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Abstract

A total dominating set of a graph G = (V, E) with no isolated
vertex is a set S ⊆ V such that every vertex is adjacent to a vertex in
S. A total dominating set S of a graph G is a locating-total dominating
set if for every pair of distinct vertices u and v in V − S, N(u) ∩ S 6=
N(v) ∩ S, and S is a differentiating-total dominating set if for every
pair of distinct vertices u and v in V , N [u]∩ S 6= N [v]∩ S. Let γL

t (G)
and γD

t
(G) be the minimum cardinality of a locating-total dominating

set and a differentiating-total dominating set of G, respectively. We
show that for a nontrivial tree T of order n, with ` leaves and s support
vertices, γL

t
(T ) > max{2(n+ `− s+1)/5, (n+2− s)/2}, and for a tree

of order n ≥ 3, γD
t (T ) ≥ 3(n+`−s+1)/7, improving the lower bounds

of Haynes, Henning and Howard. Moreover we characterize the trees
satisfying γL

t
(T ) = 2(n + ` − s + 1)/5 or γD

t
(T ) = 3(n + ` − s + 1)/7.
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1. Introduction

In a graph G = (V,E), the open neighborhood of a vertex v ∈ V is N(v) =
{u ∈ V | uv ∈ E} and the closed neighborhood is N [v] = N(v) ∪ {v}. The
degree of a vertex v is the size of its open neighborhood. A leaf of a tree T
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is a vertex of degree one, while a support vertex of T is a vertex of degree
at least two adjacent to a leaf. A strong support vertex is adjacent to at
least two leaves. We denote the order of a tree T by n, the number of leaves
by `, and the number of support vertices by s. A tree T is a double star

if it contains exactly two vertices that are not leaves. A double star with,
respectively p and q leaves attached at each support vertex is denoted by
Sp,q. A subdivided star SSq is obtained from a star K1,q by subdividing each
edge by exactly one vertex. A corona of a graph H is the graph G formed
from H by adding a new vertex v′ for each vertex v ∈ V (H) and the edge
v′v. For a subset S ⊆ V, we denote by 〈S〉 the subgraph induced by the
vertices of S.

A subset S of vertices of V is a total dominating set of G if every vertex
in V is adjacent to a vertex in S. The total domination number, γt(G) is
the minimum cardinality of a total dominating set of G.

In this paper we are interested in two types of total-dominating sets,
namely locating-total dominating sets, and differentiating-total dominating
sets defined as follows: A total dominating set S of a graph G is called a
locating-total dominating set (LTDS) if for every pair of distinct vertices u
and v in V − S, N(u) ∩ S 6= N(v) ∩ S, and S is called a differentiating-

total dominating set (DTDS) if for every pair of distinct vertices u and v
in V , N [u] ∩ S 6= N [v] ∩ S. The locating-total domination number, γL

t (G)
is the minimum cardinality of a LTDS of G, and the differentiating-total

domination number, γD
t (G) is the minimum cardinality of a DTDS of G. A

LTDS of minimum cardinality is called a γL
t (G)-set. Likewise we define a

γD
t (G)-set. Note that a tree T of order n admits a LTDS (resp., DTDS)

if n ≥ 2 (resp., n ≥ 3) since the entire vertex set is such a set. Also for
every γD

t (G)-set D there is no component of size 2 in the subgraph induced
by D, for otherwise the two vertices u, v of such a component would satisfy
N [u]∩D = N [v]∩D = {u, v}. Locating-total domination and differentiating-
total domination were introduced by Haynes, Henning and Howard [4].

In this paper we establish sharp bounds on γL
t (T ), and γD

t (T ) for trees
T. More precisely, we show that if T is a tree of order n ≥ 2, with ` leaves
and s support vertices, then γL

t (T ) > max{2(n+ `− s+1)/5, (n+2− s)/2}
and if T is a tree of order n ≥ 3, then γD

t (T ) ≥ 3(n + ` − s + 1)/7. Then
we give a characterization of trees with γL

t (T ) = 2(n + ` − s + 1)/5, or
γD

t (T ) = 3(n + ` − s + 1)/7.

We sometimes consider the removing of an edge of a tree T. If uv is an
edge of T , then we denote by Tu (resp., Tv) the subtree of T that contains
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u (resp., v) obtained by removing uv. The following notation and fact will
be used in the proofs. Let n1, `1, s1 be the order, the number of leaves and
support vertices of Tu, respectively, and likewise let n2, `2, s2 for Tv. Clearly
n1 + n2 = n, and if n1 and n2 ≥ 3, then `1 + `2 ≥ ` + q, and s1 + s2 = s + q,
where q is the number of new support vertices in Tu and Tv with 0 ≤ q ≤ 2.
Also if D is a γL

t (T )-set or γD
t (T )-set, then let Du = D ∩ V (Tu), and Dv =

D ∩ V (Tv).

2. Lower Bounds on γL
t (T )

In [4], Haynes, Henning and Howard gave two lower bounds on the locating-
total domination number for trees and characterized extremal trees for each
lower bound. Let G = Pn be the path on n vertices.

Theorem 1 (Haynes, Henning and Howard [4]).

(1) If T is a tree of order n ≥ 2, then γL
t (T ) ≥ 2(n + 1)/5.

(2) For n ≥ 2, γL
t (Pn) = γt(Pn) = bn/2c + dn/4e − bn/4c .

Theorem 2 (Haynes, Henning and Howard [4]). If T is a tree of order

n ≥ 3 with ` leaves and s support vertices, then γL
t (T ) ≥ (n+2(`−s)+1)/3.

Our next result improves the lower bound of Theorem 1 for every nontrivial
tree T. It also improves Theorem 2 for trees of order n ≥ 4` − 4s. Let F
be the family of trees that can be obtained from r disjoint copies of P4 and
P3 by first adding r − 1 edges so that they are incident only with support
vertices and the resulting graph is connected, and then subdividing each
new edge exactly once.

Theorem 3. If T is a tree of order n ≥ 2, then

γL
t (T ) ≥ 2(n + ` − s + 1)/5,

with equality if and only if T = P2 or T ∈ F .

Proof. We proceed by induction on the order of T. If n = 2, then T = P2

and γL
t (P2) = 2(n + ` − s + 1)/5 = 2. Every star K1,p (p ≥ 2) satisfies

γL
t (K1,p) = p ≥ 2(n + ` − s + 1)/5 with equality if and only if p = 2, that

is T = P3 ∈ F . This establishes the base cases. Assume that every tree
T ′ of order 2 ≤ n′ < n satisfies γL

t (T ′) ≥ 2(n′ + `′ − s′ + 1)/5. Let T be a
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tree of order n. Among all γL
t (T )-sets, let D be one that contains as few

leaves as possible. Note that every vertex x of D has at most one private
neighbor in V − D for if it had two private neighbors x′, x′′, then we would
have N(x′) ∩ D = N(x′′) ∩ D = {x}. If ` = 2, then T is a path Pn, and
by Theorem 1, γL

t (Pn) = bn/2c + dn/4e − bn/4c ≥ 2(n + ` − s + 1)/5 with
equality if and only if T = P4 ∈ F . Thus we may assume that ` ≥ 3.

Assume that T contains a strong support vertex y adjacent to at least
three leaves. Then D contains y and all its leaves except possibly one. Let
y′ ∈ D be any leaf adjacent to y, and let T ′ = T − {y}. Clearly D − {y′}
is a LTDS of T ′, n′ = n − 1, `′ = ` − 1, and s′ = s. By induction on
T ′, we have |D − {y′}| ≥ γL

t (T ′) ≥ 2(n′ + `′ − s′ + 1)/5, implying that
|D| > 2(n + ` − s + 1)/5. Thus every support vertex is adjacent to at most
two leaves.

Assume that 〈D〉 contains a connected component 〈Di〉 of diameter at
least 3. Then there exists an edge uv, such that 〈Di−uv〉 contains no isolated
vertices. Clearly each of Tu and Tv has order at least three, Du and Dv are
two LTDS of Tu and Tv, respectively. Recall that n1 + n2 = n, `1 + `2 ≥
` + q, and s1 + s2 = s + q, where 0 ≤ q ≤ 2 is defined above. Applying the
inductive hypothesis to Tu and Tv, we obtain

|D|= |Du|+|Dv|≥ 2(n1+`1−s1+1)/5+2(n2+`2−s2+1)/5> 2(n+`−s+1)/5.

Thus every component of 〈D〉 has diameter one or two.

If each w ∈ V −D is a leaf, then D contains for each support vertex all
its leaves except possibly one. Hence |D| ≥ n− s. Since ` ≥ 3 and n− s ≥ `,
it follows |D| ≥ n − s > 2(n + ` − s + 1)/5. Thus there exists a vertex
w ∈ V − D such that w is not a leaf. Assume now that w has a neighbor
say v ∈ V − D. Then each of Tw and Tv has order at least three, Dw and
Dv are two LTDS of Tw and Tv, respectively. By induction on Tw and Tv,
we obtain

|D|= |Dw|+|Dv |≥ 2(n1+`1−s1+1)/5+2(n2+`2−s2+1)/5> 2(n+`−s+1)/5.

Hence we may assume that V −D is an independent set and so every private
neighbor of a vertex of D is a leaf. Suppose now that w has degree at least
three and let z be any vertex of N(w) ∩ D. By removing wz, then Tw

has order a least three. If V (Tz) = {z, z′} then z′ is a leaf of T and so
{w} ∪ D − {z′} is a γL

t (T )-set with less leaves than D, contradicting our
assumption on D. Thus Tz has order at least three. Also Dw and Dz are
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two LTDS of Tw and Tz, respectively. The rest of the proof is similar to as
shown above, which leads to |D| > 2(n + ` − s + 1)/5. Thus every vertex
of V − D is either a leaf or has degree two. Note that all cases considered
until now do not lead to extremal trees because |D| > 2(n + ` − s + 1)/5.
Let W be the set of vertices of V − D having degree two. Since T is a tree,
|W | = k − 1 where k is the number of connected components of 〈D〉. Let
T ′ be the forest induced by the vertices of V (T ) − W and let T1, T2, . . . , Tk

the components of T ′. Then n1 + · · · + nk = n − |W |, `1 + · · · + `k ≥ ` + q,
and s1 + · · · + sk = s + q, where q is the number of new support vertices.
Also D ∩ V (Ti) = Di is a LTDS of Ti, for every i = 1, . . . , k. By induction
on each Ti, we obtain

|D| =
k∑

i=1

|Di| ≥
k∑

i=1

2(ni + `i − si + 1)/5 ≥ 2(n − |W | + ` − s + k)/5

= 2(n + ` − s + 1)/5.

Assume now that γL
t (T ) = 2(n + ` − s + 1)/5. Then we have equality

throughout the above inequality chain. In particular, γL
t (Ti) = 2(ni + `i −

si + 1)/5 for each i, and `1 + · · · + `k = ` + q, and s1 + · · · + sk = s + q.
This means that T ′ has a new leaf if and only if it has a new support vertex.
So each Ti has order at least three. Recall that every component 〈Di〉 has
diameter one or two. Suppose that for some i, 〈Di〉 has diameter two, that
is 〈Di〉 is a star of center vertex say, x and leaves y1, y2, . . . , yt with t ≥ 2.
We distinguish between three cases. If x is a not a support vertex neither in
T nor in Ti, then each yi is support vertex of Ti, and so Ti is a subdivided
star but γL

t (Ti) > 2(ni + `i − si +1)/5, a contradiction. If x is not a support
vertex of T but x is a support vertex of Ti, then Ti is a corona of K1,t−1,
where |Di| = t + 1 > 2(ni + `i − si + 1)/5. Now if x is a support vertex
of T with at most two leaves, then every yj is a support vertex in Ti for
either 1 ≤ j ≤ t or 2 ≤ j ≤ t, but then γL

t (Ti) > 2(ni + `i − si + 1)/5, a
contradiction.

Finally, assume that each connected subgraph 〈Di〉 is of diameter one.
Then Ti = P3 or P4, and the leaves of Ti are leaves in T. Thus every com-
ponent of T ′ is either a path P3 or P4 where every vertex of W joins two
support vertices of any different components Ti, Tj .

Conversely, let T ∈ F be a tree obtained from k1 disjoint copies of P4

and k2 disjoint copies of P3 with k1 + k2 ≥ 1, by adding k1 + k2 − 1 new
vertices, where each new vertex is adjacent to exactly two support vertices.
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Clearly the set of all support vertices plus one leaf from each copy of P3

forms a minimum LTDS of T of size 2(n + `− s +1)/5. So extremal trees T
achieving γL

t (T ) = 2(n + ` − s + 1)/5 are precisely those of F .

Note that in [2], Chellali and Haynes showed that every nontrivial tree sat-
isfies γt(T ) ≥ (n + 2 − `)/2. Since every LTDS is a total dominating set,
γL

t (T ) ≥ (n + 2 − `)/2. Our next result improves this lower bound.

Theorem 4. If T is a tree of order n ≥ 2, then γL
t (T ) ≥ (n + 2 − s)/2.

Proof. We proceed by induction on the order of T. It is a routine matter
to check that the result holds if diam(T ) ∈ {1, 2}. Assume that every tree
T ′ of order 2 ≤ n′ < n satisfies γL

t (T ′) ≥ (n′ + 2 − s′)/2. Let T be a tree of
order n and S a γL

t (T )-set that contains leaves as few as possible.
If the subgraph induced by V − S contains some edge xy, then let Tx

and Ty be the trees obtained by removing the edge xy where x ∈ Tx and
y ∈ Ty. Clearly each of Tx and Ty has order at least three, Sx and Sy are
two LTDS of Tx and Ty, respectively. Also n1 +n2 = n, and s1 + s2 = s+ q,
where q is the number of new support vertices with 0 ≤ q ≤ 2. By induction
on Tx and Ty, we have |S| = |Sx|+ |Sy| ≥ (n1 +2−s1)/2+(n2 +2−s2)/2 =
(n + 4 − s − q) ≥ (n + 2 − s)/2. Thus V − S is independent.

Let w be a vertex of V − S different to a leaf. If w does not exist,
then |S| ≥ n − s ≥ (n + 2 − s)/2, since s ≥ 2. Thus w exists and has at
least two neighbors in S. Let z be any neighbor of N(w) ∩ S, and consider
the trees Tw and Tz obtained by removing the edge wz where w ∈ Tw and
z ∈ Tz. If V (Tz) = {z, z′}, then z′ is a leaf of T and {w} ∪ S − {z ′} is
a γL

t (T )-set with less leaves than S, a contradiction with our choice of S.
Thus Tz has order at least three. Also Sw and Sz are two LTDS of Tw and
Tz, respectively. Hence by induction on Tw and Tz and since n1 + n2 = n,
and s1 + s2 = s + q, where 0 ≤ q ≤ 2 is defined as above, we obtain |S| =
|Sw|+ |Sz | ≥ (n1+2−s1)/2+(n2 +2−s2)/2 = (n+4−s−q) ≥ (n+2−s)/2.
This achieves the proof.

The lower bound of Theorem 4 is sharp for the path Pn with n ≡ 0(mod 4)
and improves Theorem 3 for nontrivial trees with n > 4` + s − 6.

3. Lower Bound on γD
t (T )

In [4], Haynes, Henning and Howard gave a lower bound of the differentiating-
total domination number of any tree with at least three vertices.
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Theorem 5 (Haynes, Henning and Howard [4]).

(1) If T is a tree of order n ≥ 3, then γD
t (T ) ≥ 3(n + 1)/7.

(2) For n ≥ 3, γD
t (Pn) = d3n/5e+1 if n ≡ 3(mod 5) and γD

t (Pn) = d3n/5e ,
otherwise.

Note that as mentioned in [4], since γD
t (T ) ≥ γL

t (T ) for trees, the bound of
Theorem 2 is also a lower bound for γD

t (T ).
A subset S of vertices of V is an identifying code (or a differentiating

domination set as defined in [3]) if for every pair of distinct vertices u and
v in V , N [u] ∩ S 6= N [v] ∩ S 6= ∅.

In [1], Blidia et al. showed for trees of order n ≥ 4 that every identifying
code contains at least 3(n+ `−s+1)/7 vertices. Since every differentiating-
total dominating set is an identifying code, 3(n + ` − s + 1)/7 is a lower
bound for γD

t (T ) which improves Theorem 5. Note that the lower bound
3(n + ` − s + 1)/7 is better than (n + 2(` − s) + 1)/3 for trees with 2n >
5` − 5s − 2. For the purpose of characterizing extremal trees we give here a
proof of γD

t (T ) ≥ 3(n + ` − s + 1)/7, by using a similar argument to that
used in the proof of Theorem 3.

Let G be the family of trees that can be obtained from r disjoint copies
of a corona of P3, a double star S2,1 and a star K1,3 by first adding r − 1
edges so that they are incident only with support vertices and the resulting
graph is connected, and then subdividing each new edge exactly once.

Theorem 6. If T is a tree of order n ≥ 3, then

γD
t (T ) ≥ 3(n + ` − s + 1)/7,

with equality if and only if T ∈ G.

Proof. We use an induction on the order of T. If diam(T ) = 2, then
T = K1,p(p ≥ 2). Thus γD

t (K1,2) = 3 > 3(n + ` − s + 1)/7 and for p ≥ 3,
γD

t (K1,p) = p ≥ 3(n + ` − s + 1)/7 with equality if and only if p = 3,
that is T = K1,3 ∈ G. If diam(T ) = 3, then T = Sp,q. Thus γD

t (S1,1) = 3 >
3(n+`−s+1)/7 and for max{p, q} ≥ 2, γD

t (Sp,q) = p+q ≥ 3(n+`−s+1)/7
with equality if and only if p + q = 3, that is T = S2,1 ∈ G. This establishes
the base cases. Assume that every tree T ′ of diameter at least 4 and order
n′, 5 ≤ n′ < n satisfies γD

t (T ′) ≥ 3(n′ + `′ − s′ + 1)/7. Let T be a tree
of order n, and D a γD

t (T )-set. If T is a path Pn with n ≥ 5, then by
Theorem 5(2), γD

t (Pn) > 3(n + ` − s + 1)/7. Thus we assume that ` ≥ 3.
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If any strong support vertex y is adjacent to at least four leaves, then let
T ′ = T −{y′}, where y′ is any leaf adjacent to y. Without loss of generality
y′ ∈ D, and then D − {y′} is a DTDS of T ′. Hence by induction on T ′ we
have |D| − 1 ≥ γD

t (T ′) ≥ 3(n′ + `′ − s′ + 1)/7. Since n′ = n − 1, `′ = ` − 1,
and s′ = s, we obtain |D| > 3(n+ `− s+1)/7. For the next we assume that
each support vertex is adjacent to at most three leaves.

Assume, the subgraph 〈D〉 contains a connected component 〈Di〉 of
diameter at least 5. Thus there exists an edge uv, such that each connected
component of 〈Di − uv〉 has diameter at least 2. Then Du and Dv are two
DTDS of Tu and Tv, respectively. Since n1 + n2 = n, `1 + `2 ≥ ` + q, and
s1 + s2 = s + q, then by induction on Tu and Tv, we obtain

|D|= |Du|+|Dv|≥ 3(n1+`1−s1+1)/7+3(n2+`2−s2+1)/7> 3(n+`−s+1)/7.

Thus every component of 〈D〉 has diameter two, three or four.
Suppose that 〈V − D〉 contains some edge uv. Then by removing the

edge uv, each of Tu and Tv has order at least four, Du and Dv are two DTDS
of Tu and Tv, respectively. By using the induction on Tu and Tv, it follows
that γD

t (T ) > 3(n + ` − s + 1)/7. Thus V − D is independent and hence
every private neighbor of a vertex of D is a leaf.

Let w be any vertex of V − D different to a leaf. If w does not exist,
then |D| ≥ n − s ≥ 3(n + ` − s + 1)/7 with equality only if T is a corona
of a path P3 or a double star S2,1. Thus T ∈ G. Now if w has degree at
least three, then let z be any vertex of N(w) ∩ D. Then by removing wz,
Tw has order at least seven and Tz has order at least three, Dw and Dz are
two DTDS of Tw and Tz, respectively. The rest of the proof is similar to as
shown above and so |D| > 3(n + ` − s + 1)/7. Thus every vertex of V − D
is either a leaf or has degree two.

Let W be the set of vertices of V − D having degree two. Since T is a
tree, |W | = k−1 where k is the number of connected components of 〈D〉. Let
T ′ be the forest induced by the vertices of V (T ) − W and let T1, T2, . . . , Tk

the components of T ′. Then n1 + · · · + nk = n − |W |, `1 + · · · + `k ≥ ` + q,
and s1 + · · · + sk = s + q, where q is the number of new support vertices.
Also D ∩ V (Ti) = Di is a DTDS of Ti, for every i = 1, . . . , k. By induction
on each Ti, we obtain

|D| =

k∑

i=1

|Dk| ≥
k∑

i=1

3(ni + `i − si + 1)/7 ≥ 3(n − |W | + ` − s + k)/7

= 3(n + ` − s + 1)/7.
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Assume now that γD
t (T ) = 3(n + ` − s + 1)/7. Then we have equality

throughout this inequality chain. In particular, γD
t (Ti) = 3(ni + `i − si +

1)/7 for each i, and `1 + · · · + `k = ` + q, and s1 + · · · + sk = s + q.
Thus T ′ contains a new leaf if and only if it has a new support vertex. So
each Ti has order at least four. Recall that each component of 〈D〉 has
diameter two, three or four. We first assume that the subgraph 〈Di〉 has
diameter three or four. We will show that no leaf of Ti is contained in 〈Di〉.
Assume to the contrary that a leaf y ∈ V (Ti) ∩ Di and let z ∈ Di be its
support vertex. Note that y may be a new leaf in Ti. Consider the tree
T ′

i = Ti − {y}. Then 〈Di − {y}〉 has diameter at least two and Di − {y} is
a DTDS of T ′

i , with n′

i = ni − 1, `′i ≥ `i − 1, and s′i ≤ si. It follows that
|Di−{y}| ≥ γD

t (T ′

i ) ≥ 3(n′

i+`′i−s′i+1)/7 and so |Di| > 3(ni + `i − si + 1)/7,
a contradiction since |Di| = 3(ni + `i − si + 1)/7. Thus 〈Di〉 contains no
leaf of Ti and hence every support vertex of Ti is adjacent to exactly one
leaf. Now let k1 be the number of support vertices of Ti. Thus Ti has k1

leaves. Let k2 = ni − 2k1. Clearly k1 + k2 ≥ 4 since 〈Di〉 is a component
of diameter three or four, but then |Di| = k1 + k2 > 3(ni + `i − si + 1)/7,
a contradiction.

Thus for each i = 1, . . . , k, the subgraph 〈Di〉 has diameter two, and
so 〈Di〉 is a star of center vertex x and leaves y1, y2, . . . , yt with t ≥ 2.
Note that |Di| = t + 1. If x is not a support vertex neither in T nor in
Ti, then each yi is support vertex of Ti. Hence Ti is a subdivided star
with |Di| > 3(ni + `i − si + 1)/7, a contradiction. If x is not a support
vertex of T but it is a vertex support of Ti, then Ti is a corona of K1,t−1,
where |Di| > 3(ni + `i − si + 1)/7. Now if x is a support vertex of T
with at most three leaves, then every yj is a support vertex in Ti for either
1 ≤ j ≤ t, 2 ≤ j ≤ t, or 3 ≤ j ≤ t, but then γL

t (Ti) = 3(ni + `i − si + 1)/7
if and only if Ti = K1,3, S2,1 or Ti is a corona of a path P3. Thus every
component of T ′ is either a path K1,3, S2,1 or corona of P3 where every
vertex of W joins two support vertices. Therefore extremal trees T achieving
γL

t (T ) = 3(n + ` − s + 1)/7 are precisely those of G.
The converse is easy to show.
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