is no chromatic distinguishing coloring on three
colors.

Suppose there is a chromatic distinguishing coloring on three colors, say
white, black and green.

At first we wish to show that there is no three-coloring of Q4, where
both parts of the above bipartition consist of three colors: Assume the
coloring has this property. No part of the partition can include more than
four vertices of one color, because otherwise there would be no place for a
vertex of this color in the other part. Clearly there must be one color, say
green, with three or four vertices in V1, but this implies that V2 contains
at most one green vertex. Hence we can assume without loss of generality
that there are four white and three black vertices in V2. Thus there can be
at most one white and one black vertex in V1, contrary to the fact that V1

consists of eight vertices.

Since it is not possible that one part consists of vertices of three colors
and all vertices in the other part have the same color, we always can assume
that one part has exactly two colors, say V2 and that it is colored white and
green. Now we just have to check the cases (a), where V1 is monochromatic
and (b), where V1 is two- or three-chromatic.

Case (a) All vertices in V1 are black.

For symmetry reasons it is sufficient to consider the cases 1 ≤ g2 ≤ 4, where
gi denotes the number of green vertices in Vi (i ∈ {1, 2}).

Subcase (i) g2 = 1.

We can assume {} is the green vertex in L2. Each α(ij) works then.

Subcase (ii) g2 = 2.

If the green vertices are not antipodal we can assume that {} and {i, j} are
green. α(ij) does the job. Otherwise we can assume that {} and {1, 2, 3, 4}
are green. Each α(ij) works in this case.

Subcase (iii) g2 = 3.

If no two of the three green vertices are antipodal, we can assume {}, {1, 2}
and {1, 3} are green. α(23) does the job.

If there is an antipodal green pair, we can assume {}, {1, 2} and {1, 2,
3, 4} are green. α(12) works then.
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Subcase (iv) g2 = 4.

If no two of the four green vertices are antipodal, we can assume {}, {1, 2},
{1, 3} and {1, 4} are green. α(23) does the job.

If there is one antipodal green pair, we can assume {}, {1, 2}, {1, 3} and
{1, 2, 3, 4} are green. α(23) preserves the labeling.

If there are two antipodal green pairs, we can assume {}, {1, 2}, {3, 4}
and {1, 2, 3, 4} are green. α(12) works then.

Case (b) Assume {} to be green.

We consider the subcases g2 = 1, 2, 3, 4.

Subcase (i) g2 = 1.

If g1 = 0, all vertices in V1 must be black, which was considered in Case (a).

Hence, 1 ≤ g1 ≤ 4:

The green vertices of V1 must be in L3. If g1 < 3 we can interchange
two white vertices of L3, otherwise two green vertices, where all colors and
levels are preserved.

In detail: If g1 = 1, we can assume that {1, 2, 3} is green and α(12) is
color preserving. If g1 = 2, we can assume by using level preserving auto-
morphisms that {1, 2, 3} and {1, 2, 4} are green, thus α(12) is color preserving
again. If g1 = 3, we can assume that {1, 2, 3}, {1, 2, 4} and {1, 3, 4} are green
and α(34) is color preserving in this case. If all vertices in L3 are green, any
level preserving automorphism works.

Subcase (ii) g2 = 2.

Then 0 ≤ g1 ≤ 2. g1 = 0 was considered in Case (a). If g1 > 0, the second
green vertex of V2 must be in level 2 and we can assume that it is {1, 2}.
The green vertices of V1 are in L3 and in any case we can find some color
preserving automorphism analogously to subcase (i).

Subcase (iii) g2 = 3.

If {1, 2, 3, 4} is green, g1 = 0, which was considered in Case (a). If there are
two green vertices in L2, two things are possible: They can have distance
two as {1, 2} and {1, 3}. In this case {2, 3, 4} can be green, too, but then
α(23) is color preserving.

They can be antipodal as {1, 2} and {3, 4}, but then g1 = 0.

Subcase (iv) g2 = 4.

If there is an antipodal pair of green vertices in V2, there must be also a
white antipodal pair in V2, but then all vertices in V1 are black, which was
considered in Case (a). If there is no antipodal pair of green vertices in V2,
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we can assume that {1, 2}, {1, 3} and {1, 4} are green. In this case {2, 3, 4}
can be green and {1} can be white. All other vertices of L1 are in any case
black. Thus α(34) works.

Now we know χD(Q4) > 3. To show that χD(Q4) = 4 we define a
4-coloring, see Figure 2, and show that it is distinguishing.
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Figure 2. χD(Q4) ≤ 4

{} is the only F vertex with no ♣ neighbor, {1, 2, 3} is the only F vertex
with exactly two ♣ neighbors and {2, 3, 4} is the only F vertex with three ♣
neighbors. Hence the F vertices are fixed. Their antipodal vertices {4}, {1}
and {1, 2, 3, 4} are fixed, too. {2} is the only • neighbor of {}, thus it is fixed
as {1, 3, 4}, its antipode. {} fixed implies: Neighbors of {} must be mapped
on neighbors of {}. {1}, {2} and {4} fixed implies {3} and its antipode
{1, 2, 4} are fixed. Different vertices have different neighborhoods and the
neighborhoods of the vertices in level two consist of vertices in level one and
three, which are already fixed. From this we conclude that all vertices in
level two are fixed, too.

The next theorem pertains to finite and infinite graphs. For finite graphs
it is an immediate consequence of a theorem of Choi, Hartke and Kaul [5].
Our proof works for finite and countably infinite hypercubes. For finite
dimension n it uses only O(n/2) vertices of one color and O(2n−1) vertices
of the others. A set of all vertices of one color will be called a color class

henceforth.
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Theorem 3.2. The distinguishing chromatic number of the hypercube Qn

with 8 ≤ n ≤ ℵ0 is three. In the finite case our labeling has one color class

of size O(n/2), whereas the other two have size O(2n−1).

Proof. (a) n is finite.

We label the vertices with the subsets of {1, 2, . . . , n}. The vertices vi (0 ≤
i ≤ n) are defined as {1, 2, . . . , i} and v0, v1, . . . , vn be the path P . The idea
is to fix this path as in Lemma 2.1. When we have done this, we are ready,
because the rest is analogous to part (b) of the proof of Lemma 2.1.

Let V1 be the set of vertices in Qn with odd distance to v0, V2 the set
of those with even distance to v0 and Li the set of vertices with distance i
to v0. Clearly V1 ∪ V2 is the bipartition of Qn. The vertices v′i (i ∈ N) are
defined as {1, 2, . . . , i − 1, i + 1}.

We color all vertices of P that are in V2 green (O(n/2)), the remaining
vertices of V2 black. Next we color the vertices p and q green, where p
is defined as {2, 4, 6} and q as {4, 6, 8} if n < 10. For bigger n we set
q = {6, 8, 10, . . . , 2 ∗ [n/2]} if [n/2] is odd and q = {8, 10, . . . , 2 ∗ [n/2]} if
[n/2] is even. This ensures that both, p and q, are in V1. The other vertices
of V1 are colored white. Neither p nor q has a green neighbor in V2, so we
have a chromatic three-coloring.

The vertex v0 must be mapped onto itself by any color preserving au-
tomorphism α, because v0 and v2∗[n/2] are the only green vertices in V2 that
have distance two to exactly one green vertex and there is no green vertex
x in V1 with d(x, v2∗[n/2]) = d(p, v0) = 3. But then it is not hard to see that
all green vertices of P are fixed by α. Since d(p, v2) < d(q, v2), p and q are
also fixed.

For odd i we know that vi and v′i are the only common neighbors of
vi−1 and vi+1, hence α maps {vi, v

′
i} onto itself. The vertices vi and v′i have

different distance to at least one of the fixed vertices p or q, thus they are
fixed by α.

(b) n = ℵ0.

The vertex set of Qℵ0
can be considered to be the set of all finite subsets of

N. The vertices vi, v′j and the vertex sets V1, V2 be defined as in (a), the
one-sided infinite path v0v1v2 . . . will be called P .

We color all vertices of P that are in V2 green, the other vertices of V2

black. In V1 we color the vertices {2, 4, 6}, {8, 10, 12, 14, 16}, {18, 20, 22, 24,
26, 28, 30}, . . . green, the remaining vertices white.
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It is not hard to see that no two green vertices are adjacent. Since V1 ∪ V2

is the bipartition of Qℵ0
, this is a chromatic three-coloring. The vertex v0

is the only green vertex to which only one green vertex has distance two,
hence it is fixed by any color preserving automorphism α and therefore all
green vertices of P . The green vertices of V1 have pairwise different distance
to v0, thus they are also fixed by α.

The white vertices vi of P (those with odd index) are fixed, because vi

and v′i have different distance to one green vertex in V1 and they are the
only common neighbors of vi−1 and vi+1, the remaining vertices of G are
fixed by the same arguments as in the proof of Lemma 2.1.
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