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Abstract

The concepts of critical and cocritical radius edge-invariant graphs
are introduced. We prove that every graph can be embedded as an
induced subgraph of a critical or cocritical radius-edge-invariant graph.
We show that every cocritical radius-edge-invariant graph of radius
r ≥ 15 must have at least 3r + 2 vertices.
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1. Introduction

Let G = (V (G), E(G)) be an undirected connected graph with no loops or
multiple edges. The distance dG(u, v) (or simply d(u, v)) between vertices u
and v is the length of a shortest path joining u and v in G. The eccentricity
e(v) of v is the distance to a farthest vertex from v. The radius r(G) and
diameter d(G) are the minimum and maximum eccentricities, respectively.
The center C(G) and periphery P (G) of graph G consist of the sets of ver-
tices of minimum and maximum eccenticity, respectively. Vertices within
C(G) are called central vertices, and those within P (G) are peripheral ver-
tices. A graph is self -centered if V (G) = C(G). The set Ni(v) of all vertices
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at distance i from v will be called i-th neighbourhood of v. If i = 1 we will
simply write N(v). The notions and notations not defined here are used
accordingly to the book [2].

For a graph G − e obtained by deleting edge e ∈ E(G), we have
r(G− e) ≥ r(G) and d(G− e) ≥ d(G). A graph G is radius-edge-invariant
(r.e.i.) if r(G − e) = r(G) for all e ∈ E(G). If d(G − e) = d(G) for all
e ∈ E(G), then G is diameter-edge-invariant (d.e.i.). Such graphs were
studied in papers [1, 3, 4, 5, 7, 9]. Suppose that G is vertex 2-connected,
i.e., any two nonadjacent vertices of G are joined by more than two inter-
nally disjoint paths and cannot be separated by the removal of fewer than
two vertices.

In [6] Lee and Wang introduced and studied a concept of critical and
cocritical d.e.i. graphs as follows.

Definition 1. A vertex 2-connected diameter-edge-invariant graph G is:

(1) critical d.e.i. if deletion of any vertex v in V (G) results in a graph
G − v which is not d.e.i..

(2) cocritical d.e.i. if deletion of any vertex v in V (G) results in a graph
G − v which is d.e.i..

It is useless to write similar definition for graphs which are not vertex 2-
connected, since then r(G − v) = ∞ for some v ∈ V (G) and thus
r(G − v − e) = r(G − v) for all e ∈ E(G − v). According to the previ-
ous definition, we can define special classes of r.e.i. graphs in the following
manner.

Definition 2. A vertex 2-connected radius-edge-invariant graph G is:

(1) critical r.e.i. if deletion of any vertex v in V (G) results in a graph G−v
which is not r.e.i..

(2) cocritical r.e.i. if deletion of any vertex v in V (G) results in a graph
G − v which is r.e.i..

In this paper we study critical and cocritical r.e.i. graphs. We use graph
operations to construct variety of such graphs. We show that every graph
can be embedded as an induced subgraph of critical or cocritical r.e.i. graph.
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2. Preliminary Results

Dutton et al. [3] proved the following important theorem.

Theorem 2.1. Every self-centered graph on at least three vertices is radius-

edge-invariant.

Walikar et al. [9] characterized r.e.i. graphs of radius one as follows.

Theorem 2.2. A graph of radius one and order n is radius-edge-invariant

if and only if G contains at least three vertices of degree n − 1.

The following proposition is immediate consequence of the previous theorem.

Proposition 2.3. A radius-edge-invariant graph G of radius one and order

n is cocritical if and only if G contains at least four vertices of degree n− 1.

Moreover, an r.e.i. graph G of radius one and order n is critical if and only
if removal of any of its vertices decreases the number of vertices of degree
n − 2 below three. But such a number can be decreased only by removing
a vertex of degree n − 1. Since G has at least three vertices of degree n − 1
we can claim the following observation:

Proposition 2.4. A radius-edge-invariant graph G of radius one is critical

if and only if it is K3.

For radius equal two the situation is more complicated. In fact we are unable
to characterize even simple r.e.i. graphs of radius two. Moreover, removal
of a single vertex can also decrease the radius to one. For example every
graph of order n with all vertices of degree n − 2 is critical r.e.i..

Proposition 2.5. If G is radius-edge-invariant vertex 2-connected graph

and every vertex of G is adjacent to a vertex of degree 2 then it is critical.

Proof. Consider the graph G − v. Since v is adjacent to some u in G,
degG(u) = 2, we have degG−v(u) = 1 and thus G − v is not r.e.i..

Let G and G′ be disjoint graphs and let u ∈ V (G′). We say that a graph
H is a substitution of G into G′ in place of u, if the vertex set V (H) =
(V (G′) − {u}) ∪ V (G) and the edge set E(H) consists of all edges of the
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graphs G′ − u and G and, moreover, every vertex of G is joined to every
neighbour of u in G′.

3. The Edge Expansion and Critical Radius-Edge-Invariant

Graphs

Let 2-Gph be a class of all undirected graphs of the form 〈H;u, v〉, where
〈u, v〉 is some arbitrary ordered pair of vertices of H.

Given a directed graph G without loops and a mapping f : E(G) → 2-
Gph we construct a new undirected graph (G, f) which is called the edge
expansion of G by f as follows:

Suppose ab = e ∈ E(G) and 〈H;u, v〉 ∈ 2-Gph. If f(e) = f(ab) =
〈H;u, v〉, then we replace the edge ab in G by the graph H which identifies
u with a and v with b. In particular, if f(e) = 〈H;u, v〉 for all e ∈ E(G),
then we shall use G[H;u, v] to denote the edge expansion of G by f . Lee
and Wang [6] constructed by this operation many critical d.e.i. graphs. As
we will see, the edge expansion is useful to construct critical r.e.i. graphs as
well.

If there is a graph automorphism g of H such that g(u) = v, g(v) =
u, then the edge expansion results in the same graph independently of an
orientation given to G. Thus for such 〈H;u, v〉 we can also define the edge
expansion for undirected G by giving G an arbitrary orientation.

Figure 1

Theorem 3.1. Let G be a vertex 2-connected radius-edge-invariant graph

of radius r. Then G[C4;u, v], dC4
(u, v) = 1 is critical radius-edge-invariant

graph of radius r +1 if and only if for every vertex w of G there is a central

vertex c of G such that dG(w, c) ≤ r − 1.
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Proof. We first introduce some additional notation. Suppose a ∈ V (G)
and a is adjacent to edges e1, . . . , ek. Then the corresponding vertex a′ ∈
V (G[C4;u, v]) has k more neighbours. Let us mark them a′

e1
, . . . , a′ek

(see
Figure 1).

It is obvious that for every b ∈ V (G) we have eG[C4;u,v](b
′) = eG(b) + 1,

and for all b′ei
∈ V (G[C4;u, v]), a ∈ V (G) it is dG[C4;u,v](a

′, b′ei
) = dG(a, b)+1.

Moreover, if c ∈ V (G) is a central vertex of G, then the corresponding c′ ∈
V (G[C4;u, v]) is a central vertex of G[C4;u, v]. Observe that r(G[C4;u, v]) =
r(G) + 1.

(⇐) We first prove that G [C4; u, v] is an r.e.i. graph. Obviously
r(G[C4;u, v] − e ≥ r(G[C4;u, v]). We will consider the graph G[C4;u, v] − e
and three cases of deleting the edge e.

Case 1. e = a′eb
′
e; a, b ∈ V (G).

This is the simplest case, since for every vertex w ∈ V (G) we have
eG[C4;u,v]−e(w

′) = eG[C4;u,v](w
′). Thus the eccentricity of any central ver-

tex remains unchanged.

Case 2. e = a′b′; a, b ∈ V (G).
The graph G is r.e.i. and thus in G[C4;u, v] − e there is at least one vertex
c′ such that c is a central vertex of G and for all w′ ∈ G[C4;u, v], w ∈ V (G)
we have dG[C4;u,v]−e(c

′, w′) = dG−e(c, w) ≤ r(G). Since no edge of the form
w′w′

f , f ∈ E(G) is missing, we have dG[C4;u,v]−e(c
′, w′

f ) ≤ r(G) + 1. Thus
eG[C4;u,v]−e(c

′) = eG[C4;u,v](c
′) and r(G[C4;u, v] − e) = r(G[C4;u, v]).

Case 3. e = a′a′l; l = ab ∈ E(G); a, b ∈ V (G).
Given assumption, we have a central vertex c of G such that dG(c, b) ≤
r − 1. Thus dG[C4;u,v]−e(c

′, a′l) = dG[C4;u,v](a
′
l, b

′) + dG[C4;u,v](b
′, c′) = 2 +

dG[C4;u,v](b
′, c′) ≤ r + 1. For all other vertices w′ ∈ V (G[C4;u, v]) we

have dG[C4;u,v](w
′, c′) = dG[C4;u,v]−e(w

′, c′). Thus eG[C4;u,v]−e(c
′) = r + 1 =

r(G[C4;u, v]). But then r(G[C4;u, v] − e) = r(G[C4;u, v]) and G[C4;u, v] is
r.e.i..

From Proposition 2.5 it follows that G[C4;u, v] is critical r.e.i..
(⇒) We will prove the reverse course by a contradiction. Suppose that

there exists a vertex a such that dG(a, c) = r for all c ∈ C(G). Let b be any
neighbour of a. Consider the graph G[C4;u, v] − b′b′e where e = ab.

For any vertex w ∈ V (G), eG(w) > r we have eG[C4;u,v]−b′b′e
(w′) > r + 1.

Obviously the eccentricities of additional vertices obtained by edge expan-
sion are greater by at least one. Now we will inspect the eccentricities of
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remaining vertices. Suppose c ∈ C(G). We have dG[C4;u,v]−b′b′e
(c′, a′) = r

which implies dG[C4;u,v]−b′b′e
(c′, b′e) = dG[C4;u,v]−b′b′e

(c′, a′) + 2 ≥ r + 2. Thus

r(G[C4;u, v] − b′b′e) = r + 2 > r(G[C4;u, v]).

The graph G[C4;u, v] is not r.e.i., a contradiction.

Theorem 3.2. For every natural number r ≥ 3 and every graph G there

exists a critical radius-edge-invariant graph H of radius r such that G is an

induced subgraph of H.

Proof. We will obtain the desired graph H in two steps. We first take C2r−1

and substitute G into C2r−1 in place of some of its vertex. The resulting
graph Q is self-centered and thus r.e.i.. It is clear that it also satisfies the
condition from Theorem 3.1. Thus H = Q[C4;u, v] is critical r.e.i. graph if
dC4

(u, v) = 1. The following example (Figure 2) shows the construction for
r = 3 and for an arbitrary radius.

Figure 2

Because of the previous theorem, we cannot obtain a forbidden subgraph
characterization for critical radius-edge-invariant graphs of radius greater
than two. For radius equal to two the situation remains unclear. Little
more complicated construction shows that Q does not need to be necessarily
self-centered and thus there are many possibilities for the values of radius
and diameter of H.



On Critical and Cocritical Radius ... 399

Theorem 3.3. Let r, d be two natural numbers such that 5 ≤ r + 1 < d ≤
2r − 1. Then for any graph G there exists a critical radius-edge-invariant

graph H such that r(H) = r, d(H) = d, V (G) ⊆ C(H) and G is an induced

subgraph of H.

Proof. Consider the graph Q on Figure 3. We first show that Q is r.e.i.
of radius r − 1 and diameter d − 2 and that Q contains at least one central
vertex c, d(c, v) ≤ r − 2 for every v ∈ V (Q). The demanded result then
follows from Theorem 3.1.

Figure 3

First suppose that d 6= 2r−3, d 6= 2r−2. Observe that C(Q)={c1, c2, . . . , c6}.
We have d(ci, uj) = r − 2 if i, j are both odd or even and d(ci, uj) = r − 1
otherwise. For any other v ∈ V (Q), v 6= ci, v 6= uj there is d(ci, v) ≤ r − 2
for all ci. Moreover, for every vertex w ∈ V (Q) we have at least two central
vertices ci, cj such that d(ci, w) ≤ r − 1, d(cj , w) ≤ r − 1 and there are two
geodesics ci-w, cj-w which are edge disjoint. Thus Q is an r.e.i. graph of
radius r − 1.

Now we show that d(Q) = d − 2. We need to prove that e(v) ≤ d − 2
for all v ∈ V (G) and find two vertices a, b ∈ V (Q) such that d(a, b) = d− 2.
We have e(ci) = r − 1. Consider any other vertex x, x 6= uj and arbitrary
vertex y. We are going to show that d(x, y) ≤ d − 2.

If both x and y lie on the left (right) side of the center of Q, then they
lie in a cycle x-y-ci-x. We can form such a cycle having the length no greater
than 2(d − r) − 1 + (r − 3) + (r − 3) = 2d − 7. But then d(x, y) ≤ d − 4.
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If x and y lie in the distinct parts then they belong to two cycles of the form
x-ci-y-u2-u1-x and x-ci-y-u4-u3-x. We can form such cycles having summary
length not exceeding 2[2(d − r)− 1] + 2[2(r − 3) + 1] + 3 + 3 = 4d− 6. Thus
x and y lie in at least one cycle of length not exceeding 2d− 3 which implies
d(x, y) ≤ d − 2.

At last if x = ui then every y 6= ui lies in a cycle of the form x-ci-
y-x of length at most 3 + 2(r − 3) + 1 + 2(d − r) − 1 = 2d − 3 and thus
d(x, y) ≤ d− 2. If x = ui, y = uj , ui and uj are not adjacent, then d(x, y) =
min{2(d−r)−1+3, 2(r−3)+3}. But either d−2 ≥ 2(d−r)−1+3 ⇔ 2r−4 ≥ d
or d− 2 ≥ 2(r − 3) + 3 ⇔ d ≥ 2r − 1. Thus e(ui) ≤ d− 2 and d(Q) ≤ d− 2.

To obtain two vertices a, b such that d(a, b) = d − 2 it is sufficient to
take the vertex a in row 1 and column 1 and the vertex in row 2(d − r) − 1
and column d − 1 if d ≤ 2r − 5 and u1, u4, otherwise.

If G is K1,K2 or K2 then it is already contained in the center of Q.
Otherwise we can substitute G in place of any ci and the resulting graph Q′

is still r.e.i. of radius r − 1 and diameter d− 2. The demanded critical r.e.i.
graph H of radius r and diameter d can now be obtained as H = Q′[C4;u, v].

If d = 2r − 3 or d = 2r − 2 we simply take d− 4 rows of vertices instead
of 2(d − r) rows in Q. It is fairly easy to see that we obtain an r.e.i. graph
of radius r − 1 and diameter d − 2 as well.

4. Cocritical Radius-Edge-Invariant Graphs

We first introduce a general construction of graphs which was shown to be
very useful for construction of d.e.i. and cocritical d.e.i. graphs (see [5, 6]).
We will show that it is applicable for construction of critical r.e.i. graphs as
well.

Consider a finite connected graph I. Let {Gi : i ∈ V (I)} be a class of
graphs indexed by a finite set V (I). The Sabidussi sum S+({Gi : i ∈ V (I)})
(or simply S+) of {Gi : i ∈ V (I)} is a graph defined as follows:

V (S+({Gi : i ∈ V (I)})) =
⋃

{V (Gi) : i ∈ V (I)},

E(S+({Gi : i ∈ V (I)})) =

=
⋃

{E(Gi) : i ∈ V (I)} ∪ {xy : x ∈ V (Gi), y ∈ V (Gj), ij ∈ E(I)}.

Sabidussi sum is sometimes called X-join. One can show that for d(I) ≥ 2
we have d(S+(

⋃

{Gi : i ∈ V (I)})) = d(I).
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Theorem 4.1. Let p, q be any two nonnegative integers, I be a connected

graph with at least three vertices and let {Gi : i ∈ V (I)} be a class of

graphs, every with at least p + q + 1 vertices. Then for any two vertices

vi ∈ Gi, vj ∈ Gj , dI(i, j) > 1 and for any other p vertices u1, . . . , up and q
edges e1, . . . , eq of the graph S+({Gi : i ∈ V (I)}) we have

dS+(vi, vj) = dS+−u1−···−up−e1−···−eq
(vi, vj).

If vi and vj belong to the same Gi then

dS+−u1−···−up−e1−···−eq
(vi, vj) ≤ 2,

and if dI(i, j) = 1 then

dS+−u1−···−up−e1−···−eq
(vi, vj) ≤ 3.

Moreover, if dI(i, j) = 1 and degGi
(vi) + degGj

(vj) ≥ p + q then

dS+−u1−···−up−e1−···−eq
(vi, vj) ≤ 2.

Proof. Case 1. Suppose vi ∈ Gi, vj ∈ Gj are two vertices such that
dI(i, j) > 1. Observe that dS+(vi, vj) = dI(i, j). Since every Gk has at
least p + q + 1 vertices, we have at least p + q + 1 edge and vertex dis-
joint vi-vj geodesics in S+. But then we have at least one geodesic in
S+ − u1 − · · · − up − e1 − · · · − eq of the same length.

Case 2. Consider the case when vi, vj ∈ Gi. Since I is connected, we
have at least one vertex k ∈ I adjacent to i. But then we have at least
p + q + 1 edge and vertex disjoint paths of length two in S+, all of the form
vi-vka

-vj where vka
∈ Gk, a = 1, . . . , p+ q +1. Thus there exists at least one

vi-vka
-vj path in S+ − u1 − · · · − up − e1 − · · · − eq of length two.

Case 3. Let vi ∈ Gi, vj ∈ Gj be two vertices such that dI(i, j) = 1.
Since I is connected, we have at least one vertex k ∈ I adjacent either to i
or j. Without loss of generality assume that ki ∈ E(I). Then vivj ∈ E(S+)
and we have p + q additional vertex and edge disjoint paths of length three
of the form vj-via -vkb

-vi where via ∈ Gi, via 6= vi, vkb
∈ Gk, a = 1, . . . , p + q,

b = 1, . . . , p + q. Thus in S+ − u1 − · · · − up − e1 − · · · − eq we have at least
one vi-vj path of length at most three.
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If degGi
(vi)+degGj

(vj) ≥ p+q, then we have together at least p+q paths of
the form vi-via -vj, via ∈ Gi or vi-vjb

-vj , vjb
∈ Gj . Thus again exists at least

one vi-vj path of length at most two in S+ − u1 − · · · − up − e1 − · · · − eq.

Corollary 4.2. Let p, q be any two nonnegative integers, let r, d be two

positive integers such that 2 ≤ r ≤ d, 2 < d ≤ 2r and let I be a graph of

radius r and diameter d. Let moreover, {Gi : i ∈ V (I)} be a class of graphs

with at least p + q + 1 vertices. Then for any p vertices u1, . . . , up and q
edges e1, . . . , eq of the graph S+({Gi : i ∈ V (I)}) we have

r(S+) = r(S+ − u1 − · · · − up − e1 − · · · − eq),

and

d(S+) = d(S+ − u1 − · · · − up − e1 − · · · − eq).

Proof. Suppose c is a central vertex of I. We first show, that there is a ver-
tex vcj

∈ Gc, vcj
∈ S+−u1−· · ·−up, such that eS+−u1−···−up−e1−···−eq

(vcj
) ≤

r. Since Gc has at least p+ q+1 vertices, we can take a vertex vcj
not adja-

cent to any edge e1, . . . , eq. Thus for all x ∈ S+−u1−· · ·−up, dS+(vcj
, x) = 1

we have dS+−u1−···−up−e1−···−eq
(vcj

, x) = 1. For all other vertices x′ ∈
S+−u1−· · ·−up, dS+(vcj

, x′) > 1 we have dS+−u1−···−up−e1−···−eq
(vcj

, x′) =
dS+(vcj

, x′) according to Theorem 4.1. Thus eccentricity of vcj
does not

exceed r(S+).
Since every Gi has at least p + q + 1 vertices, eccentricity of any vertex

of S+ cannot be decreased by removing of p vertices. Thus r(S+) = r(S+ −
u1 − · · · − up − e1 − · · · − eq).

Since d(G) ≥ 3 the second part of this theorem is immediate conse-
quence of Theorem 4.1.

If we take p = q = 1 we have the following observation:

Corollary 4.3. Let r, d be two positive integers such that 2 ≤ r ≤ d, 2 <
d ≤ 2r and let I be a graph of radius r and diameter d. Let moreover,

{Gi : i ∈ V (I)} be a class of graphs with at least 3 vertices. Then S+({Gi :
i ∈ V (I)}) is cocritical radius-edge-invariant and cocritical diameter-edge-

invariant graph of radius r and diameter d.

Corollary 4.4. Let r, d be two positive integers such that 2 ≤ r ≤ d, 2 <
d ≤ 2r. Every graph G can be induced in cocritical radius-edge-invariant

and cocritical diameter-edge-invariant graph of radius r and diameter d.
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Proof. Suppose I is an arbitrary graph of radius r and diameter d > 2.
Consider the Sabidussi sum S+({Gi : i ∈ V (I)}) where |V (Gi)| ≥ 3 and G
is an induced subgraph of Gk for some k ∈ V (I) (For example we can take
Gk = G∪K2 for all k and for arbitrary G.). According to Corollary 4.3 the
graph S+ is cocritical r.e.i., cocritical d.e.i. and obviously G is an induced
subgraph of S+.

Our last goal will be to prove the lower bound for the number of vertices for
cocritical r.e.i. graphs. We first give several lemmas, which can be found
useful anyway as they describe some structural properties of cocritical r.e.i.
graphs.

Lemma 4.5. Every vertex v of a cocritical radius-edge invariant graph G
has deg(v) > 2.

Proof. Since G is vertex 2-connected and |V (G)| > 2, deg(v) > 1 for all
v ∈ V (G). Suppose N(v) = {u,w}. This implies degG−u(v) = 1 and thus
G − u is not r.e.i., a contradiction.

Lemma 4.6. Let G be a cocritical radius-edge-invariant graph with central

vertex c and radius r. If |Ni(c)| = 2 for 1 < i < r, then |Ni−1(c)| > 3.

Proof. We will prove this lemma by a contradiction. It is obvious that
|Ni(c)| > 1. Otherwise G − Ni(c) is not connected. Suppose Ni(c) = {a, b}
and Ni−1(c) = {u, v, w}. The case when |Ni−1(c)| = 2 can be handled
analogously. Both graphs G − a and G − b are edge 2-connected and thus
a and b are both adjacent to at least two vertices of Ni−1(c) (see Figure 4).
Hence at least one vertex of Ni−1(c) is adjacent to both a and b.

Figure 4
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Let av, bv ∈ E(G). Suppose c′ is a vertex such that c′ ∈ N(c), d(c′, v) = i−2.
Observe that e(c′) = r − 1. But then r(G) ≤ e(c′) < r, a contradiction.

Lemma 4.7. Let G be a cocritical radius-edge-invariant graph of radius

r ≥ 6 with central vertex c. If Ni(c) = {a, b} for some 2 < i ≤ r − 3, then

a and b are adjacent to a distinct pairs of vertices of Ni+1(c). Moreover, a
and b are not adjacent together and not adjacent to any common vertex w.

Proof. Suppose Ni(c) = {a, b} for some 2 < i ≤ r−3. As we already know,
both a and b are adjacent to at least two vertices in Ni−1(c). Consider the
graph G − a. This graph is edge 2-connected and thus we have at least 2
edge disjoint paths from Ni−1(c) to Ni+1(c). But then b must be adjacent to
at least two vertices in Ni+1(c). Condition for a can be proved analogously.

Now we show that a and b are not adjacent to a common vertex. It
follows from the proof of Lemma 4.6 that if such vertex w exists, then w /∈
Ni−1(c). Let w ∈ Ni+1(c) and let c′ be a vertex of the c-w geodesic such that
d(c, c′) = 3. For any z ∈ V (G) we have either d(c′, z) ≤ d(c′, c) + d(c, z) ≤
3 + (i − 1) < r (when d(c, z) < i) or d(c′, z) ≤ d(c′, w) + d(w, z) ≤ r − 1
(when d(c, z) ≥ i). Thus e(c′) = r − 1, a contradiction. Similar arguments
can be used to prove that ab /∈ E(G).

Lemma 4.8. Let G be a cocritical radius-edge-invariant graph of radius

r ≥ 3. Then |Nr(c)| + |Nr−1(c)| + |Nr−2(c)| ≥ 8 for every central vertex c
of G.

Proof. It is clear that |Nr−1(c)| > 1 and since every vertex has degree at
least three |Nr(c)|+|Nr−1(c)| ≥ 4. According to Lemma 4.6 if |Nr−1(c)| = 2,
then |Nr−2(c)| ≥ 4. Thus if |Nr(c)| ≥ 3, then the result is obvious.

We need to show that none of the following configurations is possible.
In all cases we will find c′ ∈ V (G) such that eG(c′) = r − 1, or prove that G
is not cocritical.

Case 1. |Nr(c)| = 1, |Nr−1(c)| = 3, |Nr−2(c)| = 3.
Suppose v is a unique vertex such that d(v, c) = r, Nr−1(c) = {u1, u2, u3}
and Nr−2(c) = {w1, w2, w3}. Recall that deg(ui) ≥ 3. Thus there are at
least six edges joining vertices of Nr−1(c) together or joining vertices of
Nr−1(c) to those in Nr−2(c). We have either (without any loss of generality)

(a) w1 adjacent to all vertices of Nr−1(c),

(b) u1 adjacent to all other vertices of Nr−1(c),
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(c) w1 adjacent to u1, u2 and u2 adjacent to u3, or

(d) every ui adjacent to a distinct pair of {w1, w2, w3} (see Figure 5).

Figure 5

The vertex c′ can be taken as the second vertex on the c-w1 geodesic in the
first three cases and as the third vertex on the c-w1 geodesic otherwise. For
all x ∈ V (G) we have min{d(c, c′) + d(c, x), d(c′ , w1) + d(w1, x)} ≤ r − 1.
Thus r(G) ≤ e(c′) ≤ r − 1, a contradiction.

Case 2. |Nr(c)| = 1, |Nr−1(c)| = 4, |Nr−2(c)| = 2.

We will mark Nr(c) = {v}, Nr−1(c) = {u1, u2, u3, u4} and Nr−2(c) =
{w1, w2}.

First suppose that w1 is adjacent to at least three vertices of Nr−1(c),
namely u1, u2, u3. Since deg(u4) ≥ 3, u4 is either adjacent to w1 or to some
vertex of the set {u1, u2, u3} (see Figure 6 (a)). But then it is sufficient to
take c′ as the second vertex on the c-w1 geodesic.
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Figure 6

Now suppose |N(w1)∩Nr−1(c)| = |N(w2)∩Nr−1(c)| = 2, w1u1, w1u2, w2u3,
w2u4 ∈ E(G). We have either

(b) deg(v) = 3, or

(c) deg(v) = 4.

Let N(v) = {u2, u3, u4}, w1u1 ∈ E(G). We have deg(u1) ≥ 3 and thus u1 is
adjacent to u3 (u4) giving d(w1, w2) ≤ 3. The vertex c′ can be taken as the
third vertex on the c-w1 geodesic.

At last let deg(v) = 4. If any vertex of {u1, u2} is adjacent to any
vertex of {u3, u4}, we can use the same arguments as in the previous case.
Otherwise we get the configuration shown in Figure 6(c). Observe that
r(G−v) = r−1. Since for any central vertex c′′ of G−v we have eG−v(c

′′) =
r − 1, it follows that dG(c′′, v) = r. Otherwise eG(c′′) = r − 1. Thus
dG−v(c

′′, ui) = r − 1 and dG−v(c
′′, wj) = r − 2. But then for example

eG−v−u1w1
(c′′) = r. The graph G − v is not r.e.i., a contradiction.

Figure 7
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Case 3. |Nr(c)| = 2, |Nr−1(c)| = 3, |Nr−2(c)| = 2.

Let Nr(c) = {v1, v2}, Nr−1(c) = {u1, u2, u3} and Nr−2(c) = {w1, w2}. Since
deg(v1) ≥ 3 and deg(v2) ≥ 3, we have at least one vertex of Nr−1(c) adjacent
to both v1 and v2. Let us mark this vertex as u1. G − w1 and G − w2 are
both r.e.i. and thus w1 and w2 are both adjacent to at least two vertices
of Nr−1(c). Every ui has degree at least three and thus is adjacent to at
least one vertex of Nr(c) or Nr−1(c). This implies d(w1, x) ≤ 3 for all
x ∈ Nr−2(c)∪Nr−1(c)∪Nr(c). It is sufficient to take a vertex c′ as the third
vertex on the c-u1 geodesic.

Lemma 4.9. Let G be a cocritical radius-edge-invariant graph with central

vertex c and radius r ≥ 5. If |Nr−3(c)| = 2, then |Nr(c)| + |Nr−1(c)| +
|Nr−2(c)| ≥ 9.

Proof. According to Lemma 4.7 if |Nr−3(c)| = 2, then |Nr−2(c)| ≥ 4. Since
|Nr(c)|+ |Nr−1(c)| ≥ 4 it is sufficient to show that there is no cocritical r.e.i.
graph having |Nr−3(c)| = 2, |Nr−2(c)| = 4, |Nr−1(c)| = 3, |Nr(c)| = 1 and
no cocritical r.e.i. graph having |Nr−3(c)| = 2, |Nr−2(c)| = 4, |Nr−1(c)| =
2, |Nr(c)| = 2.

Let us consider the first case. Suppose Nr(c) = {v}, Nr−1(c) = {u1, u2,
u3}, Nr−2(c) = {w1, w2, w3, w4}, Nr−3(c) = {z1, z2}. According to Lemma
4.7 every vertex of Nr−3(c) is adjacent to two distinct vertices of Nr−2(c).
Let z1w1, z1w2, z2w3, z2w4 ∈ E(G). Similarly, at least two vertices of
Nr−1(c) are adjacent to either {w1, w2} or to {w3, w4} (see Figure 8). Let
c′ ∈ N(c), c′′ ∈ N2(c) be two vertices such that d(c′, z1) = r − 4, d(c′′, z1) =
r − 5 and let u1, u2 be adjacent to w1 or w2. If u3 is adjacent to w1, w2,
u1 or u2 too, then e(c′) = r − 1, a contradiction. Otherwise u3 is adjacent
to both w3 and w4. Now there is either some edge joining {w1, w2} and
{w3, w4} giving e(c′′) = r−1 or G−z2−vu3 is not connected. In both cases
we obtain a contradiction.

At last suppose that Nr−3(c) = {z1, z2}, Nr−2(c) = {w1, w2, w3, w4},
Nr−1(c) = {u1, u2} and Nr(c) = {v1, v2}. Since every vertex of G has degree
at least three, v1 and v2 are joined together and adjacent to both u1 and
u2. Let c′ ∈ N(c) be a vertex such that d(c′, z1) = r− 4. If u2 is adjacent to
successors of both z1 and z2, then e(c′) = r − 1, a contradiction. The same
holds for u1. Otherwise we have eG−u2

(c′) = r − 1 = r(G − u2). For every
central vertex c′′ of G−u2 we have dG(c′′, u2) = r, dG(c′′, w3) = dG(c′′, w4) =
dG(c′′, v1) = dG(c′′, v2) = r−1 and dG(c′′, z2) = dG(c′′, u1) = r−2. But then
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for example eG−u2−v2u1
(c′′) = r for every central vertex of G − u2. G − u2

is not r.e.i., a contradiction.

Figure 8

Lemma 4.10. Let G be a cocritical radius-edge-invariant graph with central

vertex c and radius r ≥ 7. Suppose i is a natural number such that 2 ≤ i ≤
r − 5. If |Ni(c)| = |Ni+1(c)| = |Ni+2(c)| = 3, then there are three vertices

v1 ∈ Ni(c), v2 ∈ Ni+1(c), v3 ∈ Ni+2(c) such that G− vi − vj is not connected

for every pair {i, j} ⊂ {1, 2, 3}.

Proof. Let Ni(c) = {x1, x2, x3}, Ni+1(c) = {y1, y2, y3} and Ni+2(c) =
{z1, z2, z3}. We first prove that a subgraph H of G induced by Ni(c) ∪
Ni+1(c) ∪ Ni+2(c) is not connected.

We will prove this by a contradiction. Suppose that given subgraph is
connected. Observe that no xi is adjacent to all yj. If all xi are adjacent to
two vertices in Ni+1(c) or if any xi is adjacent to a single vertex of Ni+1(c),
then the graph H − xi remains connected for some xi. It is well known (see
[8]) that every graph with n vertices and radius r has ∆(G) ≤ n − 2r + 2.
Since at least one yj ∈ H−xi has degree at least three, we have r(H−xi) ≤ 3.
Let c′′ be a central vertex of H and let c′ be a vertex of G such that c′ lies
on the c′′-c geodesic and c′ ∈ N4(c) if d(c, c′′) ≥ 4 and c′ = c′′ otherwise (see
Figure 9). We have e(c′) < r, a contradiction.

Now suppose that H is not connected and has two distinct sets A,B of
vertices such that no vertex of the set A is adjacent to a vertex belonging
to B. Moreover, let Ni(c) = NA

i (c) ∪ NB
i (c), Ni+1(c) = NA

i+1(c) ∪ NB
i+1(c),

Ni+2(c) = NA
i+2(c) ∪ NB

i+2(c), A = NA
i (c) ∪ NA

i+1(c) ∪ NA
i+2(c) and B =

NB
i (c) ∪ NB

i+1(c) ∪ NB
i+2(c).
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Figure 9

It is obvious that three sets of NA
i (c), NA

i+1(c), N
A
i+2(c), NB

i (c), NB
i+1(c),

NB
i+2(c) have at most one vertex. Moreover, it is not possible that either

|NA
i (c)| = |NA

i+1(c)| = |NA
i+2(c)| = 1 or |NB

i (c)| = |NB
i+1(c)| = |NB

i+2(c)| = 1.
Also if some |NA

j (c)| = |{o}| = 1 (|NB
j (c)| = |{o}| = 1) then, since G − o is

r.e.i. and thus 2 edge-connected, it cannot hold that |N B
k (c)| = |NB

k+1(c)| =

1 (|NA
k (c)| = |NA

k+1(c)| = 1) for any two successive levels of i, i+1, i+2. Thus

the only possible configuration is the following: |N A
i (c)| = 1, |NA

i+1(c)| = 2,
|NA

i+2(c)| = 1 and |NB
i (c)| = 2, |NB

i+1(c)| = 1, |NB
i+2(c)| = 2 (see Figure 10).

Figure 10

Lemma 4.11. Let G be a cocritical radius-edge-invariant graph of radius

r ≥ 4. If for some v ∈ V (G) there is d(G−v) ≥ 2r−1, then |V (G)| ≥ 3r+2.

Proof. Suppose u,w are two peripheral vertices of G − v such that
dG−v(u,w) = d(G − v). We have u ∈ Nd(G−v)(w) and w ∈ Nd(G−v)(u).
G−v is r.e.i. and thus G−v− e is connected for every e ∈ E(G−v). Hence
|NG−v(u)| > 1 and if |Ni(u)| = 1, 1 < i < d(G − v), then |Ni+1(u)| > 1,
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|Ni−1(u)| > 1 and the single vertex in Ni(u) is adjacent to at least two
vertices in Ni+1(u) and to at least two vertices in Ni−1(u). We will now
distinguish the following cases depending on the value of d(G − v).

Case 1. d(G − v) ≥ 2r.
If d(G − v) ≥ 2r then G − v has 2r + 1 distinct sets {u}, N(u), N2(u), . . . ,
N2r(u). At most r +1 of them contains only one vertex. Thus if d(G− v) ≥
2r, then |V (G)| ≥ 1 + |V (G − v)| ≥ 1 + 2r + 1 + r = 3r + 2.

Case 2. d(G − v) = 2r − 1.
If d(G − v) = 2r − 1 then G − v has 2r distinct sets {u}, N(u), N2(u), . . . ,
N2r−1(u) and at most r of them contains only one vertex. Thus |V (G)| =
1 + |V (G − v)| ≥ 1 + 2r + r = 3r + 1. It is sufficient to show that it is not
possible to obtain a cocritical r.e.i. graph of radius r having 3r + 1 vertices.
We will prove this by a contradiction.

Suppose such a graph G exists and eG−v(u) = 2r − 1 for some u, v ∈
V (G). Since no sucessive pair Ni(u), Ni+1(u), 1 < i < r has only two
vertices together and |V (G)| = 3r + 1, we have either |N(u)| = 2, |N2(u)| =
1, |N3(u)| = 2, . . . , |Ni(u)| = 1, |Ni+1(u)| = 2, |Ni+2(u)| = 2, |Ni+3(u)| =
1, . . . , |N2r−2(u)| = 2, |N2r−1(u)| = 1 or |N(u)| = 2, |N2(u)| = 1, |N3(u)| =
2, . . . , |N2k(u)| = 1, |N2k+1(u)| = 2, . . . , |N2r−2(u)| = 1, |N2r−1(u)| = 2.

(A): Suppose |Ni+1(u)| = |Ni+2(u)| = 2, 1 < i < 2r − 4. We de-
note by N(u) = {u1

1, u
2
1}, N2(u) = {u2}, . . . , N2r−2(u) = {u1

2r−2, u2
2r−2} and

N2r−1(u) = {u2r−1} (see Figure 11).

Figure 11

Since G has no cutvertices, G − u2 and G − u2r−3 are edge 2-connected,
v is adjacent to at least two vertices of the set {u, u1

1, u
2
1} and to at least

two vertices of the set {u1
2r−2, u

2
2r−2, u2r−1}. But then eG(v) = r − 1, a

contradiction.
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If i = 1 then N(u) = {u1
1, u

2
1}, N2(u) = {u1

2, u
2
2}, N3(u) = {u3} or if i =

2r − 4 then N2r−4(u) = {u2r−4}, N2r−3(u) = {u1
2r−3, u

2
2r−3}, N2r−2(u) =

{u1
2r−2, u

2
2r−2}, N2r−1(u) = {u2r−1}. This can be handled analogously and

we left the details for the reader.

(B): We denote by N2k+1(u) = {u1
2k+1, u

2
2k+1} and N2k(u) = {u2k} (see

Figure 12).

Figure 12

Since G has no cutvertices, G−u2 and G−u2r−2 are edge 2-connected, v is
adjacent to at least two vertices of the set {u, u1

1, u
2
1} and to both vertices

u1
2r−1, u

2
2r−1. Moreover, v is not adjacent to any vertex of N2(u) ∪ N3(u) ∪

· · · ∪ N2r−2(u). Otherwise eG(v) < r, a contradiction.
Now consider the following graph G − ur:

Figure 13

We have eG−ur(v) = r − 1 and thus r(G − ur) = r(G) − 1 = r − 1. The
vertex v is the unique central vertex of G − ur. However, for example
eG−ur−ur−2u1

r−1
(v) = r. Thus G − ur is not r.e.i., a contradiction.

Lemma 4.12. Let G be a cocritical radius-edge-invariant graph of radius

r ≥ 8. If d(G − v) = 2r − 2 and r(G − v) = r − 1 for any v ∈ V (G), then

|V (G)| ≥ 3r + 2.

Proof. Suppose u,w are two peripheral vertices of G − v such that
dG−v(u,w) = d(G − v). Again we have |Ni−1(u)| > 1, |Ni+1(u)| > 1 if
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|Ni(u)| = 1, 1 < i < d(G−v). Since d(G−v) = 2r−2 = 2(r−1) = 2r(G−v),
every central vertex of G − v belongs to Nr−1(u).

If |Ni(u)| ≥ 2 for all i < r− 1 or if |Ni(u)| ≥ 2 for all r− 1 < i < 2r− 2,
then |V (G− v)| ≥ (2r − 1) + (r − 2) +

⌊

r
2

⌋

= 3r + 1 +
(⌊

r
2

⌋

− 4
)

≥ 3r +1 for
r ≥ 8. Thus |V (G)| ≥ 3r + 2.

Now consider another case. Let {t1} ∈ Nk(u) be the vertex of the first
neighbourhood of u such that t1 is the only vertex of Nk(u) adjacent to
vertices of the previous neighbourhood and let {t2} ∈ Nl(u) be the last
neighbourhood such that t2 is the only vertex of Nl(u) adjacent to vertices
of the succeeding neighbourhood. Existence of such vertices is guaranteed
by the existence of two neighbourhoods having only a single vertex. Since
both G − t1 and G − t2 are edge 2-connected, v is adjacent to at least
two vertices of {u} ∪ N(u) ∪ · · · ∪ Nk−1(u) and to at least two vertices of
Nl+1(u) ∪ Nl+2(u) ∪ · · · ∪ N2r−2(u). Moreover, since r(G) = r all of these
vertices adjacent to v also belong to Nr(c) (see Figure 14), where c is any
central vertex of both G − v and G.

Figure 14

We have d(c, t1) = d(c′, t1) and d(c, t2) = d(c′, t2) for all c′ ∈ C(G − v).
Furthermore d(c′, q) = d(c, q) for all q ∈ Nr−1(c). Since G − v is r.e.i. of
radius r−1 every such q must be adjacent to at least two vertices of Nr−2(c).
It is obvious that such sets of vertices are distinct from u and w.

In every neighbourhood Ni(c) marked higher than such containing t1
(i.e., Nk+1(c), . . . , Nr−1(c) if t1 ∈ Nk(c)) we have at least two vertices con-
nected to c through t1. Otherwise Nk(u) does not have the described prop-
erty. Similarly in every neighbourhood Nj(c) marked higher than such con-
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taining t2 we have at least two vertices connected to c through t2. Thus
|{u}|+|N(u)|+· · ·+|Nk−1(u)| ≥ 2k, |Nl+1(u)|+|Nl+2(u)|+· · ·+|N2r−2(u)| ≥
2(2r − 2 − l) and k > 1, l < 2r − 3.

We have

|V (G−v)| ≥ 2k+2(2r−2−l)+

⌊

3

2
(l − k + 1)

⌋

= 3r+

(

r −

⌊

l

2
−

k

2
+

5

2

⌋)

.

Since k ≥ 2 and l ≤ 2r − 4

3r +

(

r −

⌊

l

2
−

k

2
+

5

2

⌋)

≥ 3r +

(

r −

⌊

(2r − 4)

2
−

2

2
+

5

2

⌋)

=

= 3r +

(

r −

⌊

r − 2 − 1 +
5

2

⌋)

≥ 3r.

Thus G has at least 3r +1 vertices and if G has exactly 3r +1 vertices, then
k = 2, l = 2r − 4 and only the following configuration of vertices is possible:

Figure 15

We have exactly 2r − 7 +
⌊

2r−7
2

⌋

vertices between t1 and t2 since there are
no successive neighbourhoods of u having only one vertex. We have also five
additional vertices in the set A = {u} ∪ N(u) ∪ N2(u) and five additional
vertices in the set B = N2r−4(u) ∪ N2r−3(u) ∪ N2r−2(u). The subgraphs of
G induced by A and B are not uniquely determined but v is adjacent to at
least two vertices in A and to two vertices in set B.

Now consider the graph G− t1. Vertices in Nr+2(u) (as the vertex s on
Figure 15, we have either one or two such vertices) have eccentricity r − 1.
All other vertices are of eccentricity greater than r − 1 in G − t1. Thus
r(G − t1) = r − 1. By removing any edge e joining vertices from N3(u) and
N4(u) we increase the radius of G − t1 by one and thus G is not cocritical
r.e.i. graph, a contradiction. G has at least 3r + 2 vertices.
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Lemma 4.13. Let G be a cocritical radius-edge-invariant graph with central

vertex c and radius r ≥ 7. If |Nd r
2
e−1(c)| = |Nd r

2
e(c)| = |Nd r

2
e+1(c)| = 3,

then |V (G)| ≥ 3r + 2.

Proof. According to Lemma 4.10 it is possible to find two vertices v1 ∈
Nd r

2
e(c), w3 ∈ Nd r

2
+1e(c) such that r(G − v1 − w3) = ∞. Moreover, if

Nd r
2
e−1(c) = {u1, u2, u3} and Nd r

2
e(c) = {v1, v2, v3}, then u1v1, u2v1, u3v2,

u3v3, v2w3, v3w3 ∈ E(G) and there is no other edge connecting Nd r
2
e−1(c)

with Nd r
2
e(c) and w3 with Nd r

2
e(c) (see Figure 16).

Let H be a subgraph of G induced by the vertex set {c} ∪ N(c) ∪
· · · ∪ Nd r

2
e−1(c) ∪ Nd r

2
e(c) ∪ {w3}. Observe that dH(v1, v2) = dH(v1, v3) =

dH(v1, w3) − 1 ≥ r − 1. Otherwise there exists x ∈ H, dH(x, v1) ≤
⌈

r
2

⌉

− 1,
dH(x, v2) ≤

⌈

r
2

⌉

−1 for which eG(x) < r, a contradiction. Since dH(v1, w3) ≤
2
⌈

r
2

⌉

+ 1 ≤ r + 2, we have r − 1 ≤ d(H) = dH(v1, w3) ≤ r + 2.

Figure 16. (i =
⌈

r

2

⌉

)

Now consider the graph F = H−v1 and the subgraph J of G induced by the
vertex set Nd r

2
e+1(c)∪Nd r

2
e+2(c)∪ · · · ∪Nr(c). If eJ(w3) + eF (w3) < 2r − 2,

then for at least one vertex z of the set {w3, v2, v3, u3} we have eF (z) ≤ r−1
and dG(z, v1) ≤ r−1. In that case eG(z) ≤ r−1, a contradiction. Otherwise
d(G − v1) = 2r − 2, r(G − v1) = r − 1 or d(G− v1) ≥ 2r − 1. It follows from
Lemma 4.11 and Lemma 4.12 that in both cases we have |V (G)| ≥ 3r + 2.

Theorem 4.14. Every cocritical radius-edge invariant graph of radius r ≥
15 has at least 3r + 2 vertices. This bound is sharp.
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Proof. Suppose c is a central vertex of G. We have |N(c)| ≥ 3. According
to previous lemmas we have

|V (G)| ≥ |{c}| + |N(c)| + · · · + Nr−3(c) + Nr−2(c) + Nr−1(c) + Nr(c)

≥ 1 + 3(r − 3) + 8 ≥ 3r.

Now we prove that there is no such graph having 3r or 3r + 1 vertices.

Suppose |V (G)| = 3r. The only possible configuration is the following:
|N(c)| = |N1(c)| = |N2(c)| = · · · = |Nr−3(c)| = 3, |Nr−2(c)| + |Nr−1(c)| +
|Nr(c)| = 8. But from the previous lemma we know that such graph must
have at least 3r + 2 vertices.

Now we prove that there is no cocritical r.e.i. graph of radius greater
than fourteen having 3r + 1 vertices. If |V (G)| = 3r + 1 then either

(1) |Nr−2(c)| + |Nr−1(c)| + |Nr(c)| = 9 and |N(c)| = |N2(c)| = · · · =
|Nr−3(c)| = 3 or

(2) |Nr−2(c)| + |Nr−1(c)| + |Nr(c)| = 9 and |N(c)| = |N2(c)| = · · · =
|N(r−3)−2i(c)| = 3, |N(r−3)−2i+2(c)| = |N(r−3)−2i+4(c)| = · · · =
|Nr−3(c)| = 2, |N(r−3)−2i+1(c)| = |N(r−3)−2i+3(c)| = · · · = |Nr−4(c)| =
4, i ∈ N + {0} or

(3) |Nr−2(c)| + |Nr−1(c)| + |Nr(c)| = 8 and |N(c)| = |N2(c)| = · · · =
|Ni(c)| = 3, |Ni+1(c)| = |Ni+3(c)| = · · · = |Ni+2k+1(c)| = 4, |Ni+2(c)| =
|Ni+4(c)| = · · · = |Ni+2k(c)| = 2, |Ni+2k+2(c)| = |Ni+2k+3(c)| = · · · =
|Nr−3(c)| = 3, i, k ∈ N + {0}.

(1) This case is not possible according to Lemma 4.13.

(2) and (3) We will distinguish the following cases:

Case 1. |Nd r
2
e(c)| = 2. We denote by Ni(c) = Nd r

2
e(c) = {v1, v2}. Let

H be a subgraph generated by the vertex set {c} ∪ N(c) ∪ · · · ∪ Ni(c) and
J be a subgraph generated by V (G) − V (H) ∪ v1. Observe that r + 1 ≥
dH(v1, v2) ≥ 2i−1 ≥ r−1. Otherwise there exists x ∈ H, dH(x, v1) ≤ i−1,
dH(x, v2) ≤ i − 1 for which eG(x) ≤ r − 1, a contradiction.

Now examine the graph G − v2. If eJ(v1) + eH(v1) ≥ 2r − 1 then by
Lemma 4.11 we have |V (G)| ≥ 3r + 2. Otherwise eJ(v1) ≤ r − 2. Now
let y ∈ Ni−1(c) be a vertex adjacent to v1. If eJ (v1) + eH(v1) = 2r − 2,
then r(G − v2) = r − 1, d(G − v2) = 2r − 2 and y ∈ C(G − v2). Thus
|V (G)| ≥ 3r + 2 by Lemma 4.12. If eJ (v1) < r − 2 then dG(y, v2) ≤ r − 1.
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We have eG−v1
(y) = r−1 and dG(y, v2) ≤ r−1. This implies eG(y) ≤ r−1,

a contradiction.

Case 2. If |Nd r
2
e−1(c)| = |Nd r

2
e(c)| = |Nd r

2
e+1(c)| = 3 then again by

Lemma 4.13 |V (G)| ≥ 3r + 2.

Case 3. At last there is i ∈ {d r
2e−1, d r

2 e, d
r
2 e+1} such that |Ni(c)| = 4.

Since r ≥ 15 we have r − 3 − i ≥ 3 and thus there is either |Ni−1(c)| =
|Ni+1(c)| = 2, |Ni−1(c)| = 2 and |Ni+1(c)| = |Ni+2(c)| = |Ni+3(c)| = 3,
|Ni−3(c)| = |Ni−2(c)| = |Ni−1(c)| = 3 and |Ni+1(c)| = 2, or |Ni−3(c)| =
|Ni−2(c)| = |Ni−1(c)| = 3 and |Ni+1(c)| = |Ni+2(c)| = |Ni+3(c)| = 3.

According to Lemma 4.10 we have at least two vertices v1, v2 ∈ Ni−2(c)∪
Ni−1(c) such that d(G − v1, v2) = ∞ and at least two vertices w1, w2 ∈
Ni+1(c) ∪ Ni+2(c) such that d(G − w1, w2) = ∞. At least two of these
vertices lie in Ni−1(c) ∪ Ni+1(c).

Suppose v1 ∈ Nj1(c), w1 ∈ Nj2(c), v2 ∈ Nj3(c), w2 ∈ Nj4(c), d(v1, w1) =
j2 − j1 and d(v2, w2) = j4 − j3. Consider the subgraph generated by the
vertex set {c} ∪ N(c) ∪ · · · ∪ Ni+2(c). There is no path joining v1 and w2

not including w1 or v2 and no path joining v2 and w1 not including w2 or
v1 in this subgraph. Such path would be of length at most j2 − j3 + 2 or
j4 − j1 + 2. Thus if we take for example the vertex c′ ∈ Nr−2−i(c) lying on
the c-v1 (c-v2) geodesic we have eG(c′) = r − 1, a contradiction. It follows
that there are two pairs {v1, w2} and {v2, w1} such that c and Nr(c) are not
connected in G − v1 − w2 and G − v2 − w1.

Let H be a subgraph generated by the vertex set {c} ∪ N(c) ∪ · · · ∪
Ni−1(c). We have dH(v1, v2) ≥ j1+j3−1. Otherwise there is a vertex y such
that y belongs to the v1-v2 geodesic and d(y, v1) ≤ j1 − 1, d(y, v2) ≤ j3 − 1.
Such a vertex would have eG(y) < r, a contradiction.

Since i ∈ {d r
2e − 1, d r

2 e, d
r
2e + 1}, at least one vertex of v1, v2 belongs

to Ni−1(c) and at least one vertex of w1, w2 belongs to Ni+1(c), there is a
pair a, b of vertices such that a ∈ {v1, w1}, b ∈ {v2, w2} and r ≤ d(a, c) +
d(c, b) ≤ r + 2. Without loss of generality assume that d(a, c) ≥ d(b, c).
Since dH(v1, c) + dH(v2, c) − 1 ≤ dH(v1, v2) ≤ dH(v1, c) + dH(v2, c), there is
no a-b path containing vertex of H shorter than dG(a, c) + dG(b, c) − 1.

Now let J be a subgraph of G such that V (J) = {v ∈ V (G), dG(v, c) =
min{d(v, a) + d(a, c), d(v, b) + d(b, c)} −{b} (i.e., the subgraph generated by
the set of vertices which are ”successors” of a and b including a) and let K
be a subgraph of G induced by the vertex set (V (G) − V (J) − {b}) ∪ {a}.
Thus V (G − b) = V (J) ∪ V (K) and V (J) ∩ V (K) = {a}.
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If eJ (a) + eK(a) ≥ 2r − 1 then d(G − b) ≥ 2r − 1 and thus |V (G)| ≥ 3r + 2
according to Lemma 4.11. If eJ(a) + eK(a) = 2r − 2 then eJ(a) is between
r− 2 and r− 4 and there exists a vertex z ∈ K such that eJ(a)+dK(a, z) =
r−1 = d(z, b) having eG−b(z) = r−1. Thus by Lemma 4.12 |V (G)| ≥ 3r+2.
At last if eJ(a) + eK(a) < 2r − 2 it is sufficient to take a vertex c′ on the
a-b geodesic in H such that dH(c′, b) = r − 1. We have eG(c′) = r − 1, a
contradiction. We have shown that there is no cocritical r.e.i. graph having
r ≥ 15 on less than 3r + 2 vertices.

Figure 17

Possible extremal graphs for odd and even radius are depicted on Figure 17.

However, the previous theorem is not fully satisfactory. It is not clear if the
condition for the radius being greater than 14 is necessary. We can give only
the following example of cocritical r.e.i. graph having radius three on ten
vertices.

Figure 18

Conjecture. Every cocritical radius-edge invariant graph of radius r ≥ 4
has at least 3r + 2 vertices. This bound is sharp.
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